poﬂmﬂﬂ

."II

Understanding Application and System Performance Issues
On WCOSS Systems

James Taft
IBM Contractor
jtaft@siennasoftware.net

January 15, 2013

Agenda

* Kinds of Optimizations
* GSI Experience

* Conclusions

e Suggestions

..|II

..|II

Kinds of Optimizations

There are several items to consider when you embark upon an optimization effort
on any machine. Each can have significant impact on the total job performance.
The major areas of concern are:

e Run time environment

e Compiler/Library Issues

e MPI Issues

e OpenMP issues

e |/O Issues

e Algorithmic Issues

e Coding efficiency

..|II

Run Time Environment

The user typically will use a “runit” script to execute his job. This script consists of
directions to the system to set up the best system configuration for executing the
particular job at hand. Aside from specifying the number of nodes/cpus to run on,
the user must also declare the memory requirements, and the types of
MPI/OpenMP settings to insure the best communication performance.

e Set node and memory needs

e Set communication protocols

e Set system buffers for I/0 and communication

e Set OpenMP parameters

e Set MPI parameters

e Provide instructions for job initialization, run, and post processing cleanup

E’i‘ﬁ' FOREN Fw""‘dﬂ,.

':NCEP ‘% Sample Runit Script IBMPE - MPICH2

WATIg
&.,

..|II

Z!B/;’Jé/gaégl This script is used to execute IBM MPICH2
#BSUB -a poe codes on WCOSS. It is very simple and very
zggﬂg:\:’ﬁ:oo few settings are needed by the user. The
#BSUB - err most common user tunable is the eager
#85UB-n256 setting. Start with the default (64K) and
#BSUB -g "hpc_ibm") } .
#BSUB -R span[ptile=4] move up/down in multiples of 2 until best
#BSUB —x results are obtained.

ulimit -s unlimited
export LANG=en_US

export MP_EAGER_LIMIT=65536
export MP_EUIDEVELOP=min
export MP_EUIDEVICE=sn_all
export MP_EUILIB=us

export MP_MPILIB=mpich2

export MP_USE_BULK_XFER=yes
export MPICH_ALLTOALL_THROTTLE=0
export MP_COLLECTIVE_OFFLOAD=yes

export KMP_STACKSIZE=1024m
export MP_TASK_AFFINITY=core:1
export OMP_NUM_THREADS=2
(time mpirun.Isf ./gsi.x) > stdout

aaﬁ“-"” ey

-?NCE"‘I}g Compilers and Their Impact on Performance

."II

The world is moving to just a handful of compilers. This is good. It means that codes are
much more portable. Both Zeus and WCOSS support the Intel ifort,and icc compilers.

Compiler Options - General

There are a myriad of compiler options. Many sound very interesting and would appear
to offer enhanced performance if invoked. This is generally not the case. Don’t be led
into using a series of exotic options to get 1 or 2% better performance. Your code will be
more subject to compiler issues downstream as compiler upgrades come along. Use the
fewest possible.

Compiler Options - Recommended
-0O3 that’s it. Use —02 if this breaks

Compiler Options — If needed
byte_recl, r8, i8, extended source, fp_model=strict

Parallel Processing Paradigms

."II

Users are continually assaulted with calls for increased scaling for almost all codes
in existence on HPC systems. There are two major ways to achieve this. These are:

OpenMP Threading

This is a simple compiler directive based form of parallelism that will allow the
user to use simple compiler directives to instruct the compiler to generate parallel
threads to execute subsections of the code at hand. This is often called a fine-
grained parallel approach. It works only within a node.

MPI

This is a message passing based approach to parallelism that allows the user to
explicitly sub-divide the computational burden across a given number of IB
connected nodes on the system. This is often called a coarse grained approach.

HYBRID MPI/OpenMP

A combination of both. Sometimes used to attempt a better load balance of the
work, by adjusting the thread counts per process to speed up slower sub-blocks
of the computation. Running with a constant thread count for each process is
becoming less useful today due to HW issues limiting its scaling.

WATIg
4:.,

':NCE)B;% What kind of parallelism should you use E

aaﬁ“-"” ey

Architectural Issues

Modern HPC architectures are evolving to a common design across almost all
vendors. This architecture is a system of IB coupled modest core count SMP nodes
running linux, talking to a global file system that is either Lustre or GPFS. This
common architecture has been in place for about a decade and will be in effect
for the next many years.

Historical Approaches

In the past users were typically using a single level of parallelism (MPI) to run in
parallel. More aggressive users added and underlying 2" level (OpenMP) to
handle some load balance or exotic failure to scale issues.

My Suggestion

After many years of writing code across many scientific disciplines, it is my opinion
that one should adopt MPI first and use OpenMP only sparingly when absolutely
needed. The GSI example later in this talk gives some credence to this thinking.

."II

..|II

MPI Communication Issues

MPI simply dominates the modeling community when it comes to building
parallel code. Many codes are coarse grained parallelized using domain
decomposition. That is, the total simulation is broken into many smaller sub-
domains each running as a separate process and each responsible for a small
fraction of the total problem. The user invokes the MPI communication library to
exchange data and boundary conditions as needed between them.
Synchronizations are also done to insure the total solution moves forward in a
lock step manner.

The use of MPIl is a complex topic and requires much discussion. The bottlenecks
typically experienced with MPI have evolved over the years. In the past network
bandwidth and latency issues were extensive. Current systems are much more
robust and scaling has improved dramatically. Some of the issues to watch are:

e Overuse of MPI_ALLTOALLV
e Excessive barriers (explicit or implied)

e Short message exchanges in tight loops

- ~ o AT

<|Ili

OpenMP Issues

There are very few pure OpenMP parallel codes. In my experience | have seen 1 in
production and it was built from scratch to be OpenMP. Almost all other codes
that use OpenMP are “hybrid” codes in that they do a coarse grained parallel
decomposition using MPI, and a fine grained “loop” level parallelization under this
using OpenMP compiler directives. This can be a terrific combination, providing
the science supports it, and the user is judicious its application. Some of the
issues to worry about are:

e Overuse — Some loops run better serial to avoid cache thrash

e OpenMP applied at the wrong point — higher is better

e Roundoff issues — some constructs don’t guarantee repeatability

e Scaling Issues due to hardware — simple memory system fails to scale

e Sometimes single level parallel with MPI is better — better decomposition

..|II

The Issues with I/0

In the weather and climate community it is often the case that I/O can consume
significant fractions of the total run time of a job. It is not uncommon to see I/O consume
20-50% of the total run time. Often, there are a number of ways to improve on this, and it
is common to see factors of 4x or more when additional optimization efforts are made.
This is particularly true when users are moving to systems with new |/O architectures.
Some of the major issues with |/O are:

e Overuse of user and system buffer space
e Do careful with buffers. Codes often use extensive buffer space

e Too many readers/writers
e Many modern I/O architectures do not respond well to a flood of I/O requests
e Often one reader/writer with MPI broadcast is much better

e Large numbers of short records

e Big/Little Endian conversions

e Overuse of Direct Access |/O when Binary will do

Users have developed a number of popular approaches to solving the equations of
motion and physics sub-models in the climate and weather communities. It is important
to match these solution techniques to the features of the architectures at hand.

As hardware moves to supporting larger and larger multi-core chips, and faster lower
latency interconnects, the user must re-evaluate what makes sense moving forward.

Historically we have seen differing styles of grid decomposition, spectral vs spatial
approaches, etc. Current systems tend to favor pure real space solution approaches, but
there are many spectral models that remain in use.

Icosahedron based meshes are gaining in popularity and map well on the new systems.
They also have some advantages in handling the poles in global simulations, in BC
exchanges, and can be readily coded using MPI/OpenMP hybrid approaches.

QR ENUTED,
,'.ﬂ'Ej‘E‘-F = = MEHJ'
[t R
= 2,

NCE}E; Coding Efficiency

RHATIg,
2
|||||| |

..|II

Codes develop over many years and are the product of a diverse group of
developers. This allows the community to develop highly sophisticated simulation
models in the shortest time, but also almost guarantees that significant sections
of the codes are written in less than optimal fashion. Historically, most codes can
expect to gain a factor of 2x or more with additional optimization work.

When making a second pass for optimization after initial development, one
should look at the following:

e Extravagant use of memory
e Too many short loops and extraneous temporaries that thrash cache
e Poor choices of library routines or using home grown alternatives

e Poor loop ordering

..|II

Suggestions

This discussion touches on a number of areas that are complex and require
substantial discussion to understand fully. | suggest that we have a continuing
education program (perhaps a 1/2 day session every month) that addresses each
of the topics below. | propose that it be a “hands on” session with the class
watching a live walk through of an assessment using real codes provided by NCEP.
We would cover the following topics at a minimum:

e Timing codes for optimization in performance
e Discovering memory requirements

* |/O Optimization strategies

e |dentifying scaling issues in MPl and OpenMP

..|II

Finding your Memory Occupancy

There is a straightforward way to determine the ever changing memory requirement of
your code as it executes. It basically involves calling the routine “getrusage” at various
stages in the execution of the code and printing out the result. You can then determine
exactly which routine is taking all the memory and evaluate whether it can be fixed or
not. An example of a simple calling sequence is:

call getmemuse(mbytes)
wri1te(1000+mype,b222) mbytes

222 format(“GETRUSAGE resident memory i1s:”, 16,” GB?)
call Tlush(1000+mype)

This will produce prints to a series of files tagged with the process number + 1000. The
user can then grep through the files looking for the process or processes that take all the
memory. Often times it is the master that is the culprit as it often has extra large buffers
for I/O operations. Some codes have these buffers for all processes, though they don’t
need them.

This process is excellent in not only reducing memory needs, but also can boost
performance as the resulting smaller executables often run better.

Unfortunately, this happens a lot more than anyone would like on
many machines. For some reason the system simply doesn’t clean up
after a trap, and you as the user have no clue as to where the code
died, and for what reason. The following will help a lot. The
process is to insert the prints below into the code In various
locations. Usually, a dozen or so 1s adequate.

call getmemuse(mbytes)
wri1te(1000+mype,b222) mbytes

222 format(“GETRUSAGE resident memory i1s:”, 16, GB | got to 17)
call Tlush(1000+mype)

What you get is a series of files that prints out how far each process got and its memory
needs at that point. You can quickly see which process didn’t make it to the next print
and how much memory is being used just before it died (out of memory is often the
reason for many codes dying).

Three Things about the Memory System

Modern microprocessors differ in the fine details, but overall they are extremely
similar in their architectural features. The most important features for all
microprocessors that impact user code performance are given below:

e Caches —there are a lot of them — usually 3 now
e Caches are getting smaller — there is more reliance on memory access
e Contention effects are getting worse
e Can be 30% hit easily

e |t's NUMA Memory — all systems have NUMA effects
e Sometimes true NUMA — sometimes bad pinning
e Can be 30% hit easily

e TLB Issues
eYou can only “see” memory pages in the TLB
e |[fitisn’tin the TLB you take huge hit to update TLB
e Random walks through memory are bad here
e Can be 30% hit easily

."II

Process/Thread Placement — Performance

Ever since SGI built the first NUMA memory system in its Origin series almost 20
years ago, the user community has had to worry about process and/or thread
placement. In particular, such systems are highly sensitive to how far the memory
is from the CPU actually running the thread or process. In true NUMA systems
this can be a number of “hops” away. Each hop adds latency and perhaps
bandwidth degradation in the access of the cache line from memory.

In newer systems the nodes are small and the memory is at most 1 or 2 hops
away. Even so, this is significant and can reduce effective memory speed by 2x in
some cases.

Part of the problem that greatly exacerbates the problem is that the system may
be stupid and inadvertently place the process far from its memory. This can be
overcome by intelligent pinning of the processes close to the memories that they
will use. Currently, batch schedulers, and/or MPI launchers do this function. It is
done well by most systems today. Though hybrid codes may be problematical.

Computing with 80 Bit Precision

."II

Since the world is almost exclusively using x86 hardware at this point, users are
beginning to gain some advantage in the precision of their computations. This is
because the x86 architecture does its register to register floating point work in 80 bit
precision., a carry over from the 287 math coprocessor days of 20+ years ago.

This can have significant stability advantages in large problems where roundoff is always
an issue. For NCEP codes the users first notice the effect when they see the results on
x86 systems differ from that of CCS. The first thought is that the new systems are giving
wrong answers. The actual fact is that they are giving better answers and the roundoff
differences are the result of increased mathematical precision. Users frequently turn
this off with the use of the “fp_model strict” flag that brings the precision back to IEEE
64 bit standards.

Using Libraries - MKL

."II

MKL is the default math and science library provided with Intel compiler suite. It is
significantly optimized and should be used whenever possible. Generally, it is highly
reliable, and has the benefit of literally millions of users providing input to Intel
whenever an accuracy or performance issue is discovered.

Users should abandon any custom routines that provide the same functions. There is no
need to maintain such source and often times it is substantially less efficient.

Also, MKL is an OpenMP threaded library that allows the user to use it liberally in
OpenMP sections without having to modify custom routines for that purpose.

MPI Programming Strategies

The philosophy behind MPI programming can be summed up in a few simple
statements. They are:

e Communicate a little as possible

e Avoid extraneous explicit barriers

e Avoid extraneous implicit barriers in the global operations too

e |n particular, avoid MPI_ALLTOALLYV calls if at all possible

e Beware of MPIIO — It is generally not supported well on systems with weak 1/0
e Keep it SIMPLE — Virtually every code is overly complex in MPI

e Use MPI_ANY_SOURCE whenever possible

e Don’t bother with buffered or asynchronous send/receives — it very rarely helps

."II

FORTRAN 9x — Issues and Helpful Hints

."II

FORTRAN 9x has been around for decades at this point. Every year more object oriented
and C like features are added to its syntax. | would suggest that you avoid most of them
for best performance, code readability, and code stability. In particular:

eAvoid the use of pointers

e Avoid the use of interface definitions

e Avoid the user of optional arguments

e Use array syntax sparingly

e Use Modules sparingly — Do not use the CONTAINS feature

* Build source with a single extension type such as .F or .f

The TLB Problem

."II

There is a Translation Look-aside Buffer (TLB) in every modern microprocessor. This buffer is
a fundamental part of the hardware, and consists of 10s to 1000s of entries, depending on
the manufacturer and the age of the processor. Simply put, The size of the TLB determines
the number of active pages that can be addressed by a user program at any given time. If
the user accesses data with an address not in the TLB active list, a serious hit is taken (1000s
of clocks) as the TLB is updated with the new page.

Usually, users don’t care about the TLB, but codes that are doing a lot of random lookup can
experience a significant reduction in performance because of it.

Because the system page sizeunder Red Hat Linux is by default only 4K bytes, TLB misses
can occur in surprising places, such as running through 3D loops in the wrong order.

Many systems boot with larger page sizes to reduce the impact of TLB misses (larger page
sizes allow the TLB to cover more user address space — thus fewer chances to encounter a
miss). This is an experiment we should do here.

FYI, It was observed at NASA that a default page size of 64K bytes would often increase code
performance by 15-20%.

Bt ey,

*"NCEP Memory Fetch Reduction Is all Important
> 4
Floating Point is Free

."Ilil

In the “old” days of Cray vector machines, memory fetches were essentially hidden behind
the floating point work. Thus, the MFLOP number quoted by Cray users was a true reflection
of the runtime of the code.

Today, just the opposite is true. Floating point work is essentially free. One can perform
~1000 floating point operation in the time it takes to fetch a single cache line from memory.

This stunning turnaround is due to the need for commodity microprocessor manufacturers
to build simple inexpensive memory systems that can be inserted into inexpensive desktop
workstations and laptops.

Unfortunately, simple memory systems mean long latency times for any memory fetch and a
guarantee that most real codes will only run a small percentage of the peak performance of
the system CPU.

Users must strive to reduce spurious memory fetches to the absolute minimum to get better
code performance.

Cache hit rate is 99% - Big Deal

."II

Most hardware system designers like to quote that their platform is designed so well with
complex mult level caches that most codes get cache hit rates of 90+ percent.

My response is “big deal”. The problem we have is that you need a hit rate of 99.9% to really
get a significant percentage of the peak performance of the machine. A simpleiidealized
example shows why:

1) Memory access time: 100 clocks

2) 99 out of 100 fetches in cache

3) That means it takes 99 clocks for 99 operands and 100 clocks for the next - 199 clocks

4) 199 clocks to get 100 operands means that you are running half as fast as all cache run

5) Thus, you are running % the peak of the machine with only 1 cache miss.

Tide/Zeus GSI Experiences

I .. e
[N - - A
_— I T o
— . -
=] - . - -
I B BN W
I T . Y "

GSI Optimization Work —
A Platform Independent Generic Modification Effort

."II

The GSI work on Zeus/Tide has been crafted as a generic effort that will allow the code to
run significantly better on all platforms at hand. The work was focused on just a few areas
as the result of extensive timing studies which showed some “low hanging fruit” that could
seriously impact performance with a modest effort. Some features of the effort are:

All optimizations resulted in ZERO differences in all output of any kind

The work was mainly focused on the GETUV and SMOOTHRF routines and their children

e Some work was focused on MPI performance issues with ALLREDUCE and ALLTOTALLV

I/O was not addressed at all — it is about 10% burden for the data sets given

E’i‘ﬁ' FOREN FE"-'MEH

."II

NC%} PCGSOI Runtime Over the history of Modificatiors—

This chart shows the evolution of the crunch part of the code as the optimizations took
place over the course of this project.

time.out.v0001.480procs.01threads:PCGSOI - 1186.0 1186.
time.out.v0017.480procs.01threads:PCGSOI - 1103.2 1103.
time.out.v0018.480procs.01threads:PCGSOI : 1096.1 1096.
time.out.v0020.480procs.01threads:PCGSOI : 1079.4 1079.
time.out.v0021.480procs.01threads:PCGSOI : 1050.4 1050.
time.out.v0025.480procs.01threads:PCGSOI : 1006.7 1006.
time.out.v0029.480procs.01threads:PCGSOI : 977.0 977.
time.out.v0031.480procs.01threads:PCGSOI : 1011.1 1011.
time.out.v0033.480procs.01threads:PCGSOI : 971.7 971.
time.out.v0034.480procs.01threads:PCGSOI - 1026.3 1026.
time.out.v0042.480procs.01threads:PCGSOI : 906.8 906.
time.out.v0044_480procs.01threads:PCGSOI - 869.4 869.
time.out.v0050.480procs.01threads:PCGSOI - 865.4 865.
time.out.v0057.480procs.01threads:PCGSOI : 1109.3 1109.
time.out.v0060.480procs.01threads:PCGSOI = 1000.5 1000.
time.out.v0062.480procs.01threads:PCGSOI - 877.3 877.
time.out.v0068.480procs.01threads:PCGSOI - 893.8 893.
time.out.v0072.480procs.01threads:PCGSOI : 912.8 912.
time.out.v0073.480procs.01threads:PCGSOI - 864.7 864.
time.out.v0074.480procs.01threads:PCGSOI - 885.0 885.
time.out.v0076.480procs.01threads:PCGSOI - 888.2 888.
time.out.v0077.480procs.01threads:PCGSOI : 951.8 951.
time.out.v0080.480procs.01threads:PCGSOI : 824.6 824.
time.out.v0084.480procs.01threads:PCGSOI > 752.9 752.
time.out.v0085.480procs.01lthreads:PCGSOI : 804.4 804.
time.out.v0086.480procs.0lthreads.PCGSOI : 715.4 715.

g‘iﬁ' FOREN Fw""‘dﬂ,.

WATIg
&.,

NCEP,

r_-h"-‘

Nl
lin
..|II

New MPI_ALLTOALLYV - Blocking Send/Receives

This code duplicates the run time performance of MPI_ALLTOALLV on Zeus.

subroutine jmpi_alltoallv(sbuf,icnt, ioff,mtypes,rbuf, jcnt, joff, mtyper,mdum, ierror)
use mpimod, only: mype,npe

include "mpif.h"
include "common.inc"

real*8 sbuf(*)
real*8 rbuf(*)

integer ioff(npe), joff(npe),icnt(npe), jcnt(npe)

integer istat(MPI_STATUS SIZE)

- sends

do n=1,npe

isend=mype+(n-1)

if(isend.ge.npe) isend=isend-npe

iblck=isend+1

if(icnt(iblck).gt.0) call mpi_send(sbuf(ioff(iblck)+1),icnt(iblck),mpi_real8,isend,0,mpi_comm world,ierror)

receives

Jrecv=mype-(n-1)
if(Jrecv.1t.0) jrecv=jrecv+npe
Jjblck=jrecv+1

ifgent(blck).gt.0) call mpi_recv(rbuf(Joff(blck)+1),jcnt(jblck),mpi_real8, jrecv,0,mpi_comm world, istat, ierror)

enddo

return
end

i
<|Ili
"II
@

Why Stick with MPI Only

| argue that we stick with MPI only as far as possible. The reasons are:

MPI generally scales more efficiently than OpenMP hybrid alternatives.

Modern HW likes coarse grained decompositions of user code. This is particularly
true on the new standard for HPC architectures where OpenMP scaling is

usually only good on two cores, modestly good on 4 cores, and basically

worthless on more.

Occasionally OpenMP Hybridization helps:

Some codes need help in code sections that run on fewer CPUs due to the physics
or the shape of the domain decomposition. Some need it because of MPI
latency issues that inhibit scaling.

A simple example where it could help
For GSI, some sections only scale to 64 processes due to parallelization across the
number of grid levels. Here it would be nice to suddenly ramp up performance
with an OpenMP section. However, further examination of the code shows

that a rewrite will get us a lot farther.

(TR

nﬁNCE}B;% GSI — Code Decomposition Study

..|II

GSl is a good example of a code that can benefit from single MPI parallelism with
some possible extension to OpenMP for certain code segments, at least at first
blush. The chart below graphically presents the logical flow through the
computation and the limits to scaling. Most sections run on 480 processes, but
two areas run on 64 and 385 processes respectively.

Workload Over Time

480 procs

64 procs

480 procs

385 procs

480 procs

GS| — Code Decomposition Study

..|I|

1t — GSI benefits not at all from converting any code in the 480 sections to a
MPI/OpenMP hybrid mix. The code runs better with pure MPI parallelism. One
can divert all focus to the the 64 and 385 way sections. Fortunately, these are
relatively small code sections totaling a couple of thousands of lines.

2" —The 64 way code section will not benefit much from adding OpenMP. The
reason is that running on two threads might get you another factor of two in
performance, but then you are out of business as 4 threads is much less of a
payoff, and more than 4 is a waste of time. Also using OpenMP here requires
some fancy tricks not to disturb the remainder of the code. One would like to run
this on 480 cores and it looks like a different decomposition will get us there with
some creative coding. So the end result is that OpenMP is not needed here at all.

34— The 385 process section is a bit more subtle. It is already relatively high in
core count, and the first order of business would be to improve the single CPU
performance to make it less impactful on run time. This has been done and a 2x
win was obtained. Further work with OpenMP is not fruitful as one must have a
total core count that matches 480 to match up with the rest of the code.
Alternatively you could change the core counts, but it is complex how to divide
the 385 tasks well (a fixed number for a given data set).

RHATIg,
=
m e
DO/

nrmf—"":’ﬂb
|||||| |
(]

I
1T

llli
T

Interesting Behavior When Running Hybrid Code on Zeus/TIDE

One should note that most codes in HPC are memory bound. They are not doing well at
reusing cache. Also note that as core counts go up on new products, the trend will be to
reduce cache size per core over time. This will make cache reuse even tougher to achieve. |
have observed a couple of things on Zeus, which will be true of other HPC architectures.
These are:

e Running an N process count memory bound code on N adjoining cores will run in about
the same time as a code running N/2 processes running on N cores where we are set up to
run on every other one.

e Running an N process code will run in about the same time as an N/2 process hybrid
code where we a set up to use 2 threads per MPI process.

e Running on higher thread counts generally throws CPU cycles on the floor. If it scales well
on MPI it will not scale nearly as well with a hybrid running 4 or more threads.

eThere are known bugs and performance issues with OpenMP — why add stress to your
coding efforts if it is not needed — avoid extraneous OpenMP work.

E’i"‘ FOREN Fliﬂilm\.“_:“lI

Process Number:
Process Number:
Process Number:
Process Number:
Process Number:

READEM

READS

SENDS

RECEIVES

3/23/12

NC %P;

Module Summary

A
OO0 UINWOOOO M

QU OOWWOWOOOOoOV

o
a1 a
w P

152.7
153.3

[NONGNoNoNeNeoNeoNeNe)
NWOOMOOOOOO

=
[¢)]
w

154.1
153.0
153.0
152.5

ONNUToO UTOOOOOo

ORANWOOOOOO

Sample TIME.OUT Output
13 17 21 25 29 33
73 7 81 85 89 93
133 137 141 145 149 153
193 197 201 205 209 213
253
153.7 153.8 153.4 152.9 153.1 153.9
153.7 153.5 154.3 153.7 153.1 153.6
152.0 153.0 152.8 154.1 152.2 153.1
153.4 152.4 152.5 152.7 153.0 152.8
152.1
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0
5.9 6.2 6.4 6.7 6.5 6.3
6.3 6.2 6.1 6.2 6.3 6.3
6.0 5.7 5.6 5.7 5.7 5.6
6.0 5.9 6.3 6.0 6.5 6.3
5.9
153.6 153.8 153.3 152.9 153.1 153.8
153.7 153.5 154.3 153.6 153.0 153.5
152.0 153.0 152.7 154.0 152.2 153.1
153.3 152.4 152.5 152.7 152.9 152.8

152.1

James Taft

3/23/12

GSF_ESMF
PREAMBLE
ESMF_WMBarr
GFS_RUN
ESMF_CplCom
ESMF_WMBarr
GFS_Run
GFS_Finalize
ESMF_CplCom
GFS_Run_ESM
ENSEMBLE W
TLDFL
GET_CD_...
DO _TSTEP
GET_CD_...
SYNCHROD
DO_TSTEP
DO_TSTEP
GLOOPA
GCYCLE
ATM_GETSSTI
GLOOPR
SICDIFE_HYB
SICDIFO_HYE
SICDIFE_HYB
SICDIFO_HYB
SICDIFO_HYB
SICDIFO_HYB
LOOP

BCST
DELDIFS
FILTR1ED
GLOOPB
DUMP_SPEED
FILTRZEDQ
WRTOUT
RESHUFF
ATM_SENDFLL
GLOOPR
RADINIT
ASTRONOMY
DELNPE
DELNPO
DEZOUV/DOZI
SUMFLMA_R
SUNDERA R
FOUR2GRID t
LOOPS
GGRAD

SW

Iw

GLOOPB

]
R

W
5 ol t
cCowmomowWooooo~oWw,M

o
P =1

(=]

Homom
P
(SN

Lad

L
: W HEe oo
cwoooCcofoOoDMNOWRLODOOoOHLODOOO

(=]

[P ST 3]
I =]
L O R L LR

Sample FORT.301 Output seen in Excel

Q2.6 Q2.6
1.4 1.9
0 0
0.7 0.7
i i}
0 0
0 0
0 0
0 0
=l =l
i i}
4.6 4.6
0 0
0.5 0.5
0 0
i o
B5.5 B5.5
B5.5 B5.5
14.6 15
0 0
0 0
20,1 20.4
i i}
] 0o
0.6 0.5
0.5 0.5
0 0
0 0
i i}
10.7 10.5
0.1 0.1
0.1 0
35.7 35.6
0 0
0.1 0.1
B 7.8
0 0
0 0
20.1 20.4
0 0
i o
i i}
0 0
0 0
0.3 0.3
0 0
0.1 0.1
19, 20
19.6 19.9
2.4 2.4
16.8 17.
35j 35.?_
ames Taft

u
= R

el
o

v
PR 5 B
clowmo oo wWoooooNowd

(=)

- oo
L (n)tn
i in in

[=j =)

30.6

(=)

Fooo

L
owooooohoownoNRkRNOOoOoWEnROoO

m o

Lax
(=]

=)
= B

e
[=]
Cowmo Mmoo oo o o oD O

o
Y (=]

o
B EA =
[=N=1rT

L
(==

(=g =)

oo o

L
HoOWOoOoOoOoOoO oo ~NMORHE-WoooWwo oo

=]

Lax
(=]

(=)

(=]

L P Ml
[FoRE T R N v R]
00 L WD

Lo
= R

w
5 = B
DoOWmD D WO Oo0oOo0o oWy

o
P

(=]

o m
Wt
in in

o
owo oo olo~Noo

- [N
=Moo o
Bl W e

Lai
(]

]
R

o o
F P ol t
cownwono~WOooooo oD,

(=]

Homom
£
o e

L=}

20.5

=]

—
(=00

Pt Lai
(=1 +=

(=] =]
CwDoDoOoDooWoDoR~ROoORoHNDOoODOoOWMLIOOD

= [
g
L D

34,

1)
[l g

el
5 =
cowmomo~Nooooo~-owod

[ie]
e [=]

(=]

=1
cwoooooWwoo

LI
WO o
L WD

35,

e
=k

el
o

T
PR 5 B
CoWmocmoWo oo oo =NoWwn

(=)

= m
P()in
[SUTNT

(=R =)

30.5

(=R =)

Vo oo

Lt
CwoooooOWoD o NMNORLHLNOoOOoOoODEOoOo

-~ =

Laz
(=]

(=)

[=]
[

30.
9.9

25.3
35.6

..|II

@

Sample EXCEL Plot from fort.301

-1.II

DO_TSTEP Timings by Process (secs)
120hrs - 64 procs/4threads

100

ATM_SENDFLUXES

30 1 RESHUFF

" WRTOUT

80 1 i FILTR2EO

w DUMP_SPEED

70 -

. GLOOPB

u FILTR1EO

60 -
1 DELDIFS

1 BCST

wLooP

u SICDIFO_HYB_SIG

Wallclock Time (secs)

.. SICDIFO_HYB_SIG
i SICDIFO_HYB_GC
 SICDIFE_HYB_GC
i SICDIFO_HYB_GC
 SICDIFE_HYB_GC
i GLOOPR

w ATM_GETSSTICE

u GCYCLE

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 i GLOOPA
Proces Number

3/23/12 James Taft

Tips That Have Helped My Productivity S ===

| have worked in this business 43 years. | have seen hundreds of HPC applications in a
wide range of disciplines. That has provided a unique perspective on what works and
what is easiest to maintain. | have developed a number of programming rules that |
adhere to that make my job easier. They are:

Building Code:
o Simplify the Makefile and always build it to run parallel
o Build standalone Makefiles — no recursion or nesting
o One Makefile per system philosophy

Writing Code:
o Put one subroutine in each file. Name the file the same as the routine
o Never use “CONTAINS” construct.
o Never ever use the “INTERFACE” construct
o Minimize the use of modules to the bare essentials
o Always program to fixed field .f files
o Avoid wordy documentation. it obscures the code

Running the code:
o Spend some time on simplifying your runit scripts. They are always too

Issues with NETCDF

."II

During my experiences with NETCDF and the CMAQ code over a year ago, | found that the
CMAQ code was using an extraordinary amount of memory per process on CCS.

This was due to the fact that NETCDF routines like XINTERP etc were using HUGE memory
buffers to hold planes of global data in each process, while sub-sets were extracted for the
process to use in subsequent calculations.

A rewrite of XINTERP was done and the CMAQ code went from 3GB of memory per process
to 200MB per process - a 15x reduction in total memory required.

This issue was reported to the NETCDF developers. | am not if the new libraries have been
fixed.

Summary and Conclusions

."II

There are many issues that must be considered in order to get the most out of a code
on any given system. Run time environment, compilers, MPI communication strategies,

OpenMP scaling, I/0 approaches, and algorithmic issues can each significantly impact
the performance of any code.

The current discussion attempted to point out some of the more important aspects to
these issues. Several general strategies were identified that can be used in code
development and optimization that should be applicable to emerging general purpose
hardware architectures for at least the next 5 years.

