
1

©Copyright 2012 Rogue Wave Software, Inc.
1

�
TotalView

Source Code Debugger

©Copyright 2012 Rogue Wave Software, Inc.

2

Agenda

2

• Introduction

• Startup

• UI Navigation and Process

Control

• Action Points

• Data Monitoring and

Visualization

• Debugging for Parallel

Applications

©Copyright 2012 Rogue Wave Software, Inc.
3

Agenda

3

• Remote Display Debugging

• CUDA Debugging

• Memory Reporting with

MemoryScape

• Memory Debugging with

MemoryScape

©Copyright 2012 Rogue Wave Software, Inc.
4

Agenda

4

• Batch Debugging

• Reverse Debugging with

ReplayEngine

• Advanced Asynchronous

Control for Parallel Applications

• Type Transformations

• Support and Questions

2

©Copyright 2012 Rogue Wave Software, Inc.

INTRODUCTION

5
©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

What is TotalView?

• Wide compiler & platform
support

• C, C++, Fortran 77 & 90,
UPC

• Unix, Linux, OS X

• Handles Concurrency

• Multi-threaded Debugging

• Parallel Debugging

• MPI, PVM, Others

• Remote and Client/Server
Debugging

• Integrated Memory
Debugging

• Reverse Debugging available

• ReplayEngine

• Supports a Variety of Usage
Models

• Powerful and Easy GUI

• Visualization

• CLI for Scripting

• Long Distance Remote
Debugging

• Unattended Batch
Debugging 6

A comprehensive debugging solution for demanding

parallel and multi-core applications

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Supported Compilers and Architectures

• Platform Support

• Linux x86, x86-64, ia64, Power

• Mac Intel

• Solaris Sparc and AMD64

• AIX

• Cray XT, XE, XK

• IBM BGL, BGP

• Cell

• Languages / Compilers

• C/C++, Fortran, UPC, Assembly

• Many Commercial & Open Source Compilers

• Parallel Environments

• MPI

• MPICH1& 2, Open MPI, Intel MPI, SGI MPT & Propack, SLURM,
poe, MPT, Quadrics, MVAPICH1 & 2, Bullx MPI, & many others)‏

• UPC

7
©Copyright 2012 Rogue Wave Software, Inc.

STARTUP

8

3

©Copyright 2012 Rogue Wave Software, Inc.

Starting TotalView

9

Start New Process

©Copyright 2012 Rogue Wave Software, Inc.

Starting TotalView

10

Start New Process – Select a recent process

©Copyright 2012 Rogue Wave Software, Inc.

Starting TotalView

11

Start New Process – Enable ReplayEngine

©Copyright 2012 Rogue Wave Software, Inc.

Starting TotalView

12

Start New Process – Memory Debugging

4

©Copyright 2012 Rogue Wave Software, Inc.

Starting TotalView

13

Start New Process – CUDA memory checking

©Copyright 2012 Rogue Wave Software, Inc.

Starting TotalView

14

Start New Process – Arguments tab

©Copyright 2012 Rogue Wave Software, Inc.

Starting TotalView

15

Start New Process – Command-line Args

©Copyright 2012 Rogue Wave Software, Inc.

Starting TotalView

16

Start New Process – set environment variables

5

©Copyright 2012 Rogue Wave Software, Inc.

Starting TotalView

17

Start New Process – Standard I/O redirection

©Copyright 2012 Rogue Wave Software, Inc.

Starting TotalView

18

Attach to Process

©Copyright 2012 Rogue Wave Software, Inc.

Starting TotalView

19

Attach to Process – Enable Replay Engine

©Copyright 2012 Rogue Wave Software, Inc.

Starting TotalView

20

Open a Core File

6

©Copyright 2012 Rogue Wave Software, Inc.
21

Starting TotalView

Normal

totalview [tv_args] prog_name [–a prog_args]

Attach to running program

totalview [tv_args] prog_name –pid PID# [–a prog_args]

Attach to remote process

totalview [tv_args] prog_name –remote name [–a prog_args]

Attach to a core file

totalview [tv_args] prog_name corefile_name [–a prog_args]

Via Command Line

©Copyright 2012 Rogue Wave Software, Inc.

UI NAVIGATION AND

PROCESS CONTROL

22

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.
23

• State of all processes

being debugged

• Process and Thread

status

• Instant navigation access

• Sort and aggregate by

status

Root Window

Status Info

•T = stopped

•B = Breakpoint

•E = Error

•W = Watchpoint

•R = Running

•M = Mixed

•H = Held

Interface Concepts

©Copyright 2012 Rogue Wave Software, Inc.

TotalView Root Window

24

Host name

Action Point

ID number

Expand - Collapse

Toggle Process

Status

TotalView

Thread ID #

Rank #

(if MPI program)

Hierarchical/

Linear Toggle

• Dive to refocus

• Dive in new window to get a second process window

7

©Copyright 2012 Rogue Wave Software, Inc.

Process Window Overview

25

Toolbar

Stack Frame Pane

Source Pane

Tabbed Area

Stack Trace Pane

Provides detailed

state of one process,

or a single thread

within a process

A single point of

control for the

process and other

related processes

©Copyright 2012 Rogue Wave Software, Inc.

Stack Trace and Stack Frame Panes

26

Language Name Frame Pointer Local Variables Register Values

• Click to refocus

 source pane
• Click to modify

• Dive for variable window

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Source Code Pane

27

View as Source - or Assembly - or Both!

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.
28

Tabbed Pane

Action Points Tab

all currently defined

action points

Processes Tab

all current

processes

Threads Tab:

all current

threads,‏ID’s,‏

Status

8

©Copyright 2012 Rogue Wave Software, Inc.

Process Status

Process/Thread

status is available at

a glance, in both the

Process and Root

Windows

29
©Copyright 2012 Rogue Wave Software, Inc.

Search Paths

30

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Search Paths

• Search Path Variable You Can Set

• SOURCE_SEARCH_PATH

• OBJECT_SEARCH_PATH

• SHARED_LIBRARY_SEARCH_PATH

• EXECUTABLE_SEARCH_PATH

• Each is a colon-separated list of paths

• Search Mappings – applied to paths before searching

• SOURCE_SEARCH_MAPPINGS

• OBJECT_SEARCH_MAPPINGS

• SHARED_LIBRARY_SEARCH_MAPPINGS

• EXECUTABLE_SEARCH_MAPPINGS

• Each is a colon-separated list of RE=replacement mappings

• +regular_expression+=+replacement+:+re+=+repl+

31
©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Search Paths

• Search Path Variables TotalView Sets (Read-

only)

• COMPILATION_DIRECTORY_COMPONENT

• COMPILATION_WORKING_DIRECTORY

• COMPILATION_DIRECTORY

• EXECUTABLE_DIRECTORY_COMPONENT

• EXECUTABLE_WORKING_DIRECTORY

• EXECUTABLE_DIRECTORY

• You can use these in setting *PATH variables

for search

32

9

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Search Paths

• TotalView Built-in Functions

• $tree(/dir/to/search1:/dir/to/search2)

• Searches each colon-separated directory

and all subdirectories. The $tree directive

cannot be first or last in the Source search

path, but you may have multiple $tree

entries

• $link (/dir/to/search1:/dir/to/search2)

• Searches symbolic links in each colon-

separated directory. Fails if file is not a

symbolic link and in the exact directory

33
©Copyright 2012 Rogue Wave Software, Inc.

Managing Signals

File > Signals

34

Error Stop the process and flag as error

Stop Stop the process

Resend Pass the signal to the target and do nothing: use with signal handlers

Ignore Discard the signal

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Preferences

35
©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Finding Functions, Variables,
and Source Files

36

10

©Copyright 2012 Rogue Wave Software, Inc.

Stepping Commands

37

Based on

PC location

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Stepping Commands

38

©Copyright 2012 Rogue Wave Software, Inc.

Using Set PC to resume execution at an

arbitrary point

39

• Select the line

• Thread->Set PC

• Click Yes to set

the PC

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Debug Menu

• Menu Items for extra features

• Replay Engine

• MemoryScape

• CUDA Memcheck

• More on these features later

40

11

©Copyright 2012 Rogue Wave Software, Inc.

Examining Your Programs

41
©Copyright 2012 Rogue Wave Software, Inc.

Examining Where Your Programs Are

42

Display call graph for processes/threads

©Copyright 2012 Rogue Wave Software, Inc.

Examining Where Your Programs Are

43

Parallel back trace

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Viewing TotalView Informational Messages

44

12

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Setting Up Your Windows

• Update current or all windows

• Momentarily pauses execution (if running) to determine

current state and update

• Duplicate a window

• Memorize current or all windows

• Remembers window positions and sizes for future use

• Only works if Preference Force Window Position is

selected

• Focus on Root window

45
©Copyright 2012 Rogue Wave Software, Inc.

ACTION POINTS

46

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.
47

Breakpoints

Barrier Points

Conditional

Breakpoints

Evaluation Points

Watchpoints

Action Points

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.
48

Setting Breakpoints

• Setting action points

• Single-click line number

• Deleting action points

• Single-click action point line

• Disabling action points

• Single-click in Action Points Tab Pane

• Optional contextual menu access for all

functions

• Action Points Tab

• Lists all action points

• Dive on an action point to focus it in

source pane

• Action point properties

• In Context menu

• Saving all action points

• Action Point > Save All

13

©Copyright 2012 Rogue Wave Software, Inc.

Setting Breakpoints

49

• Breakpoint->At

Location…

• Specify function

name or line #

• Specify class name

and break on all

methods in class,

optionally with

virtuals and

overrides

©Copyright 2012 Rogue Wave Software, Inc.

Setting Breakpoints

50

• Breakpoint

type

• What to stop

• Set conditions

• Enable/disable

• In 1 process or

share group

©Copyright 2012 Rogue Wave Software, Inc.
51

Conditional Breakpoint

©Copyright 2012 Rogue Wave Software, Inc.

Evaluation Breakpoint…

Test Fixes on the Fly!

52

• Test small source code
patches

• Call functions

• Set variables

• Test conditions

• C/C++ or Fortran

• Can’t use C++
constructors

• Use program variables

• ReplayEngine records
changes but won’t step
through them

14

©Copyright 2012 Rogue Wave Software, Inc.
53

 TotalView understands C++ templates and gives you a choice ...

Boxes with solid lines around line numbers indicate code that exists at

more than one location.

Setting Breakpoints

With C++ Templates

©Copyright 2012 Rogue Wave Software, Inc.

Watchpoints

• Watchpoints are set

on a specific memory

region

• Execution is stopped

when that memory

changes

54

Action Point ->

Create

Watchpoint…

©Copyright 2012 Rogue Wave Software, Inc.

Watchpoints

• Can create from a

variable window

using Tools ->

Watchpoint

55
©Copyright 2012 Rogue Wave Software, Inc.

Watchpoints

• Can create from

right-click on

variable in

Source pane

56

15

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Watchpoints

• Watchpoints are set on a memory region, not

a variable

• Watch the variable scope and disable

watchpoints when a variable is out of scope

• Can be conditional, just like other action

points

• Use $newval and $oldval in your evaluation to find

unexpected changes in value (such as a loop value

changing by more than 1)

57
©Copyright 2012 Rogue Wave Software, Inc.

LAB 1: THE BASICS

58

©Copyright 2012 Rogue Wave Software, Inc.

DATA MONITORING AND

VISUALIZATION

59
©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

60

Diving on Variables

You can use Diving to:

 information‏more‏get‏…

 .Window‏Variable‏a‏in‏variable‏a‏open‏…

 structures‏data‏complex‏in‏pointers‏chase‏…

 Pane‏Source‏window‏Process‏the‏refocus‏…

You can Dive on:

 window‏variable‏a‏open‏to‏names‏variable‏…

 .Window‏Process‏the‏in‏source‏the‏open‏to‏names‏function‏…

 .Window‏Root‏the‏in‏threads‏and‏processes‏…

How do I dive?

•Double-click the left mouse button on selection

•Single-click the middle mouse button on selection.

•Select Dive from context menu opened with the right mouse button

16

©Copyright 2012 Rogue Wave Software, Inc.

Diving

61

Diving on a Common

Block in the Stack

Frame Pane

©Copyright 2012 Rogue Wave Software, Inc.

Undiving

62

In a Process Window: retrace the path that has been explored with

multiple dives.

In a Variable Window: replace contents with the previous contents.

You can also remove changes in the variable window with Edit > Reset

Default.

©Copyright 2012 Rogue Wave Software, Inc.

The Variable Window

63

• Click once on the value

• Cursor switches into edit more

• Esc key cancels editing

• Enter key commits a change

• Editing values changes the memory of the

program

• Window contents are updated

automatically

• Changed values are highlighted

• “Last‏Value”‏column‏is‏available

Editing Variables

©Copyright 2012 Rogue Wave Software, Inc.

Expression List Window

64

• Reorder, delete, add

• Sort the expressions

• Edit expressions in place

• Dive to get more info

• Updated automatically

• Expression-based

• Simple values/expressions

• View just the values you want to monitor

Add to the expression list using contextual menu with right-click on a

variable, or by typing an expression directly in the window

17

©Copyright 2012 Rogue Wave Software, Inc.

Viewing Arrays

65

Data Arrays

Structure Arrays

©Copyright 2012 Rogue Wave Software, Inc.

Array Viewer

• Variable Window select Tools ->

Array Viewer

• View 2 dimensions of data

66

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Slicing Arrays

Slice notation is [start:end:stride]

67
©Copyright 2012 Rogue Wave Software, Inc.

Filtering Arrays

68

18

©Copyright 2012 Rogue Wave Software, Inc.

Visualizing Arrays

69

•Visualize array data using Tools > Visualize from the

Variable Window

•Large arrays can be sliced down to a reasonable size

first

•Visualize is a standalone program

•Data can be piped out to other visualization tools

•Visualize allows to spin,

zoom, etc.

•Data is not updated with

Variable Window; You

must revisualize

•$visualize() is a directive

in the expression system,

and can be used in

evaluation point

expressions.

©Copyright 2012 Rogue Wave Software, Inc.

Dive in All

70

Dive in All will display

 an element in an array

 of structures as if

 it were a simple array.

©Copyright 2012 Rogue Wave Software, Inc.

Looking at Variables across Processes

71

• TotalView allows you to

look at the value of a

variable in all MPI

processes

• Right Click on the

variable

• Select the View > View

Across

• TotalView creates an array

indexed by process

• You can filter and visualize

• Use for viewing distributed

arrays as well.

©Copyright 2012 Rogue Wave Software, Inc.

Typecasting Variables

72

• Edit the type of a variable

• View data as type…

• Often used with pointers

• int[10]* Pointer to an array of 10 int

• int*[10] Array of 10 pointers to int

Type Casts Read from Right to Left

• Cast float * to float [100]* to see a dynamic array’s values

• Cast to built-in types like $string to view a variable as a null-terminated

string

• Cast to $void for no type interpretation or for displaying regions of

memory

The Bottom Line

Give TotalView a starting memory address and you can tell TotalView how

to interpret your memory from that starting location.

19

©Copyright 2012 Rogue Wave Software, Inc.

Typecasting a Dynamic Array

73
©Copyright 2012 Rogue Wave Software, Inc.

C++ Class Hierarchies

74

Note:

• Virtual public base classes appear each time they are referenced

• The vtable entry here is part of the C++ implementation but can provide useful

information

Variable Window shows class hierarchy using indentation

• derived2 inherits from base1 and derived1

• derived1 inherits from base1

Example:

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Fortran 90 Modules

Tools > Fortran Modules

75
©Copyright 2012 Rogue Wave Software, Inc.

STLView

76

STLView transforms templates into readable and

understandable information

–STLView supports std::vector, std::list, std::map, std::string

–See doc for which STL implementations are supported

20

©Copyright 2012 Rogue Wave Software, Inc.

STLView

77

STLView transforms

templates into

readable and

understandable

information

©Copyright 2012 Rogue Wave Software, Inc.

LAB 2: VIEWING, EXAMING,WATCHING AND

EDITING DATA

78

©Copyright 2012 Rogue Wave Software, Inc.

DEBUGGING FOR

PARALLEL APPLICATIONS

79
©Copyright 2012 Rogue Wave Software, Inc.

TotalView Startup with MPI

TVT Launch

80

In the Parallel tab, select:

your MPI preference, number of tasks, and number of nodes.

 arguments‏starter‏additional‏any‏add‏then‏…

21

©Copyright 2012 Rogue Wave Software, Inc.

TotalView Startup with MPI

IBM totalview poe -a myprog -procs 4 -rmpool 0

QUADRICS
Intel Linux

under SLURM

totalview srun -a -n 16 -p pdebug myprog

MVAPICH
Opteron Linux

under SLURM

totalview srun -a -n 16 -p pdebug myprog

SGI totalview mpirun -a myprog -np 16

Sun totalview mprun -a myprog -np 16

MPICH mpirun -np 16 -tv myprog

MPICH2

Intel MPI

Totalview python –a ‘which mpiexec’ –tvsu

-np 16 myprog

The order of arguments and executables is important,

and differs between platforms.

81
©Copyright 2012 Rogue Wave Software, Inc.

Architecture for Cluster Debugging

82

• Single Front End (TotalView)

• GUI

• debug engine

• Debugger Agents (tvdsvr)

• Low overhead, 1 per node

• Traces multiple rank processes

• TotalView communicates
 directly with tvdsvrs

• Not using MPI

• Protocol optimization

Compute Nodes

Provides Robust, Scalable and efficient operation with Minimal
Program Impact

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Process Control Concepts

• Each process window is always focused on a specific
process.

• Process focus can be easily switched

• P+/P-, Dive in Root window and Process tab

• Processes can be ‘held’ - they will not run till unheld.

• Process > Hold

• Breakpoints can be set to stop the process or the
group

• Breakpoint and command scope can be simply
controlled

83
©Copyright 2012 Rogue Wave Software, Inc.

Basic Process Control

84

•Control Group

–All the processes created or attached together

Groups

•Share Group

–All the processes that share the same image
•Workers Group

–All the threads that are not recognized as
manager or service threads

•Lockstep Group

–All threads at the same PC

•Process, Process (Workers), Process (Lockstep)

–All process members as above

•User Defined Group

–Process group defined in Custom Groups dialog

22

©Copyright 2012 Rogue Wave Software, Inc.

Call Graph

85
Dive on a node in the call graph to create a Call Graph group.

• Quick view of

program state

• Each call stack is a

path

• Functions are nodes

• Calls are edges

• Labled with the MPI rank

• Construct process

groups

• Look for outliers

©Copyright 2012 Rogue Wave Software, Inc.

Parallel Back Trace

86

©Copyright 2012 Rogue Wave Software, Inc.

 User Defined Groups

• Group > Custom Groups,

to create a process

group of some other

specification

• Group Membership

shown in Processes Tab

• User defined groups

appear in the “Go” drop-

down menu

87
©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Preferences

88

23

©Copyright 2012 Rogue Wave Software, Inc.

Subset Attach

• Connecting to a subset of a job reduces

tokens and overhead

• Can change this during a run

• Groups->Subset Attach

89
©Copyright 2012 Rogue Wave Software, Inc.

View MPI Message Queues

90

• Information visible
whenever MPI rank
processes are halted

• Provides information from
the MPI layer

• Unexpected messages

• Pending Sends

• Pending Receives

• Use this info to debug

• Deadlock situations

• Load balancing

• May need to be
enabled in the MPI library

• --enable-debug

©Copyright 2012 Rogue Wave Software, Inc.

Message Queue Graph

91

• Hangs &
Deadlocks

• Pending
Messages

• Receives

• Sends

• Unexpected

• Inspect

• Individual
entries

• Patterns

©Copyright 2012 Rogue Wave Software, Inc.

Message Queue Graph

92

• Filtering

• Tags

• MPI Communicators

• Cycle detection

• Find deadlocks

Message Queue
Debugging

24

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Strategies for Large Jobs

• Reduce N

• Problem: Each process added requires overhead

• Strategy: Reduce the number of processes TotalView is attached to

• Simply reducing N is best, however data or algorithm may require
large N

• Technique: subset attach mechanism

• Focus Effort

• Problem: Some debugger operations are much more intensive than
others, and when multiplied by N this could be significant

• Strategy: Reduce the interaction between the debugger and the
processes

• Technique: Use TotalView's process control features to

• Avoid single stepping

• Focus on one or a small set of processes

93
©Copyright 2012 Rogue Wave Software, Inc.

LAB 3: EXAMINING AND CONTROLLING A

PARALLEL APPLICATION

94

©Copyright 2012 Rogue Wave Software, Inc.

REMOTE DISPLAY

DEBUGGING

95
©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Remote Display Client

• Offers users the ability to easily set up and

operate a TotalView debug session that is

running on another system

• Consists of two components

• Client – runs on local machine

• Server – runs on any system supported by TotalView

and‏“invisibly”‏manages‏the‏secure‏connection‏between‏

host and client

• Remote Display Client is available for:

• Linux x86, x86-64

• Windows XP, Vista, 7

• Mac OS X
96

25

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Remote Display Client

• Free to install on as many clients as needed

• No license required to run the client

• Only the server running TotalView requires licenses.

Must be version 8.6 or later of TotalView or version 2.4

or later of MemoryScape.

• Presents a local window that displays

TotalView or MemoryScape running on the

remote machine

• Requires SSH and X Windows on Server

97
©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Remote Display Client

• On Windows, there is a setup wizard

98

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Remote Display Client

• User must provide information necessary to

connect to remote host

• Connection info can be saved for reuse

• Information required includes:

• User name, public key file, other ssh information

• Directory where TotalView/MemoryScape is located

• Path and name of executable to be debugged

• If using indirect connection with host jump, each host

• Host name

• Access type (User name, public key, other ssh information)

• Access value

• Client also allows for batch submission via

PBS Pro or LoadLeveler

99
©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Remote Display Client

100

26

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Session Profile Management

• Connection information can be saved as a

profile, including all host jumping information

• Multiple profiles can be generated

• Profiles can be exported and shared

• Generated profiles can be imported for use by

other users

101
©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Security

• Remote Display Client uses SSH

• Remote Display Server allows only RFB

(Remote Frame Buffer) connections

• No incoming access to the server is allowed

• Server can only connect back to the client

viewer via SSH

• Only one viewer connection allowed per

server

• No password information is saved, user is

prompted every time

102

©Copyright 2012 Rogue Wave Software, Inc.

CUDA DEBUGGING

103
©Copyright 2012 Rogue Wave Software, Inc.

TotalView for CUDA

• Characteristics

• Full visibility of both Linux

threads and GPU device threads

• Fully represent the hierarchical

memory

• Detailed device status display

• Supports Unified Virtual

Addressing and GPUDirect

• Thread and Block Coordinates

• Device thread control

• Handles both inlined functions

and CUDA callstack

• Reports memory access errors

• Full Multi-Device Support

• Can be used with MPI

104

27

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

TotalView for CUDA

• Supports:

• CUDA 3.2

• CUDA 4.0

• CUDA 4.1

• Linux x86-64

• NVIDIA Tesla or Fermi hardware

• Support for no copy pinned memory

• CUDA device assertions

• Multiple CUDA contexts from same process on same

device

• CUDA on Cray, early access* support of OpenACC

105 *Not officially supported ©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

NVIDIA GPU Architecture

• Used in conjunction with conventional CPUs

• Acts as an accelerator to a host processor

• Or, perhaps the host processor acts to support GPU

• Distinct architecture

• Distinct processor architecture from the CPU

• Many more cores than SMP

• Multiple streaming multiprocessors

• Potentially tens of thousands of thread contexts

106

©Copyright 2012 Rogue Wave Software, Inc.

GPU Memory Hierarchy

• Hierarchical

memory

• Local (thread)

• Local

• Register

• Shared (block)

• Global (GPU)

• Global

• Constant

• Texture

• System (host)

107
©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

TotalView Type Storage Qualifiers

• @parameter Address

• Offset in parameter storage

• @local Address

• Offset in local storage

• @shared Address

• Offset in shared storage

• @constant Address

• Offset in constant storage

• @global Address

• Offset in global storage

• @register Address

• PTX register name

108

28

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

CUDA Variables

• Storage qualifiers appear in the data type

109
©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

CUDA

• Function-like kernels are written for

calculations to be performed on the GPU

• Data parallel style, one kernel per unit of work

• Presents hierarchical organization for thread

contexts

• 2D or 3D grid of blocks

• 3D block of thread

• Exposes memory hierarchy explicitly to the

user

• Includes routines for managing device

memory and data movement using streams

110

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

CUDA Programming Challenges

• Coordinating CPU code and device code

• Understanding what is going in each kernel

• Exceptions

• Understanding memory usage

• Understanding performance characteristics

111
©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Debugging CUDA in TotalView

• When a new kernel is loaded, you get the

option of setting breakpoints

• Once breakpoints are set, you can turn off the

dialog and say no

112

29

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Debugging CUDA in TotalView

• CUDA threads are considered part of the

initiating process

• CUDA threads are given a negative TotalView

thread id to distinguish them

• Normal TotalView controls work on CUDA

code

• Underneath Toolbar is a GPU focus thread

selector for changing block and thread

indices

113
©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Control of Threads and Warps

• Warps advance synchronously

• They share a PC

• Single step operation advances all GPU

threads in the same warp

• Stepping over a __syncthreads() call will

advance all relevant threads

• To advance more than one warp

• Continue, possibly after setting a new breakpoint

• Select‏a‏line‏and‏“Run‏To”

114

©Copyright 2012 Rogue Wave Software, Inc.

GPU Device Status

115

Example of divergent

GPU threads

Different PC for two

groups of lanes

State of lanes inside

warp

• Display of

PCs across

SMs, Warps

and Lanes

• Updates as

you step

• Shows what

hardware is

in use

• Helps you

map

between

logical and

hardware

coordinates

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

CUDA Segmentation Faults

• TotalView displays segmentation faults as

expected

• Must enable CUDA memory checking

116

30

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

CUDA Built-in Runtime Variables

• Supported built-in runtime variables are:

• struct dim3_16 threadIdx;

• struct dim2_16 blockIdx;

• struct dim3_16 blockDim;

• struct dim2_16 gridDim;

• int warpSize;

117
©Copyright 2012 Rogue Wave Software, Inc.

MEMORY REPORTING

WITH MEMORYSCAPE

118

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

What is a Memory Bug?

• A Memory Bug is a mistake in the

management of heap memory

• Failure to check for error conditions

• Leaking: Failure to free memory

• Dangling references: Failure to clear pointers

• Memory Corruption

• Writing to memory not allocated

• Overrunning array bounds

119
©Copyright 2012 Rogue Wave Software, Inc.

Why Are Memory Bugs Hard to Find?

120

• Memory problems can lurk

• For a given scale or platform or problem, they may not be fatal

• Libraries could be source of problem

• The fallout can occur at any subsequent memory access through

a pointer

• The mistake is rarely fatal in and of itself

• The mistake and fallout can be widely separated

• Potentially 'racy'

• Memory allocation pattern non-local

• Even the fallout is not always fatal. It can result in data corruption

which may or may not result in a subsequent crash

• May be caused by or cause of a 'classic' bug

What is a Memory Bug?

31

©Copyright 2012 Rogue Wave Software, Inc.

The Agent and Interposition

121

Process

TotalView

Malloc API

User Code and Libraries

©Copyright 2012 Rogue Wave Software, Inc.

The Agent and Interposition

122

Malloc API

User Code and Libraries

Process

TotalView
Heap Interposition

Agent (HIA)‏
Allocation

Table

Deallocation

Table

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

TotalView HIA Technology

• Advantages of TotalView HIA Technology

• Use it with your existing builds

• No Source Code or Binary Instrumentation

• Programs run nearly full speed

• Low performance overhead

• Low memory overhead

• Efficient memory usage

• Support wide range of platforms and compilers

123
©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Memory Debugger Features

• Automatically detect allocation problems

• View the heap

• Leak detection

• Block painting

• Memory Hoarding

• Dangling pointer detection

• Deallocation/reallocation notification

• Memory Corruption Detection - Guard Blocks

• Memory Comparisons between processes

• Collaboration features

124

32

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Enabling Memory Debugging
Memory Event Notification

125
©Copyright 2012 Rogue Wave Software, Inc.

Memory Event Details Window

126

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Heap Graphical View

127

©Copyright 2012 Rogue Wave Software, Inc.

Leak Detection

• Leak Detection

• Based on Conservative

Garbage Collection

• Can be performed at any point
in runtime

• Helps localize leaks in
time

• Multiple Reports

• Backtrace Report

• Source Code Structure

• Graphically Memory

Location

128

33

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Dangling Pointer Detection

129
©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Memory Corruption Report

130

©Copyright 2012 Rogue Wave Software, Inc.

Memory Comparisons

131

• “Diff” live

processes

• Compare processes

across cluster

• Compare with

baseline

• See changes between

point A and point B

• Compare with saved

session

• Provides memory

usage change from

last run

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Memory Usage Statistics

132

34

©Copyright 2012 Rogue Wave Software, Inc.

Memory Reports

133

• Multiple Reports
• Memory Statistics

• Interactive Graphical
Display

• Source Code Display

• Backtrace Display

• Allow the user to

• Monitor Program
Memory Usage

• Discover Allocation
Layout

• Look for Inefficient
Allocation

• Look for Memory
Leaks

©Copyright 2012 Rogue Wave Software, Inc.

Memory Reports

134

©Copyright 2012 Rogue Wave Software, Inc.

MEMORY DEBUGGING

WITH MEMORYSCAPE

135
©Copyright 2012 Rogue Wave Software, Inc.

136

•Preview: Debugging Memory with MemoryScape

• Startup

• Integrated and Bundled with TotalView

• Typically started from the TotalView gui

• Multi-threaded and multi-process programs

• Setup from TotalView or stand alone.

• The multi-process and multi-threaded GUI interface is very similar to TotalView.

•Automation Support

•Block painting

•Memory Corruption Detection - Guard Blocks

•Memory Hoarding

MEMORY DEBUGGING: MEMORYSCAPE

35

©Copyright 2012 Rogue Wave Software, Inc.

Memory Debugging: MemoryScape

137

• Memory debug many processes at the same time
• MPI

• Client-Server

• Fork-Exec

• Compare
two runs

• Remote
applications

• Mutli-threaded
applications

Multi-Process and Multi-Thread

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Script Mode - MemScript

• Automation Support

• MemoryScape lets users run tests and check

programs for memory leaks without having to be in

front of the program

• Simple command line program called MemScript

• Doesn’t‏start‏up‏the‏GUI

• Can be run from within a script or test harness

• The user defines

• What configuration options are active

• What thing to look for

• Actions MemoryScape should take for each type of

event that may occur
138

Memory Debugging: MemoryScape

©Copyright 2012 Rogue Wave Software, Inc.

Menu Selections:

Block painting, Guard block and Hoarding

139

Memory Debugging: MemoryScape

©Copyright 2012 Rogue Wave Software, Inc. 140

Red Zones instant array bounds detection for Linux

• Red Zones provides:

• Immediate detection of memory overruns.

• Detection of access violations both before and after the bounds of

allocated memory.

• Detection of deallocated memory accesses.

• Red Zones events

• MemoryScape will stop your programs execution and raise an event

alerting you to the illegal access. You will be able to see exactly where

your code over stepped the bounds.

Memory Debugging: MemoryScape

36

©Copyright 2012 Rogue Wave Software, Inc.

Memory Debugging: MemoryScape

141

Red Zones instant array bounds detection for Linux

• Red Zones allocation size range controls

• The optional use of Red zones will increase the memory

consumption of your program.

• Controls are provided to allow the full management of Red Zone

usage. These controls allow:

• Restriction of red zones to allocations in several user defined size

ranges

• Easily turning red zones on and off at any time during your

programs execution.

©Copyright 2012 Rogue Wave Software, Inc.

Memory Debugging: MemoryScape

142

Red Zones instant array bounds detection for Linux

• Red Zones support in the CLI

• The Command Line Interface also provides support for

RedZones

• Scripting support of new commands and command

qualifiers

• TVScript

• MemScript

©Copyright 2012 Rogue Wave Software, Inc.

Memory Debugging: MemoryScape

143

Configuring Guard Blocks

Guard allocated memory
When selected, the Memory Debugger writes guard blocks before

and after a memory block that your program allocates

Pre-Guard and Post-Guard Size:

 Sets the size in bytes of the block that the Memory Debugger places

immediately before and after the memory block that your program

allocates

Pattern:

 Indicates the pattern that the Memory Debugger writes into guard blocks.

The default values are 0x77777777 and 0x99999999

 ©Copyright 2012 Rogue Wave Software, Inc.

Memory Corruption Detection (Guard Blocks)

144

37

©Copyright 2012 Rogue Wave Software, Inc.

Memory Debugging: MemoryScape

145

 malloc zones Support on Mac OS X

Mac OS X provides a mechanism for multiple pools of memory called

malloc zones. MemoryScape now tracks both the allocator and

owner of all heap allocations. These properties can be displayed

and used for filtering.

• Display allocator and owner information

• filter vs allocator and owner

©Copyright 2012 Rogue Wave Software, Inc.

Memory Debugging: MemoryScape

146

Improved Memory Hoarding support

The use of memory hoarding in MemoryScape increases the risk of running out

of available memory. MemoryScape now has the capability to manage this

condition and alert you when you are at risk.

• Hoard Low Memory Controls

• Automatically release hoarded memory when available memory gets low,

allowing your program to run longer

• Hoard Low Memory events

• MemoryScape can stop execution as notification that the hoard droppped

below a particular threshold. This provides an indication that the program is

getting close to running out of memory.

• Hoard Low Memory scripting and CLI support

• TVScript

• MemScript

©Copyright 2012 Rogue Wave Software, Inc.

Memory Debugging: MemoryScape

147

Improved Memory Hoarding support

• Hoard Low Memory support in the CLI

• Hoard Low Memory scripting support

• TVScript

• MemScript

©Copyright 2012 Rogue Wave Software, Inc.

LAB 4, 5, 6: MEMORY LABS

148

38

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

BATCH DEBUGGING

Using scripts for unattended debugging

149
©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

tvscript and memscript

• A straightforward language for unattended

and/or batch debugging with TotalView and/or

MemoryScape

• Usable whenever jobs need to be submitted

or batched

• Can be used for automation

• A more powerful version of printf, no

recompilation necessary between runs

• Schedule automated debug runs with cron

jobs

• Expand its capabilities using TCL
150

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Output

• All of the following information is provided by

default for each print

• Process id

• Thread id

• Rank

• Timestamp

• Event/Action description

• A single output file is written containing all of

the information regardless of the number of

processes/threads being debugged

151
©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Sample Output

• Simple interface to create an action point

-create_actionpoint ”#85=>print foreign_addr”

• Sample output with all information
!!!

! Print

!

! Process:

! ./TVscript_demo (Debugger Process ID: 5, System ID: 2457@127.0.1.1)

! Thread:

! Debugger ID: 5.1, System ID: 3077191888

! Rank:

! 0

! Time Stamp:

! 05-14-2012 17:11:24

! Triggered from event:

! actionpoint

! Results:

! err_detail = {

! intervals = 0x0000000a (10)

! almost_pi = 3.1424259850011

! delta = 0.000833243988525023

! }

!

!!!

152

39

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Events

• General

• any_event

• Source code debugging events

• actionpoint

• error

• Memory events (just a few, all are listed in

Chapter 4 of TotalView Reference Guide)

• any_memory_event

• free_not_allocated

• guard_corruption

• rz_overrun, rz_underrun, rz_use_after_free

153
©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Actions

• Source code

• display_backtrace [-level num] [numlevels] [options]

• print [-slice {exp}] {variable | exp}

• Memory

• check_guard_blocks

• list_allocations

• list_leaks

• save_html_heap_status_source_view

• save_memory_debugging_file

• save_text_heap_status_source_view

154

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Command syntax

• General syntax

• tvscript [options] [filename] –a [program_args]

• MPI Options

• -mpi starter starter comes from Parallel tab dropdown

• -starter_args‏“args‏for‏starter‏program”

• -nodes

• -np or –procs or –tasks

155
©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Command syntax

• Action options

• -create_actionpoint‏“src_expr[=>action1[,action2]‏…]”

• Repeat on command line for each actionpoint

• -event_action‏“event_action_list”

• event1=action1,event2=action2 or event1=>action1,action2

• Can repeat on command line for multiple actions

• General options

• -display_specifiers‏“display_specifiers_list”

• -maxruntime‏“hh:mm:ss”

• -script_file scriptFile

• -script_log_filename logFilename

• -script_summary_log_filename summaryLogFilename

156

40

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Command syntax

• Memory debugging options

• -memory_debugging (must use for debugging memory)

• -mem_detect_leaks

• -mem_detect_use_after_free

• -mem_guard_blocks

• -mem_hoard_freed_memory

• -mem_hoard_low_memory_threshold nnnn

• -mem_paint_all

• -mem_paint_on_alloc

• -mem_paint_on_dealloc

157
©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Command syntax

• Memory debugging red zone options

• -mem_red_zone_overruns

• -mem_red_zones_size_ranges‏min:max[,min:max]…

• Ranges can be

• min:max

• min:

• :max

• fixed

• -mem_red_zones_underruns

158

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Script Files

• Instead of putting everything on the command

line, you can also write and use script files

• Script files can also include TCL

• Logging functions

• tvscript_log msg – logs msg to the log file

• tvscript_slog msg – logs msg to the summary log file

• Property functions

• tvscript_get_process_property process_id property

• tvscript_get_thread_property thread_id property

159
©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Script Files

• Action point and event functions

• tvscript_create_actionpoint source_loc_expr

• [[##image#]filename#]line_number

• function_name

• class class_name

• virtual class:signature

• tvscript_add_actionpoint_handler id handler

• tvscript_add_event_handler event handler

• Passes an array to handler, event will either be error or

actionpoint

• Other information relevant to event

• Handlers are written in TCL

160

41

©Copyright 2012 Rogue Wave Software, Inc.

LAB 7: BATCH MODE DEBUGGING WITH

TVSCRIPT

161
©Copyright 2012 Rogue Wave Software, Inc.

REVERSE DEBUGGING

WITH REPLAYENGINE

162

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

What is ReplayEngine?

• Provides record for deterministic replay

• Records program changes as they happen

• Captures input

• Function calls

• Network and file I/O

• Captures non-determinism

• Forces single threaded execution

• Records context switches

• Allows stepping back in execution, like a DVR for your

programs

• Use breakpoints and watchpoints

• Support for MPI on Ethernet, Infiniband, Cray XE Gemini

• Support for Pthreads, and OpenMP

163

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

ReplayEngine Support

• Replay on Demand: enable it when you want it

• Supported on Linux for x86 and x86_64

• Cluster interconnects

• IP (any interconnect): MPICH, MPICH2, OpenMPI, Intel

MPI, SGI MPT, Cray XT-MPT, MVAPICH, MVAPICH2

• Mellanox Infiniband

• IB verb: MVAPICH, MVAPICH2, OpenMPI,

Intel MPI

• Qlogic Infiniband

• PSM: MVAPICH, MVAPICH2, OpenMPI,

Intel MPI

164

42

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

ReplayEngine

• Editing during record mode

• Allows modification of variables during record

mode (eval breakpoints, click/edit of variable

values)

• Modifications are recorded along with the rest

of the execution

• Not allowed to change values when in

playback mode

• Don’t‏attempt‏to‏step‏into‏recorded‏edits,‏but‏

correct values show up on either side

165
©Copyright 2012 Rogue Wave Software, Inc.

ReplayEngine

166

An Intuitive User Interface

Step forward

over functions

Step forward

into functions

Advance forward out

of current

Function, after the call

Advance forward to

selected line

Step backward over

functions

Step backward into

functions

Advance backward out of

current Function, to before

the call

Advance backward to

selected line

Advance forward to

“live”‏session

©Copyright 2012 Rogue Wave Software, Inc.

ReplayEngine

167

Replay not running

Replay running

No Active Buttons!

Enable‏Replay‏“On‏Demand”

Active Buttons

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Example

ReplayEngine

Consider the following very difficult program scenario:

• A crash occurs that destroys the stack backtrace, giving no
information leading up to the problem

• ReplayEngine can be used to work backwards from the
crash, and even to observe the stack recreate itself,
providing the critical information on where and how the
problem began.

• The ReplayEngine provides the ability to review any part of
the program execution… to see all variables and function
calls, from the beginning of the run to the current time

168

43

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.
169

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.
170

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.
171

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.
172

44

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.
173

©Copyright 2012 Rogue Wave Software, Inc.

LAB 8: REVERSE DEBUGGING WITH REPLAY

ENGINE

174

©Copyright 2012 Rogue Wave Software, Inc.

ADVANCED

ASYNCHRONOUS CONTROL

175
©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Why Asynchronous Control

• Parallel codes are very difficult to debug

• Breaking down the problem to smaller pieces

helps narrow down issues

• Stepping individual processes, threads, or

groups can help narrow down a problem

176

45

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

TotalView Asynchronous Control Features

• Built in control groups

• User-defined control groups

• Action points can target threads, processes

or groups

• Typical debugging commands can target

groups or individual processes and threads

(Next, Step, etc.)

177
©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Groups

• By default, TotalView defines the following

groups:

• Control Group: everything

• Share Group: all processes and their threads with same

image

• Workers Group: all threads in all control group

processes

• Lockstep Group: all threads at the same breakpoint

• Process: current process with debugger focus

• Process Workers: all threads in the process

• Process Lockstep: all threads at the same breakpoint in

one process

• Thread: current thread with focus

• Only the Workers group can be modified by

the user

• CLI, use dworker 0 to remove from the workers group or

dworker 1 to add

178

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Customizing Groups

• Only the Workers group can be modified by

the user

• CLI, use dworker 0 to remove from the workers group or

dworker 1 to add

• Create a Custom Group from the Group menu

179
©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Creating a Custom Group

• Enter the group name

• Select processes to be members of the group

• Add… button to create more groups

180

46

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Custom Groups in the CLI

• In the CLI, use the dgroups command to

create & modify groups

dgroups –new t|p [–g groupname] [id_list]

dgroups –add [–g groupname] [id_list]

dgroups –remove [–g groupname] [id_list]

dgroups –intersect [–g groupname id_list]

dgroups –delete [–g groupname]

t or p – can also use thread or process, is it a thread or process

group

groupname is your name for the new group

id_list is a TCL list of ids to add to the new group

• You can also use dworker to add/remove

threads from the process workers group

dfocus t1.1 dworker 0

181

©Copyright 2012 Rogue Wave Software, Inc.

Custom Groups in CLI

182

©Copyright 2012 Rogue Wave Software, Inc.

Custom Groups in CLI

183
©Copyright 2012 Rogue Wave Software, Inc.

Custom Groups in CLI

184

47

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Breakpoints

• Control where they are planted, defaults to

the Share Group

• Uses the SHARE_ACTION_POINT variable, true plants

in the Share Group, false plants in the focus process

only

• Control what is stopped by hitting the

breakpoint, the group, the process, or just the

thread

• Uses the STOP_ALL variable set to: group, process, or

thread

• Use the –g, -p, or –t flag to dbreak in the CLI to override

185
©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Breakpoints

• Control what is stopped and finer control over

when it is stopped by using eval option and

writing test code

• Code can be C, C++, FORTRAN 77, Fortran 9x, or

assembler

• Can use TotalView-specific values and commands like

$tid, $pid, $stop

• Use –lang and –e flags to dbreak in CLI

186

©Copyright 2012 Rogue Wave Software, Inc.

Breakpoints in UI

187
©Copyright 2012 Rogue Wave Software, Inc.

Eval Breakpoints in UI

188

48

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Barriers

• Control where they are planted, defaults to

the Share Group

• Uses the SHARE_ACTION_POINT variable, true plants

in the Share Group, false plants in the focus process

only

• Control what is stopped by hitting the

breakpoint, the group, the process, or just the

thread

• Uses the BARRIER_STOP_ALL variable set to: group,

process, or none

• Use –stop_when_hit flag in CLI to override default

189
©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Barriers

• Control what is stopped when the barrier is

satisfied, the group or the process

• Uses the BARRIER_STOP_WHEN_DONE variable set

to: group, process, or none (same as process for a

process barrier)

• Use –stop_when_done flag in CLI to override default

190

©Copyright 2012 Rogue Wave Software, Inc.

Barriers Satisfaction Group in UI

191
©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Barriers – Satisfaction Group

• Satisfaction Group determines how many

times barrier needs to be reached before it is

satisfied and can release all threads that have

reached it.

• In the UI, you can select from Control group, Process,

or Workers

• If you have created custom groups, they should also

appear in the drop down list in the UI

• CLI uses the intersection of the current focus and the

share group to determine the satisfaction group

• BE SURE YOUR ENTIRE SATISFACTION GROUP

CAN REACH THE BARRIER OR YOU CAN BE

DEADLOCKED

• Barriers can also create deadlocks if a thread held by

the barrier is holding a lock or another thread is

dependent‏on‏a‏held‏thread’s‏output,‏etc.
192

49

©Copyright 2012 Rogue Wave Software, Inc.

Barriers – Select Satisfaction Group UI

193
©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Asynchronous Controls

• Once things are stopped, now what?

• CLI commands operate on the current focus,

so you can step, next, go, etc. based on your

focus of a group, process, or thread

• UI has separate menus for Group, Process,

and Thread control

194

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Asynchronous Controls

• UI also has a drop down list control to control

what the buttons will affect

195
©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Holds

• Group, Process, Thread can all be held

• Anything that is held won’t run or step again

until it is unheld

• Hold status is indicated in dstatus, in the

Process Window, and also under the toolbar

in the UI

• Hold status also applies to anything that is

held at a barrier prior to the satisfaction group

completing the barrier

196

50

©Copyright 2012 Rogue Wave Software, Inc.

Holds

197
©Copyright 2012 Rogue Wave Software, Inc.

Holds - CLI

198

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Holds

• When something is held, you must “un-hold”

it

• Set focus to the held thread/process, then

release the hold

199
©Copyright 2012 Rogue Wave Software, Inc.

Holds - releasing

200

51

©Copyright 2012 Rogue Wave Software, Inc.

LAB 9: ASYNCHRONOUS CONTROL

201
©Copyright 2012 Rogue Wave Software, Inc.

TYPE TRANSFORMATIONS

202

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

Why Type Transformations?

• Debugger shows only what is in the

immediate class, including unexpanded base

classes

• Dive into base classes, but have to do it for

each object

• Types aren’t always obvious

• Abstract base class pointers may be common, would

like to automate downcasting

• Sometimes class data is unimportant to

debugging and only serves to clutter the

screen

• Internal data storage may be abstracted or

difficult to interpret in its raw form

203
©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

TotalView Type Transformations

• Allow programmers to write their own

functions to interpret the data

• Display base class members as if they are

members of the derived class

• Choose not to display some data members

• Interpret data at runtime to display it in a

more readable fashion

• Functions can be written in TCL using TTF or

in C++ using C++ Views

204

52

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

TotalView TTF

205

In $HOME/.tvdrc:

::TV::TTF::RTF::build_struct_transform {

 name {^class|struct x1$}

 members {

 { pmonth { month } }

 { pName { xbase upcast { * pName } } }

 { pStreet { xbase upcast { * pStreet } } }

 { pVoid1 { "$string *" cast v } }

 { pVoid2 { * { "class x2 *" cast q } } }

 }

}

 Meta Language:

{member}

{* expr}

{expr . Expr}

{expr -> expr}

{datatype case expr}

{baseclass upcast expr}
©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

C++ Views

• Implement the display function for any type

you want to use

int ::TV_ttf_display_type(const display_type_t *object);

or as a static member of the class

class display_type_t {

 //…

 static int TV_ttf_display_type(const display_type_t *object);

}

• Precedence for the functions

1. Class-qualified static function matching the type

2. Global function at file scope matching the type

3. Global function matching the type

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

C++ Views

• How do I implement the display function?

1. #include tv_data_display.h from $TOTALVIEW/include

2. Make calls to display data using:

int TV_ttf_add_row(const char *field_name, const char

*type_name, const void *address);

3. Call once for each piece of data to be displayed

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

C++ Views

• Be sure to check return value for calls to add

row

• It returns one of these values:

• TV_ttf_ec_ok: Success

• TV_ttf_ec_not_active: TV_add_row was called outside of a

valid calling context

• TV_ttf_ec_invalid_characters: The field or type name

contains invalid characters, such as newline or tab

• TV_ttf_ec_buffer_exhausted: TV_add_row has been called

too many times, filling up the buffer. Generated types cannot

be unlimited in length. For arrays, consider returning array

type with a dynamic length, rather than iterating over all of

its members. For non-arrays, the display will need to be

truncated.

53

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

C++ Views

• After displaying your chosen data in your chosen

fashion, return the appropriate code:

• TV_ttf_format_ok: successful, show what was sent by this function

• TV_ttf_format_ok_elide: ok, but elide type, used to keep display

smaller

• TV_ttf_format_failed: failure on known type

• TV_ttf_format_raw:‏display‏the‏data‏in‏TotalView’s‏default‏fashion

• TV_ttf_format_never:‏same‏as‏raw,‏but‏don’t‏ever‏call‏this‏function‏

again

• When building, link to tv_data_display.o

• Source file tv_data_display.c is in $TOTALVIEW/src

• Optionally build it into its own library

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

C++ Views

Example 1 header

struct Point { int importantValueX;

 int importantValueY;

 float meaninglessInternal;};

struct Circle{ Point pos; //poorly named center

 int r; //poorly named radius};

struct Square{ Point pos; //poorly named bottom

 left position

 int w; //poorly named width};

struct Rectangle : public Square { int h; //poorly

named height};

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

TTF Example

::TV::TTF::RTF::build_struct_transform {

 name {^class|struct Circle$}

 members {

 { centerX { pos . importantValueX } }

 { centerY { pos . importantValueY } }

 { radius { r } }

 }

}

211
©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

TTF Example continued

::TV::TTF::RTF::build_struct_transform {

 name {^class|struct Square$}

 members {

 { centerX { pos . importantValueX } }

 { centerY { pos . importantValueY } }

 { sideLength { w } }

 }

}

212

54

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

TTF Example continued

::TV::TTF::RTF::build_struct_transform {

 name {^class|struct Rectangle$}

 members {

 { centerX { Square upcast { pos .

importantValueX } } }

 { centerY { Square upcast { pos .

importantValueY } } }

 { width { Square upcast { w } } }

 { height { h } }

 }

}

213
©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

C++ Views

Example 1 Transform …

#include <tv_data_display.h>

int TV_ttf_display_type(const Circle* c){

 int retVal = TV_ttf_add_row("centerX“, "int",

&(c->pos.importantValueX));

 if(TV_ttf_ec_ok == retVal)

 retVal = TV_ttf_add_row("centerY", "int",

&(c->pos.importantValueY));

 if(TV_ttf_ec_ok == retVal)

 retVal = TV_ttf_add_row("radius", int", &(c-

>r));

 if(TV_ttf_ec_ok == retVal)

 return TV_ttf_format_ok;

 return TV_ttf_format_failed;

}

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

C++ Views

Example 1 Transform …

int TV_ttf_display_type(const Square* s){

 int retVal = TV_ttf_add_row("centerX", "int",

&(s->pos.importantValueX));

 if(TV_ttf_ec_ok == retVal)

 retVal = TV_ttf_add_row("centerY", "int",

&(s->pos.importantValueY));

 if(TV_ttf_ec_ok == retVal)

 retVal = TV_ttf_add_row("side length", "int",

&(s->w));

 if(TV_ttf_ec_ok == retVal)

 return TV_ttf_format_ok_elide;

 return TV_ttf_format_failed;

}

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

C++ Views

Example 1 Transform continued

int TV_ttf_display_type(const Rectangle* r){

 int retVal = TV_ttf_add_row("centerX", "int", &(r-

>pos.importantValueX));

 if(TV_ttf_ec_ok == retVal)

 retVal = TV_ttf_add_row("centerY", "int", &(r-

>pos.importantValueY));

 if(TV_ttf_ec_ok == retVal)

 retVal = TV_ttf_add_row("width", "int", &(r->w));

 if(TV_ttf_ec_ok == retVal)

 retVal = TV_ttf_add_row("height", "int", &(r-

>h));

 if(TV_ttf_ec_ok == retVal)

 return TV_ttf_format_ok;

 return TV_ttf_format_failed;

}

55

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

C++ Views

Example 2 Header

struct Point {

 int importantValueX;

 int importantValueY;

 float meaninglessInternal;

};

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

C++ Views

Example 2 Header Continued

class Shape {

 public:

 Point getPosition() const;

 void getPosition(const Point& pos) { pos_ = pos; }

 private:

 Point pos_;

 protected:

 bool isClosed_;

 Shape(Point position, int isClosed = true) : pos_(position),

isClosed_(isClosed) { }

 Shape() : isClosed_(true){

 pos_.importantValueX = 0;

 pos_.importantValueY = 0;

 }

 friend int TV_ttf_display_shape(const Shape* s, const char*,

const char*);

};

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

C++ Views

Example 2 Header continued

class Circle : public Shape {

 private:

 int r; //poorly named radius

 public:

 Circle() : Shape(), r(0) { }

 Circle(int radius) : Shape(), r(radius) { }

 Circle(Point center, int radius) :

Shape(center), r(radius) { }

 friend int TV_ttf_display_type(const Circle* c);

};

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

C++ Views

Example 2 Header continued

class Square : public Shape {

 protected:

 int w; //poorly named width

 public:

 Square() : Shape(), w(0) { }

 Square(int width) : Shape(), w(width) { }

 Square(Point lowerLeft, int width) :

Shape(lowerLeft), w(width) { }

 friend int TV_ttf_display_type(const Square* s);

};

56

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

C++ Views

Example 2 header continued.

class Rectangle : public Square {

 private:

 int h; //poorly named height

 public:

 Rectangle() : Square(), h(0) { }

 Rectangle(int width, int height) :

Square(width), h(height) {}

 Rectangle(Point lowerLeft, int width, int

height)

 : Square(lowerLeft, width), h(height) { }

 friend int TV_ttf_display_type(const Rectangle*

s);

};

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

C++ Views

Example 2 Transform
int TV_ttf_display_shape(const Shape* s, const char*

xName, const char* yName){

 int retVal = TV_ttf_add_row(xName, "int", &(s-

>pos_.importantValueX));

 if(TV_ttf_ec_ok == retVal) retVal =

TV_ttf_add_row(yName, "int", &(s-

>pos_.importantValueY));

 return retVal;

}

int TV_ttf_display_type(const Circle* c){

 int retVal = TV_ttf_display_shape((const Shape*)c,

"centerX", "centerY");

 if(TV_ttf_ec_ok == retVal) retVal =

TV_ttf_add_row("radius", "int", &(c->r));

 if(TV_ttf_ec_ok == retVal) return TV_ttf_format_ok;

 return TV_ttf_format_failed;

}

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

C++ Views

Example 2 Transform
int TV_ttf_display_type(const Square* s){

 int retVal = TV_ttf_display_shape((const Shape*)s,

"lowerLeftX", "lowerLeftY");

 if(TV_ttf_ec_ok == retVal) retVal =

TV_ttf_add_row("side length", "int", &(s->w));

 if(TV_ttf_ec_ok == retVal) return TV_ttf_format_ok;

 return TV_ttf_format_failed;

}

int TV_ttf_display_type(const Rectangle* r){

 int retVal = TV_ttf_display_shape((const Shape*)r,

"lowerLeftX", "lowerLeftY");

 if(TV_ttf_format_ok == retVal) retVal =

TV_ttf_add_row("width", "int", &(r->w));

 if(TV_ttf_format_ok == retVal) retVal =

TV_ttf_add_row("height", "int", &(r->h));

 if(TV_ttf_ec_ok == retVal) return TV_ttf_format_ok;

 return TV_ttf_format_failed;

} ©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

C++ Views

Example “Complex” header
class Shape {

 // See previous definition

protected:

 // Also see previous definition, only new item is

here

friend int TV_ttf_display_shape(const Shape* s,

const char*, const char*);

};

57

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

C++ Views

Example “Complex” header cont’d

class FreeFormShape : public Shape {

 private:

 std::vector<Point> ptArray_;

 public:

 FreeFormShape() : Shape() { }

 FreeFormShape(const std::vector<Point>& points,

bool closedShape)

 : Shape(points[0], closedShape),

ptArray_(points) { }

 virtual ~FreeFormShape() {}

 friend int TV_ttf_display_type(const

FreeFormShape* c);

};

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

C++ Views

Example “Complex” header cont’d

class Circle : public Shape {

 private:

 int r; //poorly named radius

 public:

 Circle() : Shape(), r(0) { }

 Circle(int radius) : Shape(), r(radius) { }

 Circle(Point center, int radius) :

Shape(center), r(radius) { }

 virtual ~Circle() {}

 friend int TV_ttf_display_circle(const Circle*

c);

 friend int TV_ttf_display_type(const Circle* c);

};

// Square and Rectangle are unchanged

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

C++ Views

Example “Complex” Transform

#include "complex.h"

#include <tv_data_display.h>

#include <typeinfo>

int TV_ttf_display_shape(const Shape* s, const

char* xName, const char* yName){

 int retVal = TV_ttf_add_row(xName, "int", &(s-

>pos_.importantValueX));

 if(TV_ttf_ec_ok == retVal) retVal =

TV_ttf_add_row(yName, "int", &(s-

>pos_.importantValueY));

 return retVal;

}

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

C++ Views

Example “Complex” Transform

int TV_ttf_display_circle(const Circle* c){

 int retVal = TV_ttf_display_shape((const

Shape*)c, "centerX", "centerY");

 if(TV_ttf_ec_ok == retVal) retVal =

TV_ttf_add_row("radius", "int", &(c->r));

 return retVal;

}

int TV_ttf_display_type(const Circle* c){

 int retVal = TV_ttf_display_circle(c);

 if(TV_ttf_ec_ok == retVal) return

TV_ttf_format_ok;

 return TV_ttf_format_failed;

}

58

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

C++ Views

Example “Complex” Transform continued

int TV_ttf_display_type(const Square* s){

 int retVal = TV_ttf_display_shape((const

Shape*)s, "lowerLeftX", "lowerLeftY");

 if(TV_ttf_ec_ok == retVal) retVal =

TV_ttf_add_row("side length", "int", &(s->w));

 if(TV_ttf_ec_ok == retVal) return

TV_ttf_format_ok;

 return TV_ttf_format_failed;

}

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

C++ Views

Example “Complex” Transform continued

int TV_ttf_display_type(const Rectangle* r){ int

retVal = TV_ttf_display_shape((const Shape*)r,

"lowerLeftX", "lowerLeftY");

 if(TV_ttf_format_ok == retVal) retVal =

TV_ttf_add_row("width", "int", &(r->w));

 if(TV_ttf_format_ok == retVal) retVal =

TV_ttf_add_row("height", "int", &(r->h));

 if(TV_ttf_ec_ok == retVal) return

TV_ttf_format_ok;

 return TV_ttf_format_failed;

}

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

C++ Views

Example “Complex” Transform continued

int TV_ttf_display_type(const FreeFormShape* f){

 int retVal = TV_ttf_add_row("closedShape",

"bool", &(f->isClosed_));

 char type[32];

 sprintf(type, "Point[%ld]", (long) f-

>ptArray_.size());

 if(TV_ttf_format_ok == retVal) retVal =

TV_ttf_add_row("points", type, &(f-

>ptArray_.front()));

 if(TV_ttf_format_ok == retVal) return

TV_ttf_format_ok;

 return TV_ttf_format_failed;

}

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

C++ Views

Example “Complex” Transform continued
int TV_ttf_display_type(const Shape* s){

 char buf[64];

 snprintf(buf, 64, "Shape");

 int retVal = TV_ttf_ec_ok;

 if(typeid(*s) == typeid(Circle)) {

 snprintf(buf, 64, "Circle");

 retVal = TV_ttf_display_circle((const

Circle*)s);

 }

 if(typeid(*s) == typeid(Square)) {

 snprintf(buf, 64, "Square");

 retVal = TV_ttf_add_row("type", "Square", s);

 }

59

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

C++ Views

Example “Complex” Transform continued
int TV_ttf_display_type(const Shape* s){

…

 if(typeid(*s) == typeid(Rectangle)) {

 snprintf(buf, 64, "Rectangle");

 retVal = TV_ttf_add_row("type", "Rectangle",

s);

 if(TV_ttf_ec_ok == retVal)

 return TV_ttf_format_ok_elide;

 }

 if(typeid(*s) == typeid(FreeFormShape)) {

 snprintf(buf, 64, "FreeFormShape");

 retVal = TV_ttf_display_type((const

FreeFormShape*)s);

 }

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

C++ Views

Example “Complex” Transform continued
int TV_ttf_display_type(const Shape* s){

…

if(TV_ttf_ec_ok == retVal) retVal =

TV_ttf_add_row(buf, TV_ttf_type_ascii_string,

"type");

 if(TV_ttf_ec_ok == retVal) return

TV_ttf_format_ok;

 return TV_ttf_format_ok;

}

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

C++ Views - caveats

• The data pointer passed to add row must remain in

scope beyond the display function

• Don’t do any data allocation in display function

• Objects passed in may not be valid objects, be careful

• Break point during constructor or destructor, only

partially valid

• Dangling pointer

• Break before a constructor

• Beware of threading issues

• Locks may already be acquired

• Shared data may change if not locked

• Not all threads are guaranteed to always be stopped

©Copyright 2012 Rogue Wave Software, Inc.

SUPPORT AND

QUESTIONS

236

60

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

TotalView Customer Support

• Email: tvsupport@roguewave.com

• Use our web site for documentation, demos,

FAQs and to contact support

237
©Copyright 2012 Rogue Wave Software, Inc.

TotalView Customer Support

238

http://www.roguewave.com

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

TotalView Customer Support

239
©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

TotalView Documentation

240

240

mailto:tvsupport@roguewave.com

61

©Copyright 2012 Rogue Wave Software, Inc. ©Copyright 2012 Rogue Wave Software, Inc.

TotalView Documentation

241
©Copyright 2012 Rogue Wave Software, Inc.

Thanks!

242

QUESTIONS?

