

 TotalView

and

MemoryScape

Training

Lab Manual

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 2

Copyright © 2010-2012 by TotalView Technologies, LLC, A Rogue Wave Software
Company.
Copyright © 2007-2010 by TotalView Technologies, LLC.
Copyright © 1999-2007 by Etnus, LLC. All rights reserved.
Copyright © 1998-1999 by Etnus, Inc.
Copyright © 1996-1998 by Dolphin Interconnect Solutions, Inc.
Copyright © 1993-1996 by BBN Systems and Technologies, a division of BBC
Corporation.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise without the prior written permission of TotalView Technologies,
LLC (TotalView Technologies).

Use, duplication, or disclosure by the government is subject to restrictions as set forth
in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227-7013.

TotalView Technologies has prepared this manual for the exclusive use of its
customers, personnel, and licensees. The information in this manual is subject to
change without notice, and should not be construed as a commitment by TotalView
Technologies. TotalView Technologies assumes no responsibility for any errors that
appear in this document.

TotalView and TotalView Technologies are registered trademarks of TotalView
Technologies LLC.

TotalView uses a modified version of the Microline widget library. Under the terms of
its license, you are entitled to use these modifications. The source code is available at
ftp://ftp.totalviewtech.com/support/toolworks/Microline_totalview.tar.Z.

All other brand names are the trademarks of their respective holders.

ftp://ftp.totalviewtech.com/support/toolworks/Microline_totalview.tar.Z

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 3

Table of Contents
TotalView ... 1
and .. 1
MemoryScape ... 1
Training .. 1
Lab Manual ... 1
Lab 1: Debugger Basics: Startup, Basic Process Control,
and Navigation .. 4

Step 1: First Steps .. 4
Step 2: Navigation .. 5
Step 3: Stepping ... 6
Step 4: More Stepping ... 6
Step 5: Run To and Step.. 7
Step 6: Moving Out .. 8
Step 7: Waiting ... 9
Step 8: Canceling ... 9
Step 9: Breakpoints .. 10
Step 10: Breakpoints: At Location 11

Lab 2: Viewing, Examining, Watching, and Editing Data 13
Step 1: Preliminary Steps... 13
Step 2: Looking at Data.. 13

Stack Frame Pane (Method 1) 14
Tool Tips (Method 2) ... 14
Expression List Window (Method 3) 14

Step 3: Looking at Data (Part 4)—Variable Window 15
Step 4: Examining the Variable Window 16

Part 1: Features ... 16
Part 2: A Second Variable Window 18
Part 3: Evaluations .. 18

Step 5: Arrays .. 20
Step 6: A Crash Problem ... 26

Lab 3: Examining and Controlling a Parallel Application 30
Step 1: Start-up (new launch) .. 30
Step 2: Process Navigation .. 34
Step 3: Multi-Process Control .. 34
Step 4: The Message Queue Graph and Viewing
Data across Processes .. 40

Step 5: Classic Launch ... 41
Step 6: Attaching to a Running Job 45

Lab 4: Exploring Heap Memory in an MPI Application 46
Step 1: Start TotalView ... 46
Step 2: Setting up for Memory Debugging 46
Step 3: Pointers .. 47
Step 4: Memory Events and Errors 49
Step 5: Heap Reports and Leak Reports 51

Heap Graphical Report .. 52
Heap Source View ... 54
Filters ... 56
Leak Detection ... 59
Memory Usage ... 59

Lab 5 Debugging Memory Comparisons and Heap Baseline . 62
Step 1: Memory Heap Baseline 62
Step 2: Memory Comparisons .. 63

Lab 6 Memory Corruption discovery using Red Zones 68
Step 1: Memory Corruption .. 68
Step 2: Red Zones and Heap Reports 72
Step 3: Restricting Red Zones ... 74
Step 4: Red Zones: Overrun Error 75

Lab 7: Batch Mode Debugging with TVScript.......................... 78
Step 1: Introduction .. 78
Step 2: Batch Mode Debugging 79
Step 3: Batch Mode Debugging with Events 81
Step 4: Introduction to Batch Mode Memory
Debugging .. 82

Lab 8: Reverse Debugging with ReplayEngine 84
Step 1: Start TotalView ... 84
Step 2: Reverse Navigation .. 84
Step 3: Reverse Debugging a Stack Corruptor 85
Step 4: Reverse Debugging a Nondetermin-istic
Parallel Program ... 87

Lab 9: Asynchronous Control Lab .. 90
Step 1: Start TotalView ... 90
Step 2: Start Command line debugger. 90

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 4

Lab 1: Debugger Basics: Startup, Basic
Process Control, and Navigation

This lab covers basic process control, including stepping,
breakpoint basics and source code navigation.

There are some basic commands you need to know to drive the
debugger. You can step through your source code one line at a
time (single-stepping) and examine the program state. This state
includes global and local variables, the stack frame, and the stack
trace. Or, you can tell TotalView to run your program and stop at a
particular line in the source code (setting a breakpoint). You also
need to know how to halt a running program as well as resume it
later. These commands are probably all you need to debug simple
programs.

Expected Time: 30 minutes

Step 1: First Steps

 Open a Terminal Window

 Change directory to $LABS
cd $LABS

 Compile your program
gcc –g $SRC/array.c $SRC/simple.c –lm –o

simple

 Start TotalView by typing
totalview ./simple –a hello

A Startup Parameters Window may open at this point. You can
press OK to clear it. It is not used for this lab.

You are now seeing two windows. Depending on your screen size
you may need to rearrange them to see both windows. The larger is
the Process Window. The smaller is the Root Window.

Note: If you are seeing assembler, you probably forgot to use the –g
option when you compiled your program.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 5

Notes:

 The -a argument indicates that all arguments after it will be

arguments to the target program. In this case, “hello” is sent to

simple.

 The Stack Trace Pane (the top left area of the window) shows if
there are any active threads. When you first start the debugger

session, it should show No current thread.

 The Stack Frame Pane on the right shows the same message.

 The middle area contains your source code for the main()

function. We call this area the Source Pane. Note how the line
above the Source Pane indicates the function and filename the
Source Pane is currently focused on.

Step 2: Navigation

Dive on the array() function in the Source Pane:

Place your cursor on the word array in line 16 or 18 and

double-click.

This focuses you on the array function in the array.c file.

 Select the View > Lookup Function command

 Type dowork

 Press OK

The Source Pane should now be focused on the dowork function

in array.c.

Notes
Note the left and right arrows in the top right hand corner of the
Source Pane. We refer to this as the dive stack. Click on the left
arrow. It will focus you back to the source you were looking at prior to
your last dive. Note that now the right arrow will be enabled, allowing
you to 're-dive.'

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 6

Step 3: Stepping

Press the Step icon in the toolbar

TotalView stops right before the first executable statement.

Notes

 You could also choose the Process > Step command. Also, notice
that the command on the Process menu shows the 's' keyboard
shortcut. As you gain experience, you'll find the keyboard
shortcuts are convenient and speedup debugging.

 Notice the yellow arrow on the left. This is the PC or the Program
Counter. It shows you where you are in the program. The Stack

Trace Pane (top left) now shows that the program main is active

and that it is C language code. The Stack Frame is now loaded by

the C runtime library and the function main is on the stack frame

with its command line arguments. It also shows local variables in
scope. (Uninitialized variables contain random information.)

Question
1. Where can you find the state of your currently focused

process/thread?

Step 4: More Stepping

Select the Process > Step Instruction command

Questions
2. What did choosing the Step Instruction command do, if

anything?

3. Why doesn’t it look like anything changed?

4. What can you do to see the effect of stepping an instruction?

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 7

Step 5: Run To and Step

Select line 16 (not the line number), the first call to array()

Selecting the line will highlight it with a gray bar.

Press the Run To icon

This runs the process up to that line of code.

Do a Step

Note how the Stack Trace, Stack Frame, and Source Panes all
change.

 Run To line 22 – the call to printf()

 Do a Step

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 8

Questions

5. Why didn’t you step into printf()?

6. Where did the output from the printf() call go?

Step 6: Moving Out

 Select main in the Stack Trace Pane

 Press the Out button

Your Process Window should look as follows:

Question
7. What did this do?

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 9

Step 7: Waiting

 Run to line 23

 Select the Next icon

After a couple of seconds, TotalView displays the following dialog
box:

Questions
8. Why did TotalView display this message?

9. What will happen if you enter input on stdin?

10. What will happen if you press Cancel?

Step 8: Canceling

Press Cancel

Your Process Window will look something like this.

The Stack Trace Pane shows you that the process is currently within
a system call. The Source Pane shows you assembler code, and the
line immediately above the Source Pane tells you the library you’re in

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 10

rather than the source file. This is because this module was not
built with debug information and TotalView always focuses you on
the stack frame where your PC currently is, regardless of whether
there is debug information or not.

Within the Stack Trace Pane, main is preceded by C. This means

that TotalView has debug information for that frame and the
language is C.

Click on main within the Stack Trace Pane

You should now see the source code and the PC arrow should be

pointing at the scanf() call.

Press the Out button

After a few seconds you should again see the Waiting to reach
location dialog box. Do not click the Cancel button.

 Go back to your Terminal Window

 Type hello

TotalView removes the dialog box and the thread’s state should be
halted (status T in the Threads Pane and <Trace Trap> in the
Process Window header).

Step 9: Breakpoints

Click on #26 (the line number) on the left of the Source Pane

You've now set a breakpoint. A bright red stop icon appears over the
line number indicating that TotalView has set a breakpoint.

Press the Go icon in the toolbar

You can tell that the process is running by examining the top title bar.
Note that TotalView does not alter the PC arrow until the process
has stopped. That is, until it stops, the PC arrow indicates the last
stopped location.

Type hello within the Terminal Window

TotalView now halts your program at the breakpoint. The process
status is At Breakpoint.

Note
When debugging a program, you'll often want the program to
execute until it reaches a particular line. The way you tell TotalView
to stop the program's execution is to set a breakpoint, which is a
stopping point. The easiest way to set a breakpoint is to click on the
line number.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 11

Step 10: Breakpoints: At Location

Create a breakpoint using the At Location dialog box.

 Select the Action Point > At Location command

 Type dowork in the displayed dialog box

 Press OK

You should now see two breakpoint icons in the Action Point Tab.
The PC arrow in this pane indicates the breakpoint at which the
thread is stopped.

Dive on the newly created breakpoint—this is the one not having
the PC arrow

This focuses your Source Pane at that breakpoint location.

Diving on breakpoints is another way that you can navigate to
different locations in your program. You could use this as a way to
bookmark places you refer to often in your source.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 12

 Select File > Exit to exit TotalView

 Select Yes

Notes

 The At Location dialog box lets you set breakpoints on all
methods of a class or all virtual functions. This is handy for C++
applications but that is beyond the scope of this lab.

 If you left-click on an icon in the Action Point Pane, the icon will
dim because you will have disabled the breakpoint. You can re-
enable it by left clicking a second time.

 If you right-click on an icon, a context menu appears. Among
other choices, you can now delete or enable/disable the
breakpoint.

 The square boxes around line numbers also provide information.
If they are in bold, there is more than one code address
associated with the breakpoint.

 The Action Points > Save All command saves your breakpoints
in a file. This file can be loaded in a later TotalView session. By
default, TotalView saves the breakpoints in a file in the directory
containing the executable. The next time you debug that
executable, TotalView automatically loads these breakpoints.

 Use preferences to control preference behavior. Select File >
Preferences, and click on the Action Points Tab. From here you
can tell TotalView to automatically load action points when it
starts and automatically save them when it exits.

END OF LAB 1

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 13

Lab 2: Viewing, Examining, Watching,
and Editing Data

This lab shows many of the ways in which TotalView displays data
values.

Expected time: 45 minutes

Step 1: Preliminary Steps

In a Terminal Window:

 Change directory
 cd $LABS

 Start TotalView
 totalview ./combined -a Thanks for attending

Step 2: Looking at Data

There are four ways to look at data. This step looks at three of them.
The next will look at the fourth.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 14

Stack Frame Pane (Method 1)

Press Go

TotalView should halt the program at a saved breakpoint inside a

function named arrays.

Observe the Stack Frame Pane in the top right corner of the
Process Window.

Questions

1. What kind of information is displayed in this pane?

2. Some of the values displayed in the Stack Frame are bold
while others aren't. What does the bold text mean?

3. What do the Block designations mean?

__

Tool Tips (Method 2)

Place your cursor on i in the Source Frame and hold it there for

a couple seconds

TotalView displays the value of i in a Tool Tips popup.

 On line 512, select (i.e., highlight)
 start + j*step

 Place your cursor over the selected text for a couple seconds

Note that Tool Tips work with simple expressions as well.

Expression List Window (Method 3)

You can think of an expression list as a kind of watch list that shows
value that you can easily keep an eye on.

 Right-click on the variable i

 Select Add to Expression List

 Right-click on the variable j

 Select Add to Expression List

Press Go

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 15

TotalView executes one iteration of the loop and again stops at the
breakpoint.

TotalView updates the Expression List Window with the current

value. It also highlights the value for j, indicating that the value

has changed.

 Right-click on the column header

 Select Last Value

 Expand the column by dragging to see the whole value

 Click on the third row in the Expression field and enter
i + j + 5

You can also enter expressions directly into the window.

 Select the cylinder.volume()/cylinder.area()

expression in the Source Pane on line 513

 Right-click

 Select Add to Expression List

The Expression List Window can contain functions calls.

Note
Don't do this for functions that cause side-effects as this window is
updated each time the program gets updated. If you don't want to re-
evaluate an expression all the time, use Tools > Evaluate instead.

Click on the X button in the Expression List Window to close it

Step 3: Looking at Data (Part 4)—Variable
Window

The Stack Frame Pane, Tool Tips, and Expression list are excellent
for viewing and watching variables that have built-in types and that
you don't need to examine in different ways, such as with a memory
dump or as a different data type. These methods do not work with
structures, classes, arrays, common blocks, or data types. To view
this data, use the Variable Window.

You can open a Variable Window by diving any place you see a
variable (sometimes an expression) or by using the View > Lookup
Variable command, which is particularly good for global variables.
You can dive by a double left-click, a middle-click, or by right-clicking
and selecting Dive on the context menu.

Dive on Block $b1 – this is displayed in the Stack Frame Pane

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 16

TotalView opens a Variable Window which contains all the

variables and blocks within $b1.

Dive on the cylinder variable within the Variable Window

You can dive on any field if the Variable Window is displaying

something that does not have scalar type. Note that this shows

you the contents of the cylinder, which has a type of

Cylinder.

Q__

4. When would you want to use the Expression List as opposed
to a Variable Window or a Tool Tip?

__

Step 4: Examining the Variable Window

Part 1: Features

 Press the X button in the Variable Window to close the window

 Dive on the cylinder variable in the Source Pane

You can also dive on variables in the Source Pane, expressions in
the expression list or any place else you see a variable.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 17

Let’s examine the Variable Window a bit more.

 The icon on the menu bar lets you expand and
collapse the contents of a compound type.

 The up/down icon on the menu bar lets you see more
or less meta information about the data you are viewing.

 The dive/redive arrow icons let you undive and redive within the
variable.

 The Expression field indicates the variable cylinder. You can

edit this field and it can contain general expressions in the
language your program is written in. For example,

In the Variable Window Expression field, type:
 cylinder.m_height

 TotalView now shows you the value of the m_height field in

 the object.

 You can even call functions here. For example,

Type:
cylinder.volume()

Note
As with the Expression List Window, do not enter expressions that
cause side-effects in this field as it will be evaluated each time the
program is updated.

In the Variable Window, select the Edit > Reset Defaults
command

This resets the window to the contents you originally dived on.

Select the View > Expand All command

This shows all of the base class.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 18

Select the View > Freeze command

This command tells TotalView that it should not update the
Variable Window. At a later time, you can compare these frozen
contents against an updated Variable Window.

Part 2: A Second Variable Window

Dive on the variable j in the Process Window

TotalView displays a Variable Window containing the j variable.

 In the Action Point Pane at the bottom of the Process Window,
click on the Stop icon for line 514, disabling the breakpoint and
graying out the icon

 Select line 510 (the line, not the number) in the Source Pane

 Press the Run To button

TotalView executes the program to line 510.

The Variable Window containing j now shows a highlighted value,

indicating that its value has changed. Note that the Variable

Window is reporting a status of stale.

Right click on the column header and select Last Value

Questions

5. Why does the Last Value field report the value of j as 1

instead of 19?
__

6. What does Stale mean and why are the Expression List

and Variable Windows reporting this?
__

Part 3: Evaluations

Click on the dimmed Breakpoint icon in the Action Points Pane

This re-enables the breakpoint.

Press Go

The program executes until it reaches line 514.

The Variable and Expression List Windows no longer report that they

are Stale.

 Go to the Variable Window you had frozen for the cylinder

variable

 Select the Window > Duplicate command

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 19

The Freeze and Duplicate commands allow you to compare values
at a later time. In contrast, the Highlight/Last Value features show
you what last changed.

You can delete the breakpoint at line 514 in two ways:

 Click on the icon in the Source Pane, or

 Right-click on its number in the Action Points Tab, then select
Delete from the context menu.

Try deleting the breakpoint

You can type more than just expressions in the expression field.
You can type entire program fragments.

 Press Go to run the program up to line 526

 Open the Tools > Evaluate dialog box

Most language constructs are supported, including declaring

variables of non-object type, for, while, and do loops.

 Type cylinder.volume()

 Press the Evaluate button

Observe the result in the Result field.

 Go to the unfrozen Variable Window containing the cylinder

variable

 Click on the value field for m_radius – this is in the base class
Circle

 Change the value to 1 and press Return

You could also press F2 to edit the field.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 20

This edit changes the value in the target program. Check that this
has occurred:

 Go back to your Evaluate Window

 Re-evaluate the expression you typed earlier

 Close the Expression List Window by pressing the X button

 Go to a Variable Window

 Select the File > Close Similar command – this closes all your
Variable Windows

Step 5: Arrays

This step explores some of TotalView’s array features and its
typecasting ability.

Press Go

TotalView runs up to the breakpoint in the diveinall() function.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 21

Dive on the variable array

This opens up a Variable Window displaying this variable. Note that

it has a type of struct compound_t*, which is a pointer to a

compound_t structure. However, we know the variable to be an

array of compound_t and not just a pointer to a single
compound_t.

Question

7. Why doesn't TotalView display this as an array?

__

A debugger cannot tell the difference between a pointer and an array
as the semantics of the pointer are defined at runtime. This means
that the compiler can't tell the debugger the size at compile time.
However, you, the programmer, know when you are looking at an
array, and TotalView has the ability to display your data the way you
want. We call this typecasting.

TotalView types are read a little differently than they are in C and

C++. TotalView reads types from right to left. To view array as an

array:

Change the type from
 struct compound_t*

to
 struct compound_t[20]*

TotalView now interprets the data at this location as an array of 20

elements of type struct compound_t.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 22

To dereference the pointer:

Dive on the Value field

 Close the Variable Window

 Reopen it by diving again

Another way to view a dynamic array, which might be easier to
remember, is to first dive on the pointer to display a structure, which
happens to be the first element in the array.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 23

 Dive on the Value field

 Change the type from
struct compound_t

to
struct compound_t[20]

One great thing you can do for arrays of structures, classes, and
data types is to focus on one field in the object in every element in
the array. This is called Dive in All.

 Expand out the first element a

This is within the basic_t structure, which is within the

compound_t structure

 Right click and select Dive in All

TotalView displays the field a within the structure as if it were an

array.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 24

Question

8. What does Sparse mean in the Address field?

__

Click on the Value column header

This sorts the array in descending order. Clicking a second time
sorts the array in ascending order.

Type the following in the Filter field:
 >5

This is short for $value > 5. TotalView now shows you all

elements greater than 5.

 Type F1 to open Help

 Click on the Filter field

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 25

Observe other things you can filter on, such as nans and infinities.

 Delete what you typed in the Filter field

 Type the following in the Slice field
 [2:8]

This slices your array and shows you array elements 2 through 8.

Edit the Slice field to [2:8:2]

The integer after the second colon indicates the stride of the array.
For example, “2” tells TotalView to display every second element in
the range [2,8].

Delete what you typed in the Slice field

If you do not delete the slice (or filter), TotalView applies future
actions to what is being displayed. So if you add a filter, a slice only
displays the elements that meet both the filter and slice criteria, and
visualizing or generating statistics on an array will only generate
statistics or visualize based on the portion of the array displayed.

Select the Tools > Visualize and Tools > Statistics commands
and observe what happens

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 26

Select the
(stepping command)
Out button

TotalView runs the program out one stack frame.

Dive on argv

Here, TotalView shows argv to be a pointer to a pointer to a

string.

Challenge
Do what is needed to change the variable to display the arguments
to your program.

Step 6: A Crash Problem

Press Go

Your program continues executing, and then it should crash with a
Segmentation Violation. Note the status in the status bar.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 27

Let’s try and figure out what happened.

Click on main() in the Stack Trace Pane to focus on the

program’s source

The program crashed after calling printf(). Let’s investigate the

argument passed to it.

Dive on the str variable

The variable is a pointer to a string, but the pointer’s value is

0xffffffff, which is not a valid address. TotalView reports Bad

Address whenever the program tries to access a memory region in

which the operating system won’t allow access. When your program
tries to read this address, it crashes with a segmentation violation
just as this program did.

It is often helpful to look at the raw memory surrounding a corrupted
memory region.

Move the pointer’s address:

Change the Variable Window’s expression from str to &str -10

This backs the base address in the Variable Window up by 10 words.

 Select the View > Examine Format > Raw command

 Change the Columns field to 4 and the Count to 100

The original str pointer is at index 40 in the display. Observe that

you have the same value at index 36. This is a clue. It appears that

what was writing into the address at index 36 is also writing into

index 40.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 28

Here’s how you can find out what’s happening.

 Select the Action Point > Delete All command to delete all of
your breakpoints

 Select the Edit > Reset Defaults command to reset your
Variable Window

 Select the Tools > Create Watchpoint to plant a watchpoint

 Click OK after the dialog box appears

 Press the Restart button to restart your program

TotalView halts the program when it first stores a value into the
pointer. At this time, the program is behaving correctly.

If you continue the program by pressing the Go button it will now halt
when that memory location is overwritten and you have found your
bug.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 29

Questions

9. When will a watchpoint trigger?

__

10. What precautions do you need to take when planting a

watchpoint on a local variable?

__

END OF LAB 2

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 30

Lab 3: Examining and Controlling a
Parallel Application

TotalView 8.3 introduced a new way of launching MPI applications.
This new way of launching is designed to be easy to use and to be
able to work with any MPI implementation. The old way of starting,
known as 'classic launch' is still accessible and needed in a few
circumstances. The purpose of this laboratory is to familiarize you
with both methods, and with TotalView features that will assist you
in debugging your MPI applications.

Expected Time: 45 minutes

Step 1: Start-up (new launch)

 Change directory to $LABS by typing
 cd $LABS

 Type: export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH

 Start TotalView without any command line options
 totalview

This starts TotalView and it displays the New Program dialog box.

 Type the following in the Program field
 ./demoMpi

 Click on the Parallel Tab

This is where you tell TotalView what MPI you are using, and what
arguments you want to pass to the starter program or script (for

example, mpirun, mpiexec, etc.).

Click on the Parallel System list control

You will see several options.

 Select MPICH2 from the list

 Edit the Tasks field to 10 – this indicates 10 processes

Do not change other fields.

Press OK

TotalView opens a Process Window focused on the main() function

in your MPI application.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 31

Press the Next button

TotalView steps into the first line of main(), and your Root

Window as well as your Processes Tab in the Process Window fill
up with processes. This launch method lets you debug your job

prior to the processes calling MPI_init — this is not possible using

classic launch.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 32

Notes
Look at the Root Window.

 The window has one line for each process. This line contains
the host name, the status for the process, the name of the
process, as well as how many threads are within the process.
The ID column is the debugger ID for the process.

 You can sort the Rank, Host, and Status columns. This can be
particularly helpful when debugging a job at scale and you want
to find a process located on a specific host or a process (or set
of processes) that is in a particular state.

 Set a breakpoint on line 40

 Press Go

Observe that:

 All the processes get halted at the breakpoint.

 The Root Window now shows the ranks of the processes as do
the nodes in the Process Tab in the Process Window.

 The status B1 in the Root Window indicates that all the

processes are halted at Breakpoint 1.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 33

Click on the Rank column header

This sorts the processes in the Root Window.

Tip: Sorting in the Root Window can be helpful when debugging at
scale for locating processes in a particular state or for finding
processes on a particular node.

Question

Why are all ranks stopped at exactly the same point in the
program? Is that a coincidence?

 Right click on the Breakpoint icon

 Select Properties

 Change the “When Hit, Stop” property from Process to Group

Press the OK button

This closes the Action Point Properties dialog box.

 Press the Restart button in the Process Window

 (If a dialog box opens, press Yes)

This restarts the job.

Question

Note that only a subset of the processes is halted at Breakpoint 1.
Why is this?

Notes

 You can change the When Hit, Stop property of a breakpoint—
which defaults to Process—by selecting the File > Preferences >
Action Points command.

 You may have noticed that your Process Window did not focus
you on a process that was halted at a breakpoint. This is because
TotalView tries not to steal keyboard focus; it will not focus to a
different process when another process hits a breakpoint. You can
change this preference by going to the File > Preferences >
Action Points and checking the Open Process Window at
breakpoint entry.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 34

Step 2: Process Navigation

The Process Window focuses on only one thread within one
process. However, many commands can act on a set of
processes. This section gives you three ways to focus on different
processes (there are other ways as well):

 Click the P+/P- buttons on the lower side to cycle through
processes in a job

 Dive on a node in the Process Tab to focus on a particular
process

 Dive on a row in the Root Window to focus on that process

 Go to the Root Window

 Select a process that is not halted at a breakpoint

 Dive on it to focus on it

 Go to the Root Window

 Select a process that is halted at a breakpoint

 Right click on it

 Choose the Dive in New Window command

The Dive in New Window command allows you to have more than
one Process Window open, which means that you can see more
than one thread/process.

Close the Process Window that is not focused on a process that
is stopped at the breakpoint

Step 3: Multi-Process Control

TotalView allows you to execute process control commands (Go,
Halt, Next, Step, Out, Run To) on a set of processes, on a single
process, or even for a single thread. Here are a few ways to do this:

 Changing the focus control of the process control buttons.

 Using the Group, Process, and Thread menus.

 Keyboard accelerators (Group and Process menu options are
annotated with the applicable accelerator).

The process control buttons above the Stack Trace and Stack Frame
have a focus that is controlled by the combo box to their left. The
default setting is Group (Control), which essentially means all the
processes in the MPI job.

 Set the focus control to its default “Group (Control)” setting

 Press Go

 Expand the list control on the left to see Group (LockStep)

The Processes Tab shows group membership by highlighting the
processes which belong to the group.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 35

 Go to the Processes Tab

 Dive on one of the processes not halted at Breakpoint 1

You can see TotalView selects a different set of processes.

Press Go

You can see that a subset of the processes is still halted at Break-
point 1. The important thing to note here is that the set of
processes that were halted at the breakpoint before you issued the
Go command are still at the same point because they were not
continued.

 Press the Restart button

 (If a dialog box opens, press Yes)

This restarts your application.

Note that the Kill and Restart buttons are not affected by the focus
control; they always apply to the entire control group.

Select the Tools > Call Graph command

The Call Graph shows you a graph of all the stack traces in all the
threads in all the processes in the control group, which can be
filtered by the combo box on the top of the window. This window is
often helpful for debugging at scale because it shows you all
processes graphically. In this simple example, all processes run
through to main.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 36

Questions
What do the edges in the graph represent?

What do the nodes in the graph represent?

Dive (double click) on a node in the graph

TotalView creates a process group containing the processes which
are within that function. Note that after diving on a node,

“call_graph” is added to the focus control menu.

Select the Group > Custom Group command

This dialog box lets you create and edit process groups.

Click the Add button to create a new group

This creates a new group.

 Enter My_Group as the name

 Select a subset of ranks, i.e., 2,3 and 4

 Press the OK button

 Answer Yes to apply changes to My_Group

 Change the focus control in the Process Window to My_Group

 Press Go

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 37

The processes in My_Group progress up to the breakpoint.

Question

What do you expect to happen if you now select the

call_graph group in the focus control and continue the

process?

__

 Change the Property of the breakpoint you have set back to
When Hit, Stop Process

 Press the Restart button

All your processes should now be halted at the breakpoint.

If your Process Window is not already focused on Rank 0, focus

there and change the focus control to Rank 0.

Now when you press the process control buttons, they will only act

on the Rank 0 process. This can be helpful if you only want to

control and query one process at a time. It is extremely helpful when
you are debugging a race condition.

Tips

 You can force determinism into a race condition by controlling
processes and threads independently because this makes
debugging easier.

 When debugging jobs at scale, it is recommended that you single
step individual or a subset of the processes in your job rather than
single stepping the entire job (Control (Group)).

Press the Next button twice

The process steps two line numbers. All other processes still show
orange in the Process Tab because they remained at the breakpoint.

There may be times when you want to hold a Process or Thread.
Holding a process or thread means that the Process or Thread will
remain halted until you release it, regardless of what process control
command you issue.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 38

Select the Process > Hold command to hold Rank 0

Observe that the process status in the process status bar is Held.

In the Root Window, this is indicated by an H.

With the focus control still set to Rank 0, press Go

You should get a warning message that states that this is not
possible.

Question

What do you expect to happen if you change the focus to the
control group and press Go?

__

 Change the focus control to Control (Group) if you haven’t
already done so

 Press Go

This continues all the processes except the one that is held.

Scroll down to line 60

Observe the call to MPI_Barrier on COMM_WORLD.

TotalView has the notion of a barrier that is implemented as an
action point called a Barrier Point.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 39

 Click on line 60 as if to set a breakpoint

 Right click on the Breakpoint icon

 Select Properties

 Click the Barrier check box at the top

 Set the When Hit, Stop option to Process

 Press OK

 Delete the breakpoint you previously set on line 40

 Press the Restart button

Your Root Window shows that half the ranks are held at the barrier
point and the other half aren't.

Dive on one of the held processes

TotalView reminds you that the barrier point was set on a line that

calls MPI_Barrier on COMM_WORLD. The fact that all processes are

not reaching the barrier point indicates that the job is deadlocked.

Questions

What is a common cause of a deadlock in an MPI application?

What features does TotalView provide to help you with this type of
problem?

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 40

Step 4: The Message Queue Graph and
Viewing Data across Processes

 Select the Tools > Message Queue Graph command

 Press the Options button

TotalView displays a key to the messages.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 41

Questions

What does the Message Queue Graph tell you?

Does the Message Queue Graph show you all messages ever
sent or just the pending ones?

Choose different Message Queue options and observe
what occurs

These options let you filter the information displayed and the layout
of the graph, save the graph, and perform cycle detection, which is
helpful if there are lots of processes with lots of messages.

 Press the Halt button

 Click in the Stack Trace Pane if you are not already focused
on a process showing the program’s source

 Right click on the myid variable

 Select Across Processes

If you already have a Variable Window open on an expression, you
can do the same thing by using the View > Show Across >
Processes command.

For SIMD applications, TotalView can display the contents of a
variable across all processes.

Step 5: Classic Launch

The remainder of this lab presents a second way of launching
TotalView, which is called classic launch. There are a few reasons
for using classic launch:

 You are using a BlueGene, Cray XT3, or a SiCortex system.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 42

 You want to use the TVD subset_attach feature. This feature
allows you to attach to a subset of a job either for scalability
reasons or to limit your license usage.

 You want to detach from a running job and later reattach to it.

If you used TotalView before version 8.3, you were using classic
launch. This mechanism requires the MPI to collaborate with
TotalView by storing information about how to attach to a job in
symbols within the MPI program itself. Consequently, many MPIs
require special build options to work with TotalView.

For example, with MPICH2, you must use the –enable-

debuginfo and –enable-totalview configuration options.

Within classic launch, to enable TotalView on an MPICH2 job:

 Type the following command:

 totalview mpiexec –a –n 10 $LABROOT/demoMpi
The Startup Parameters – mpiexec menu box opens

 Press the OK Button

 Press Go

This starts TotalView on an MPICH2 job using classic launch.
When TotalView starts up, it will be focusing you on assembler
code.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 43

Question

Why does it focus you on assembler code?

__

You cannot set breakpoints in your code yet because your code
has not yet been loaded. If you were to press Go now, python
would execute and launch your job and TotalView would ask you if
you want to stop at that point, perhaps to set breakpoints. This is
TotalView’s default behavior. Rather than using the default, we will
show you how to use TotalView’s Subset Attach feature.

 Select the File > Preferences > Parallel command

 Select Ask What to do under “When a job goes
parallel”

 Press OK

 Press Go

TotalView now displays its Attach Subset dialog box.

This dialog box allows you to attach to a subset of the processes in
your job, listing the host names and ranks of each process. If you
have a TotalView Team license, TotalView will count only the
processes that you actually attach to for license purposes. You could
also use this feature to debug an extremely large job by debugging a
subset of it at a time.

 Unselect ranks 5 through 9 in the Attach column

 Press the Continue button

TotalView will only attach to the first five ranks and will focus your

Process Window on Rank 0.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 44

Click on main() in the Stack Trace Pane to view the source

code

In the Root Window, observe an additional process besides the five
processes you attached to. You will see a row for the python
process, which is your starter process. In almost all cases, you
should ignore this process.

 Click the Group > Attach Subset command

 Click Detach All to unselect ranks 0 through
4

 Select ranks 5-9

 Press the OK button

TotalView is now attached to the other half of the job.

 Exit your TotalView session

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 45

Step 6: Attaching to a Running Job

If your MPI is built with TotalView support, you can attach to an
already-running job across an entire cluster by just a couple mouse
clicks. The trick to this is to attach to the starter process.

Tip: To enable this behavior in MPICH2, you must use the -tvsu

option when you launch the job.

Challenge
Start your job using:
 mpiexec –n 4 $LABROOT/demoMpi

Now attach to the entire job.
Hint: Attach to mpiexec.hydraprocess

END OF LAB 3

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 46

Lab 4: Exploring Heap Memory in an
MPI Application

This lab will explore using MemoryScape, the TotalView memory
debugger, within an MPI application.

Expected Time: 30 minutes

Step 1: Start TotalView

 Change directories to $LABS by

typing:

 cd $LABS

 Start TotalView by typing:
 totalview ./memory-mpi

If you haven’t started TotalView on this program before you will
need to tell TotalView that it is a parallel application.

 If the Startup Parameters Window is not
automatically displayed, select the Process >
Startup Parameters command

 Click on the Parallel Tab

 Select MPICH2 as the parallel system

 Set the number of tasks to 4

 Click on the Arguments Tab

 In the Command-line arguments box, enter the
letter R

 Click OK

Step 2: Setting up for Memory Debugging

Under normal circumstances it is not necessary to do anything at
compile or link time in order to enable memory debugging.

Question
1. Under what circumstances would you have to link with the

memory debugging library (libtvheap.so)?

 Select the Debug > Enable Memory Debugging
command to enable memory debugging

 Select the Debug > Stop on Memory Errors command

 Press Go

The application will stop at a breakpoint on line 66. Observe that the

Process status bar is annotated with [M] to indicate that you are

memory debugging the processes.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 47

Step 3: Pointers

 Dive on the variable p

Note that the debugger has annotated the pointer to tell you that
the pointer is allocated. This works when displaying the variable
across all processes as well.

 Select the View > Show Across > Processes
command

 Select the View > Show Across > None command

 Dive on the pointer in the Variable Window

 Select the Tools > Add to Block Properties command

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 48

Challenge

Change the Variable Window for p to display the same information

as the Memory Content Tab in the Memory Block Properties
Window.

 Expand out the memory block in the Block Properties
Window

 Scroll down to see the Block Flags

If you want to be notified when a particular block is freed or
reallocated, set these flags.

Close the Block Properties Window – do not set any flags

Press Go in the Process Window

Your program hits the breakpoint on line 74.

Select the Variable Window containing the p variable

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 49

Click the left arrow (at the top right) to undive

TotalView tells you that the pointer is dangling. If you were to go to
the Block Properties dialog, you would notice that the stack trace
at the time of deallocation is provided. This tells you where the
program freed the memory.

Close this Variable

Window

Step 4: Memory Events and Errors

 `Press Go

TotalView halts the job. But look closely at the Root Window.
Observe that three processes are halted at one breakpoint while

one process (rank 1) is at another breakpoint.

 Dive on the rank that is not at the same break point as the
others.

TotalView opens a Memory Event Details Window, showing you that
the “Program attempted to free an already freed block.” TotalView
will open the Memory Event dialog when the Process Window is
focused on the process which received the event.

Observe that the Event Location Tab in Memory Event Details
Window displays the location where the process is currently halted.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 50

Questions

2. Where can you find the same information as is displayed in the

Memory Event Details Window’s Allocation, Deallocation, and
Block Details Tabs?

3. What are the stack frames above the frame for free() and why
does TotalView report that the process is at a breakpoint? Is
this a breakpoint you can disable or delete?

4. Since TotalView does not automatically focus you to a process
when it receives a memory event what can you do to make
sure you do not miss an event? How can you recover the
event information should you miss it?

5. Why does the process list in the bottom left corner only have
one process?

Close the Memory Event Details Window
Select the Debug > Open MemoryScape command

The MemoryScape Window will open. This is where you can run
the Heap Memory Reports and enable or disable various memory
debugging options.

Click on the Manage Processes Tab and on the Process

Event Subtab
Select By Event Report

This report allows you to view an aggregation of all events that have
occurred across all processes.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 51

Question

6. What kinds of memory events and errors can MemoryScape

provide events for?

Examine the kinds of memory events and errors MemoryScape
provides.

Click the Memory Debugging Options Tab
Press the Advanced Options button
Click the Advanced button – this is within the Halt execution on

memory event or error area

Step 5: Heap Reports and Leak Reports

Dismiss the Memory Event Details Window
In the MemoryScape Window, disable Use Red Zones for

MPI_COMM_WORLD

In the Halt Execution > Advanced Options disable
Double_free event

In the Action Points Tab of the TotalView Window, disable
everything except the last breakpoint at line 354

Click Process/Startup Parameters and select the
Arguments Tab

Delete the entry in Command-line arguments
Click OK
Press Restart (if a confirmation box appears, click Yes)

This should result in all processes being stopped at the remaining
active breakpoint. It will take a minute for Rank 1 to reach that
breakpoint.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 52

Heap Graphical Report

 Select the MemoryScape Window

 Click on the Memory Reports Tab, then Heap Status Reports

 Select memory-mpi.1 in the Process Set control

Generating memory reports is an expensive operation, so we
recommend generating reports one process at a time. That being
said, generating memory reports across several processes can be
helpful, for example if you want to compare the differences across
these processes. However, the Heap Graphical Report only analyzes
one process at a time. If you want to view your heap status across
several processes we recommend using the Heap Source Report.

Select Graphical Report

The Zoom-In and Zoom-Out controls at the top right of the window
will help to zoom out to visualize how your heap memory is
fragmented, or to zoom in to particular memory blocks.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 53

Observe the Key and Overall totals in terms of counts and bytes in
the Heap Information Tab.

 Scroll to the top of the Graphical Report

 Zoom in so that you can select the very first allocated block
displayed.

MemoryScape fills in the Selected Block and Related Blocks
Panes.

Questions:

7. How does MemoryScape define a related heap block?

8. Why is it useful to know about the related heap blocks?

At the top right of the Heap Graphical Report you should see a list
control that says “Leaked Block.”

Select Related Block from this list

This control is provided to navigate between blocks in the heap
graphical view.

Click the Find next arrow (the right arrow next to the list control)

This will select the next related memory block and focus the graph
on it. Note that the Selected Block Pane has been modified to
indicate information for the current selection.

Right-click on the block and select Properties

Any time you select a memory block in a memory report you can
right-click on it to get at the block’s properties.

 Close the Block Properties Window

 Select the Backtrace/Source Pane

The Backtrace Tab will show information pertaining to all allocations
organized by backtrace. The selected backtrace is the backtrace for
the current selected block and consequently all related blocks.

Expand the selected backtrace

You can now view the backtrace and source for the allocation point.

Check the leak detection option above the graph

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 54

Observe that the graph now displays the leaked blocks in red.

Question

9. Why doesn’t the graph display memory leaks by default?

Heap Source View

 Select MPI_COMM_WORLD in the Process Set control in the

MemoryScape Window

 Select Source Report from the list on the left, under Heap
Status Reports

Questions

10. How does the Source View organize information?
11. Do you see anything peculiar with the number of bytes and

allocations in the processes?

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 55

Expand out the process that is running memory-mpi.1,

memory-mpi, main.cxx, and myMalloc to show Line 32

using the tree controls

Select Line 32 in the Backtrace Pane

This displays several of the backtraces in the Backtrace Pane.

Expand the first backtrace

Questions

12. Do the memory blocks allocated in myMalloc() all have the same

backtrace? Why or why not?
13. How does MemoryScape define the allocation focus point for a

memory block?
14. Under what circumstances is MemoryScape’s choice of the

allocation focus point not optimal?

 Right click on main() in backtrace 83 (or the first backtrace in

the list)

 Select Set Allocation Focus Level

This tells MemoryScape to focus on the frame directly above

myMalloc(), since you are probably not interested in the malloc

wrapper, myMalloc(), but rather the function that called it.

Click on main()

Observe that the backtrace now appears there.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 56

Click on myFunc

Observe that the allocations associated with this backtrace now

appear under myFunc instead of myMalloc.

Filters

A large application that allocates a lot of memory can generate very
large reports. Under these circumstances it may be helpful to focus
on the information you are interested in by filtering the memory
blocks that are displayed. Filtering memory blocks results in the
blocks not being displayed in the Source Report, while filtering in the
graphical view results in the blocks being dimmed.

Select the Tools > Filters command

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 57

This window allows you to Add, Edit, and Remove various filters.
The filters are applied starting from the top and there are controls
to move the filters up and down.

Click the Add button

 Enter Only main for the Filter name

 In the Property column, click the list control to specify Function
Name

 Select not equals within the Operator column’s list control

 Enter main for a Value

 Press the OK button

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 58

Observe that the Filter gets added to the Filters Window.

 Press Ok in the Filters Window

 Check Enable Filtering in the Options box at the top of the
report

Explore the resulting Source Report and note that only memory

blocks where the allocation focus point is main() are displayed.

 Disable filtering

 Right click on myClassA.cxx

 Select Filter out this entry

This initializes the filters dialog with the context from your selection.

Click OK

This accepts the filter’s pre-filled-in values. It also automatically
reenables filtering and regenerates the view for you. However, in this
case this is not what we wanted because our only main filter is still
active.

 Select the Tools > Filters command

 Uncheck the filter with the name Only main

 Click OK

Observe that the display shows only blocks which do not have

allocation focus points in the file myClassA.cxx.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 59

Leak Detection

 Disable filtering

 Select Leak Detection Reports from the list on the left

 Select Source Report

Questions

15. How does MemoryScape define a memory leak?

16. How is generating a Leak Report in the Leak Detection Tab
different from detecting leaks in the Heap Graphical or Heap
Source Reports?

Memory Usage

 Click on the Memory Usage Tab

 Select Chart Report

 Unselect Total VM and Stack VM in the Options area

 Select Bar (Stacked) in Controls area

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 60

Questions
17. What rank is clearly using more heap than the others?
18. Does memory debugging having to be enabled in order to view the

Memory Usage Reports?
19. Why do the two reports show different values?
20. What might the Memory Usage Report be useful for during a

debug session?

END OF LAB 4

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 61

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 62

Lab 5 Debugging Memory
Comparisons and Heap Baseline

Expected Time: 15 minutes

Step 1: Memory Heap Baseline

Memory heap baseline is used to dynamically observe memory
use from one point of a programs execution to another. Once set
or reset, the memory Debugger will begin remembering all heap
operations that occur within the thread.
The goal of this lab is to demonstrate how to compare memory at
different points in the program execution.

 If TotalView is running, close TotalView.

 Change directories to $LABS by typing:
 cd $LABS

 Start TotalView by typing:
 totalview ./filterapp-mpi

 If the Startup Parameters Window is not
automatically displayed, select the
Process > Startup Parameters
command

 Click on the Parallel Tab

 Select MPICH2 as the parallel system

 Set the number of tasks to 4

 Select the Debug > Enable Memory
Debugging command to enable memory
debugging

 Select the Debug > Stop on Memory
Errors command

 Press Go

Now at the first breakpoint line 235 (bool loop = false, runforever,
runRedZones=false;).

 Select the Debug > Open
MemoryScape command

 Click on the Manage Processes Tab
and on the Process Event Subtab

 Select By Event Report

 Click the Memory Debugging Options
Tab

 Press the Advanced Options button

 In the Halt Execution > Advanced
Options disable Double_free event

Set a Heap Baseline in TotalView

 Select from TotalView gui Debug > Heap
Baseline(in Group)

 Press Go

Check the memory use from the previous baseline.

 Select from TotalView gui
 Debug > Heap Baseline(in Group)

 Press Go

You should be at the breakpoint on line 280 (double_free();)

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 63

Examine the progress of the Heap Memory versus the baseline:

 Select from TotalView gui
 Debug >Heap Baseline>Heap Change Summary

The report should look similar to the following:

Note that you can select either New Leaks or New Allocation and
view the backtrace and the source of the leaks or allocations..

 Select from TotalView gui
Debug > Heap Baseline(in Group)

 Press Go

 Select Debug >Heap Change Summary

The first Heap Summary should have no new leaks and no new
allocation.

Examine the New Allocations and new Leaks

 Press Go

 Select
Debug >Heap Change Summary

The second heap Summary should look like the following:

Questions

1.) How would you verify the new allocations up to this point?

Step 2: Memory Comparisons

Memory comparisons can be used to compare the allocations, leaks,
and deallocations between two processes. They may be two MPI
processes, two processes from the same executable operating on
different inputs, or a live process and a post-mortem process
(whether that is a core file or a memory debug file).

You should be a the breakpoint line 353 (MPI_Finalize();)

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 64

 Click on the Memory Comparisons report

 Select filterapp-mpi.0 for Process 1

 Select filterapp-mpi.1 for Process 2

 Press the Compare button

 Expand the process for filterapp-mpi

Questions

2.) Observe the bytes and counts reported for Session 1. Why
are they zero?

3.) What allocations are not displayed in the Memory
Comparison Report?

 Go to the Home > Summary Tab

 Select filterapp-mpi.0 in the Process Status control

 Begin creating a memory debugging file by selecting Export
Memory Data from the task list on the left

 Accept the defaults by pressing the Export button

 Select the Add memory debugging file under Add Programs
from the task list on the left

 Select the file you just created, using the Browse button

 Press the Next button

 Select Analyze Data

 Select Memory Comparison Reports

 Select filterapp-mpi.0 as Process 1 and the filterapp-

mpi.0 memory debug file (the file you just opened) as Process 2

 Press the Compare button

Question

4.) Why is there no difference?

__

 Select the Home > Summary Tab

 Select one of the processes

 Press the Debug in TotalView button on the tool bar to
display a Process Window

 Scroll to line 260

 Right-click on the line number and select Properties

 Click on the Evaluate check box

 Type the following in the expression field:
loop = rank == 0;

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 65

goto 353;

 Press OK

You have now set an evaluation point on line 259.
Questions

5.) What does this evaluation point on line 259 do?
a. Hint: Search the TotalView User Guide for Eval

Points.
b. What other commands can be used at an eval

point?

 Disable all breakpoints except the last one in the Action Points
Pane and the new evaluation point

 Press the Restart button (if a confirmation box appears, press
Yes)

 Wait for all four processes to halt at the breakpoint

 Go to the MemoryScape Window

 Select the Memory Reports Tab

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 66

 Select the Memory Compare Report

 Make sure that both filterapp-mpi.0 and the

filterapp-mpi.0mdbg file are selected

 Press the Compare button

Questions

6.) Under what circumstances might you want to compare the
differences between a live process and a post-mortem
process?

7.) What other kinds of memory reports can you generate on
a memory debug file?
__

Most memory debugger reports can be saved for later use. To do
so, select Save Report from the task list on the left.

END OF LAB 5

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 67

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 68

Lab 6 Memory Corruption discovery
using Red Zones

This lab will explore using Red Zones and Guard Blocks with
MemoryScape.

Expected Time: 40 minutes

Step 1: Memory Corruption

Questions
Review: What types of Memory Corruption can Heap

Interposition technology help you with?

Review: When can you get notified that your application has
corrupted memory?

 Change directories to $LABS by

typing:
cd $LABS

 Start TotalView by typing:
 totalview ./memory-redzone

 If the Startup Parameters Window is not
automatically displayed, select the Process >
Startup Parameters command

 Click on the Parallel Tab

 Select MPICH2 as the parallel system

 Set the number of tasks to 4

 Click on the Arguments Tab

 In the Command-line arguments box, enter the
letter R

 Click OK

Turn on memory debugging.

 From the TotalView gui: Debug>Enable Memory
Debugging

 Debug>Stop on Memory Errors

 Select the Process > Go command

TotalView should stop with a double free event

 Go to the TotalView Window

 Focus on Rank 1

 Select the Process > Go
command

TotalView runs just Rank 1 to the breakpoint at line 109 so that it is
synchronized with all other processes.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 69

 If open, close the Memory Event Details Window

 Select the Debug > Open MemoryScape command

From the TotalView gui:

 Click on the Manage Processes Tab and on the
Process Event Subtab

 Select By Event Report

 Click the Memory Debugging Options Tab

 Select MPI_COMM_WORLD in the Process Set control

 Press the Advanced Options button

 Check the Guard allocated memory option

This will enable the option globally across MPI_COMM_WORLD. If
you select an individual process in the Process Set control, any
configuration changes will only apply to the process which you
select.

Question
1. What types of memory corruption can the Heap Interposition

technology help you with?
2. When can you get notified that your application has

corrupted memory?
3. How can you change the bit pattern that TotalView uses to

paint the guard regions?
__

 Dive on the variable p1

 Dive through the pointer in the Variable Window

 Cast p1 to an array of size 16

This shows p1 as being an array.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 70

Challenge
Modify the Variable Window display to show the contents of the
pre- and post guard regions.

 Dismiss the Variable Window

 Disable the breakpoint at line 109

 Run the whole group using Go

TotalView runs the job to the breakpoint at line 121. Note that the

for loop overwrites the bounds of the array by 1.

Question

4. Why didn’t MemoryScape halt your program at the time it
overwrote the bounds of the array?

 Go to the MemoryScape Window

 Click on the Memory Reports Tab

 Select filterapp-mpi.0 in the Process Set control

 Select the Corrupted Memory Report

The Corrupted Guard Blocks Report will check all heap regions with
guards to see if their guard areas have been corrupted. Note that the
view shows you the preceding and following memory blocks in order
to help locate the problem.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 71

 Right click on a Corrupted Block

 Select Properties

 Click on the Memory Contents Tab

Observe that memory was overwritten.

 Dismiss the Memory Block Properties Window

 Press Go in the TotalView Window

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 72

Your job will continue and when the processes actually free the
memory block, TotalView will halt your job with a guard corruption
event. You can view this information either in the Memory Event
Details Window, which opens when you focus on a particular
process, or when looking at the Process Events Report.

 Go to the MemoryScape Window

 Click on the Memory Debugging Options Tab > Advanced
Options

 Select MPI_COMM_WORLD in the Process Set control

 Click twice on Guard allocated memory to disable it

With the exception of enabling memory debugging, memory
debugging options can be toggled on and off in the middle of a
debug session. The reason you needed to toggle this option twice

to turn it off is because you selected MPI_COMM_WORLD, which

represents a group of processes. MemoryScape does not try to
resolve the state of all options for each process in the group.

Question

5. Why can’t you toggle the Enable memory debugging
option while the program is running?

__

Step 2: Red Zones and Heap Reports

 Under the Memory Debugging Options Tab, enable
Use Red Zones to find memory access violations

 Go to the TotalView Window

 Press Go Press Go

A Memory Event occurred in a function called corrupt_data_rz,

which is similar to the corrupt_data function involved in the

previous step. With Red Zones, however, the event is triggered
immediately at the point when the program tries to write beyond the
array bounds. That point is displayed in the Event Window's Source
pane.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 73

 Click on the Block Details Tab in the Memory Event Details
Window

 Examine the memory contents.

Question

6. Was the memory beyond the array bounds actually
overwritten?

 Dismiss the Memory Event Details Window

 In the MemoryScape Window, click on Memory Reports, then
Heap Status

 Select the Graphical Report, and scroll down in the graph
pane past the end of the mostly-green set of blocks

In the lower set of blocks, the crosshatched areas indicate where
Red Zone placements start. The full size of the Red Zone includes
some additional memory, which is shown in grey in the graph.

 Go to the Process Window and press Go

 In the window that pops up, press Let process exit

Questions

7. Why is there so much empty space with Red Zones?

8. Why is there so much additional overhead for Red Zones?

9. Why can’t a program be continued after a Red Zone event?

__

 In the MemoryScape Window, click the Memory Debugging
Options Tab

 Under Levels of Debugging, select Low

(Note that this is a simplified way to turn off both Guard Blocks and
Red Zones.)

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 74

Step 3: Restricting Red Zones

 In the Action Points Tab of the Process Window, disable all of
the breakpoints that are set in the double_free function

 Disable the first breakpoint in the corrupt_data function at

line 109

 Press Go

Keep an eye on the Root Window. One of the processes may hit a
heap event breakpoint, with the stack trace containing initialization
routines.

If that happens, select the process that is at the breakpoint,
and press from the TotalView menu selection: Process > Go

When one of the processes reports a double_free event:

 Dismiss the Event Window

 Select the process that reported the event

 Press Process > Go

This will result in all processes being stopped at the active

breakpoint at line 121 in the corrupt_data function.

 In the MemoryScape Window, click the Memory Debugging
Options Tab

 Select MPI_COMM_WORLD in the process selector

 Click Advanced Options, enable and expand the Red Zones

option for MPI_COMM_WORLD

 Enable the Restrict Red Zones option

 Click the Check Box of Restrict red zones to allocation within
ranges.

 Then click on Ranges and in Red Zone Range Editor, enter 512
for Lower Limit, and 1020 for Upper Limit and Click OK

 In the TotalView Window, press Go , Go

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 75

A Memory Event Window will appear.

In the Memory Event Details Window, scroll up in the
Source Pane

The Memory Event occurred in a function called

corrupt_data_sizes. You can see that a larger and a smaller

allocation were also overrun, but the size range restrictions caused
those allocations not to be treated with Red Zones.

Question

10. Why wasn't a Red Zone event triggered as before in the

corrupt_data_rz function?

Step 4: Red Zones: Overrun Error

 Dismiss the Memory Event Details Window

 In the MemoryScape Window, disable Use Red Zones for
MPI_COMM_WORLD

 In the Halt Execution > Advanced Options disable
Double_free event

 In the Action Points Tab of the TotalView Window, enable
the evaluation point for line 298

 Press Restart (if a confirmation box appears, click Yes)

This should result in all processes being stopped at the active

breakpoint at line 121 in the corrupt_data function.

 In the MemoryScape Window, enable Use Red Zones
for MPI_COMM_WORLD

 In the TotalView Window, press Go

A Memory Event Window will appear.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 76

Questions

11. What is different about this latest Red Zones event?
Could the memory error in this case have been detected
with Guard Blocks?

12. What are some ways of limiting memory space overhead
when using Red Zones?

END OF LAB 6

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 77

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 78

Lab 7: Batch Mode Debugging with
TVScript

TVScript provides non-interactive debugging with TotalView. It is
especially useful in situations where a program is impractical to
debug interactively (for example, due to lengthy run times or sys-
tem access restrictions), and where debugging needs to be done
repetitively (for example, parametric experiments or regression
testing). This lab will familiarize you with TVScript operation and
features, and will introduce some strategies for batch mode
debugging.

Expected Time: 30 minutes

Step 1: Introduction

 Change directories to $LABS by typing:
 cd $LABS

 Run TVScript with no arguments by typing:
 tvscript

Although it isn’t meant to be a substitute for the documentation,
TVScript will output a summary of many of its options when invoked
without arguments.

 Execute an example MPI program under TVScript, with four
MPI ranks and with no debugging actions, by typing:
tvscript -mpi "MPICH2" -tasks 4

./TVscript_demo

 Examine how TVScript names its log files by typing:
 ls *log

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 79

TVScript requires no interactive input once it has started. Unless it
needs to report an error condition, it produces no interactive

output. Output that the subject program sends to the stdout or

stderr channels will be unchanged. TVScript always produces a

summary log file (file extension .slog) showing what actions it

took, and a detail log file (file extension .log) showing any output

from those actions. Log file names include the subject program
name, date, and time of day, which helps to make the logs from
each run uniquely named. All these features make TVScript well-
suited to running in batch mode.

Although no actions are recorded in these first log files, feel free to

look at their contents with the "cat" command or any text editor.

You may also find it helpful to view the source code of the example
program with an editor that can display line numbers. The source

code is available at this path: ../src/TVscript_demo.c

The example program uses series expansions to estimate the value
of pi. The series lengths are increased in several steps, which would
be expected to make the estimates more accurate. That happens for
the first few steps, but then the estimation errors stop decreasing,
and even increase.

Use your imagination to picture how a problem like this might arise in
actual practice. For example, a numerical simulation running on a
large batch computing facility might start to show increasing errors
only after running for a number of lengthy steps. We will look at a
number of techniques that might be used with TVScript to debug in
such a situation.

Step 2: Batch Mode Debugging

 Run the program under TVScript with an action by
typing:

 source TVcmd1 or just ./TVcmd1

 Examine the summary and detail log files

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 80

TVcmd1 is a small file that echoes and then executes a TVScript

command. Since TVScript commands can be lengthy, this
packaging was done to help the lab go smoothly, but you can try
variations on your own. The packaged commands also delete pre-
existing log files to make it convenient to find the new ones that are
produced by the commands.

The summary log shows that the action point was hit six times,
once for each step of increasing series lengths. The action point
was set in code that only the MPI rank 0 process executes, so only
that process took the action. The detail log shows output from an
action that prints some program variables, one of the steps that
would likely be taken in a real debugging situation.

Question

1. What are some ways in which examining these program
variables with TVScript is more convenient than the

conventional batch debugging practice of inserting print

statements into the program?

__

 Run the program under TVScript with an action by
typing:

 source TVcmd2 or just ./TVcmd2

 Examine the summary and detail log files

The summary log shows that the action point was hit for each
program step, and in every rank. The detail log shows the output
from each action, and includes identification of the rank. The output
that TVScript was asked to print is the value of an expression in the
native language of the program, doing a sanity check on each rank's
contribution to the estimate of pi.

 Run the program under TVScript with an action by

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 81

typing:

 source TVcmd3 or just ./TVcmd3

 Examine the summary and detail log files

The summary log shows that the action point was hit once for each
program step. The detail log shows selected details of a backtrace
of the program's call stack, including the arguments and local
variables of the current function.

(Note that this is something not easily done with conventional

batch debugging via print statements.) The function is intended

to calculate the error in the estimated value of pi.

Question

2. What stands out in the output of the current estimate of pi

(almost_pi) compared to the reference value (ref)?

__

Step 3: Batch Mode Debugging with Events

 Run the program under TVScript with an event action by
typing:

 source TVcmd4 or just ./TVcmd4

 Examine the summary and detail log files

Here, TVScript was set up to detect and respond to an event,
specifically an unhandled error. The program is coded to raise an
error when run with three MPI ranks, but in general you would use a

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 82

similar TVScript setup to catch an asynchronous or unexpected
error.

The summary log shows that the action point was hit by the
process that encountered the error. The detail log shows a
backtrace, with arguments and local variables printed for each
level of the backtrace.

Step 4: Introduction to Batch Mode Memory
Debugging

 Run the program under TVScript with a memory
debugging action by typing:

 source TVcmd5 or just ./TVcmd5

 Examine the summary and detail log files

The summary log shows that the action point was hit once for every
rank (at program exit). The detail log lists the memory allocations
belonging to the program at that time.

While the example program isn't an interesting memory debugging
subject, this step highlights that memory debugging is available in
batch mode with TVScript (or MemScript, when only memory
debugging actions are needed).

END OF LAB 7

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 83

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 84

Lab 8: Reverse Debugging with
ReplayEngine

ReplayEngine provides reverse debugging features to
TotalView. By recording program execution history and allowing
the user to play it back, reverse debugging can accelerate the
solution of many types of code problems. This lab will introduce
you to the basics of navigation in reverse debugging, and
familiarize you with ReplayEngine features and strategies that help
with complex applications.

Expected Time: 45 minutes

Step 1: Start TotalView

 Change directories to $LABS by typing:
 cd $LABS

 Start TotalView with ReplayEngine by typing:
 totalview -replay ReplayEngine_demo

Step 2: Reverse Navigation

 In the Process Window, highlight line 27 (second call to

funcA)

 Press RunTo

 Press Prev

After the application ran forward and stopped at line 27, ReplayEn-
gine replayed execution back to line 26. The black arrow marks
where forward execution stopped. The familiar yellow arrow
indicates the point to which execution was replayed, and that source
line is also highlighted in orange to indicate replay mode.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 85

 Press UnStep four times, observing after each time how
the replay location changes

 Dive on the v array to open a Variable Window

 Press UnStep repeatedly until several iterations of the

for loop have been traversed, noting changes in

variables

 Highlight
line 48

 Press
BackTo

Note that the stack trace is now deeper. This is because of recursive

calling in funcA and funcB.

 Dismiss the Variable Window with the v array

 Set a breakpoint on line 57, the return statement of
funcB

 Press Go

Question

1. Is debugging still in replay mode? How can you tell?

__

 Delete the
breakpoint

 Press Caller

Question

2. What forward debugging actions are analogous to the
reverse debugging actions that were used so far?

__

Step 3: Reverse Debugging a Stack Corruptor

 Press Live

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 86

 Press Go

Question

3. What is the most likely reason for the loss of program
position information?

__

 Press UnStep

 Highlight line 48

 Press BackTo

 Hover over arraylength to see its value, and compare

it with the declared size of the v array

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 87

The proximate cause of the symptom (segmentation violation) is

now evident, but the root cause (improper value of arraylength)

remains obscure.

 Set a watchpoint on arraylength

 In the Stack Trace Pane, click on main

 Highlight line 25 (first executable line in main)

 Press BackTo

 Press Go

Question

4. A deterministic bug is possible to find with forward
debugging. In this case, once forward debugging had

established that the symptom occurs in funcB, the rest of

the effort would have been similar to using reverse
debugging. (That is, most likely a watchpoint would have

been set on arraylength to lead to the root problem.)

What are some advantages of reverse debugging in this
case?

__

Step 4: Reverse Debugging a Nondetermin-
istic Parallel Program

 Press Kill

 Dismiss the ReplayEngine_demo Process Window

 Select File > New Program

 In the Program entry, browse and select
MPI_Replay_Engine_demo

 Open the Parallel Tab

 Select MPICH2 for the Parallel System

 Set the Tasks entry to 6

 Press OK

 Set a breakpoint at line 89 (call to MPI_Reduce)

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 88

 Press Go

 Dive on local_max

 In the Variable Window, select View/Show
Across/Processes

 In the Process Window, press Restart a few times (if a
confirmation box appears, press Yes) and observe the
changes in the Variable Window

You should notice that typically most of the processes have values

of local_max which are around two billion, but there are often

one or more processes with a substantially lower value. The
distribution of typical or low values across processes is different
from run to run.

 Repeat restarts, if necessary, until the Variable Window

shows at least one value of local_max that is

substantially less than two billion

 In the Process Window, highlight line 100

 Press Run To

 Select the MPI rank 0 process using the P-/P+ buttons

 Dive on full_domain

 In the full_domain Variable Window, dive on the

pointer

 Cast the type to double[996]

 Select Tools/Visualize

The design of the program is that, at this point, each rank should

have completed a sort on its subdomain of data. The rank 0

process has gathered the subdomains into the full_domain array.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 89

Question
5. Can you characterize how the program is failing to operate

as designed? Is the misbehavior repeatable from run to
run?

__

 In the toolbar of the Process Window, select Rank 0 from
the pull-down list (to make it the focus for toolbar
operations)

 Dive on the getMax function, which is called at line 88

 Highlight line 144 (call of the qsort function)

 Press BackTo

Note that the replay succeeded, as indicated by the orange high-

lighting of line 144. Also, if you examine the local_max Variable

Window, you will see that the Rank 0 value has changed.

 Identify one of the ranks with a substantially lower value

of local_max, and select that rank in the Process

Window, with the P-/P+ buttons; (note that the toolbar
focus changes accordingly)

 Dive on the getMax function, which is called at line 88

 Highlight line 144 (call of the qsort function).

 Press BackTo; a warning window will appear

Questions

6. What does the warning mean?

__

 Dismiss the warning
window

 Highlight line 142

 Press BackTo

7. How does the use of ReplayEngine enhance the debugging
of non-repeatable bugs?

__

END OF LAB 8

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 90

Lab 9: Asynchronous Control Lab
Using the multi-threaded example program, 'simple', we can
demonstrate group, process, and thread control contexts.

Step 1: Start TotalView

 Start up the debugger and Browse to location
of the `simple' program to open. Click the OK
button.

Step 2: Start Command line debugger.

 Once the main window opens go to the Tools
menu item and choose Command Line at the
bottom of the menu box.

This will open an xterm window where debugger commands can be
entered.

This will open an xterm window where debugger commands can be
entered.

 Start up the debugger and browse to location of
the `simple' program to open. Click the OK
button.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 91

Unless noted otherwise all commands will be entered into the
xterm command line window.

d1.<> dgroups -l *
1: {control 1}
2: {workers}
3: {share 1}
d1.<>

 Now put a break at main.

d1.<> dbreak main
1
d1.<>

Notice in the main window of the GUI that the breakpoint will
appear.

 Start the program and it will stop at the
breakpoint, and there will be a pointer where
execution has stopped.

d1.<> drun
Thread 1.1 has appeared
Created process 1 (3834), named "simple"
Thread 1.1 has appeared
Thread 1.1 has exited
Thread 1.1 hit breakpoint 2 at line 44 in "main"
d1.<>

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 92

 Now list the groups once again.

d1.<> dgroups -l *
1: {control 1}
2: {workers 1.1}
3: {share 1}
d1.<>

The new listing shows {workers 1.1}. 1.1 is the main thread.

 Remove the main thread from workers group.

d1.<> dgroups -remove -g 2 1.1
d1.<> dgroups -l *
1: {control 1}
2: {workers}
3: {share 1}
d1.<>

The -g switch is the group ID, in this example: 2: {workers 1.1} . 1.1
is the thread ID which is the main thread.

 Put a breakpoint at the runme function.

This is the start of each thread that will be created. The simple
program creates 10 threads by default.

d1.<> dbreak runme
2
d1.<>

 Now go to the GUI and find the breakpoint at
the runme function. Right click on this and
choose properties. In the “When Hit, Stop” box
choose Thread. Click OK.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 93

Main is going to create 10 threads.

 In the GUI Press Go .

This will create all the threads and stop at the breakpoint for each
thread at the runme function. The threads are listed at the bottom of
the GUI. As a reminder, the 1.1 thread is the main process.

.

 And from the command line debugger, list the
groups again

All the threads are in the workers group.

d1.<> dgroups -l *
1: {control 1}
2: {workers 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10
1.11}
3: {share 1}
d1.<>

 Now a new group can be created and we'll
move some threads to this new control group.
You'll also have to remove the same threads
from the workers group.

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 94

d1.<> dset -new mythreads {1.2 1.4 1.7 1.11}
1.2 1.4 1.7 1.11
d1.<> dgroups -new t -g mygroup $mythreads
mygroup
d1.<> dgroups -remove -g 2 {1.2 1.4 1.7 1.11}
d1.<> dgroups -l *
1: {control 1}
2: {workers 1.3 1.5 1.6 1.8 1.9 1.10}
3: {share 1}
mygroup: {thread 1.2 1.4 1.7 1.11}
d1.<>

There's a drop down list box in the upper left portion of the GUI
that lists all the group types.

 View the list and choose the `mygroup' group
that was created.

 Then press the GO button (it has to be
pressed twice).

This will run all of the threads in `mygroup'. You can see in the
bottom box of the GUI that those threads of this group are gone.
They've all completed their execution while all other threads in the
`workers' group are held.

Now you can step through an individual thread

Rogue Wave Software, Inc. ©2012 Training Lab Manual

Last updated: April 24, 2012 95

 Click on one of the threads to highlight at the
bottom of the GUI.

 Then go to the group menu list box at upper left
of GUI. This highlighted thread should be near
the bottom of the list. Click on it to make it the
focus of execution.

 Now you can click on the next/step button(s) to
execute through this specific thread.

.

 Experiment with switching the focus to each
thread and stepping through.

END OF LAB 9

