PvD Coding Guidelines

1. Identify modules and types with appropriate naming.

2. Use free format.
3. Start in column 1. [GFS excepted.]
4. Indent, but never with tabs.

5. Name end statements fully, e.g. “end subroutine gbphys”.
6. Use docblocks and keep them up to date.

7. Use meaningful names for variables.

8. Declare reals with kind attribute.

9. Declare intent for dummy arguments.

10. Declare dimension attribute for arrays.

11. Use the only feature for modules.

12. Use implicit none.

13. In modules, default to private and explicitly declare public.

14. Allocate all passed pointers.

15. Put all functions and subroutines in modules.

16. Name control constructs if long or nested or if they have cycle or exit.
17. Use cycle or exit rather than goto.

18. Use relational symbols such as >= rather than .ge..

19. Use select case rather than if, where possible.

20. Use real constants only in declarations.

21. Initialize pointers to null.

22. Use generic instrinsics such as cos and log rather than dcos and alog.

23. Avoid tabs, user’s initials in comments, numbered do-loops, goto, and common. 
GFS Coding Guidelines
1. Keep it simple.

2. Use lower case.

3. Make the compute-intensive routines as basic Fortran as possible. Using abstractions such as types in lower-level routines can reduce efficiency.
4. Make compute-intensive routines thread-safe; non-thread-safe pieces such as initialization should be made into a separate call.

5. In higher-level routines, moderately use modules to set apart related data and procedures and moderately use types to abstract data. Nesting modules and types can reduce efficiency.
6. Use loops rather than array syntax.

7. Use .f suffix for fixed format and use .f90 suffix for free format. Use .F and .F90 if cpp is required.
8. Limit line length of free format to 80 columns so Moorthi’s xterm doesn’t wrap (and to make printing and side-by-side differencing easier).
9. Make variables long enough so they are easily searchable, but don’t make them so long they don’t fit on the page well.
10. Use pointers sparingly. Pointers are useful to reduce memory and copying but impede debugging. Having a copy option for debugging may be useful.

