2.  Basic concept of OSSEs (Schlatter)

2.1.
A realistic nature run (NR)
NR is a long, uninterrupted forecast by a model whose statistical behavior matches that of the real atmosphere.  The ideal NR would be a coupled atmosphere-ocean-cryosphere model with a fully interactive lower boundary.  Meteorological science is approaching this ideal but has not yet reached it.  For example, it is still customary to supply the lower boundary conditions (SST and ice cover) appropriate for the span of time being simulated.

The advantage of a long, free-running forecast is that the simulated atmospheric system evolves continuously in a dynamically consistent way.  One can extract atmospheric states at any time.  Because the real atmosphere is a chaotic system governed mainly by conditions at its lower boundary, it does not matter that NR diverges from the real atmosphere a few weeks after the simulation begins provided that the climatological statistics of the simulation match those of the real atmosphere.  NR should be a separate universe, ultimately independent from but parallel to the real atmosphere.

One of the challenges of an OSSE is to demonstrate that  NR does have the same statistical behavior as the real atmosphere in every aspect relevant to the observing system under scrutiny.  For example, an OSSE for a wind-finding lidar aboard a satellite requires NR  with a realistic cloud climatology because lidars operate at wavelengths for which thick clouds are opaque.  The cloud distribution thus determines the location and number of observations.

NR is central to an OSSE.  It defines the true atmospheric state against which forecasts using simulated observations will be evaluated.  This concept deserves more explanation.  In 1986, Andrew Lorenc suggested a definition of “truth”: the projection of the true state of the atmosphere onto the model basis.  As an example, if a spectral model produces NR, the true atmospheric state might be represented by T511 spectral coefficients on 91 levels.  Atmospheric features too small to be captured by this model resolution are not incorporated in this truth.  

NR is also the source of simulated observations.  For each observing system, existing or future, a set of realistic observing times and locations is developed, along with a list of observed parameters.   An interpolation algorithm looks at the accumulated output of NR, goes to the proper time and location, and then extracts the value of the observed parameter.  If NR did not explicitly predict the observed parameter, the parameter is estimated from related variables that the model does predict.  Because observations extracted from NR are unrealistically accurate compared with NR itself, various errors must be added.  

Some have suggested that a succession of atmospheric analyses could substitute for NR.  A succession of analyses is a collection of snapshots of the real atmosphere.  Though (in the case of four-dimensional variational assimilation) the analyses may each be a realizable model state, they all lie on different model trajectories.  Each analysis marks a discontinuity in model trajectory.  Considering a succession of analyses as truth seems to be a serious compromise in the attempt to conduct a “clean” experiment.  For most applications, NR is to be preferred to a succession of analyses.
What statistical measures show that NR sufficiently replicates the true atmosphere?  The nature of observing systems to be tested in the OSSE partially dictates the answer.  For example, an OSSE for a satellite-borne, wind-finding lidar requires accurate cloud climatology in NR.  

2.2.
Accurate forward models for simulating observations from NR
The forward model computes the observed quantity at the appropriate time and space coordinates from information carried in NR.  It is the algorithm, mentioned earlier, for extracting simulated observations from NR.
The forward model includes, as a minimum, time interpolation between NR output times, plus space interpolation if a model grid is used instead of spherical harmonic coefficients.  

If the observed quantity is not carried explicitly in the model as a prognostic or diagnostic variable, the forward model becomes more complicated.  The observed quantity must then be estimated from the available model variables.  An example is an observed radiance which must be calculated from model profiles of temperature and humidity using the principles of radiative transfer.

Forward models can be complex.  Forward models used in the OSSEs should be accurate, their behavior well understood from repeated monitoring of obs-minus-background differences.  Forward models should be well documented by their authors.

All observing systems that have any bearing on forecast accuracy must be simulated, at least the operational ones.  Some would argue that any future observing system likely to be deployed should also be simulated along with the specific one being evaluated, but this is probably asking too much.  The goal is to find how the proposed observing system will “play” with all the others in the operational mix.  Unless this goal is faithfully pursued, the impact of the proposed system will be exaggerated.

2.3.
Assignment of realistic observation errors 


The observation:
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y is the observed value, measured by some instrument.  The subscript t refers to the true atmospheric value.  We define the true value as the weighted average of the true atmospheric values within the volume sampled by the instrument.  Petersen (1968) defined the “true” observation in this way, but quantitatively by means of an integral.  Different instruments sample different volumes so that the true value of temperature appropriate for a rawinsonde may not match the true value appropriate for the AMDAR system aboard a commercial jet, even if the two observations are assigned to the same location and time.  Thus, the observed “truth” is very much scale-dependent, but defining it in this way saves a lot of anguish later.  

εm refers to errors incurred during measurement or subsequent data processing.  The errors can be random or systematic (biased).

The model state:
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The model state is defined by a set of parameters stored at the points of a model grid, or, alternatively, by a set of spectral coefficients.  As noted above, we follow Lorenc (1986), in defining the true model state xt as the true atmospheric state containing all scales from long waves down to cloud microphysics, but spectrally truncated to the model resolution.  Scales of motion that cannot be captured by the model grid (or within the spectral truncation) are not included in the definition of the true state. The numerical model forecasts the state x, but the forecast is subject to error εf , the result of truncation associated with finite differencing, imperfect dynamics, and flawed recipes for physical processes, whether parameterized or not.

The forward model:

H(x)

Forecasts are usually verified against observations (sometimes against an analysis).  Because observations hardly ever fall on model grid points, it is necessary to map the model forecast to the observation in order to make a direct comparison.  The forward model H does this.  Another name for H is observation operator because H operates on the model grid to generate a pseudo-observation, a best estimate of the observed value.  It relies on the parameters computed by the model on the model grid in order to make a best estimate of the observed value.  Sometimes the calculation is as simple as 3-D linear interpolation, but if the observed quantity does not match one of the predicted quantities, then H will also involve a transformation of variables.  For example, the model may predict relative humidity, but the observed quantity is column integrated water vapor.  In this case, in addition to interpolation, the forward model has to convert the predicted relative humidity and temperature to a specific humidity and integrate specific humidity vertically from the surface to the top of the model atmosphere.  

Representativeness: 
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This says that if we apply the forward model to the true values on the model grid, we will obtain the true observed value at the observation location plus an error εr, called the representativeness error.  This error has two causes: 1) The model grid volume does not match the atmospheric volume that is the object of measurement.  If the observed volume is small compared to the model grid volume, the measurement will represent scales of motion that the model grid cannot resolve.  From the model’s standpoint, the observation contains sub-grid scale noise, and this will contribute to the value of εr.  If the observed volume is larger than the model grid volume (e.g., a measurement of radiance in the microwave portion of the electromagnetic spectrum could involve a volume of atmosphere larger than the model grid volume), then the forward model will be an averaging operator rather than an interpolation operator.  From the model’s standpoint, the observation is too smooth.  2) If a transformation of variables is included in H, the relationship is imperfectly known or it is approximated in order to minimize the number of computations.  This also contributes to the value of εr.  To summarize, representativeness error arises from the mismatch between the model grid volume and the volume sampled by the instrument and sometimes also between a mismatch between the observed and predicted variables.

Application to OSSEs:

In practice, real observations come with only an instrument error; they are inherently representative of the volume of atmosphere sampled.  The representativeness error arises from the forward operator and has the two components mentioned above.  We account for instrument error and, if we are rigorous, also for the representativeness error, when we specify the observation error covariance in the penalty function that is part of variational analysis.  In practice, we compute
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 for linear H.  If H just involves interpolation, then 
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 where the ^ indicates an interpolated value.

In an OSSE, one uses a forward model to generate an observation.  After the forward model is applied to the gridpoint values of the nature run, we have an “observation” that contains representativeness error (precisely as defined above) but no instrument error. 
Thus, one should add an appropriate instrument error to this quantity to improve realism.  

The finer the resolution of the nature run and the more accurate the forward model, the smaller the respresentativeness error will be.  Ideally, one should use the most sophisticated forward model available in generating observations from the nature run, and a different operational forward model in the assimilation phase of the OSSE.

If the assimilating model, operates on the same grid as the nature run model and uses the same observation operator H as used to generate the simulated observation, the representativeness error arising from the nature run will match that arising from the assimilating model, and when y-H(x) is calculated, the two will cancel.  In other words, 
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In the result, 
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 the representativeness error has disappeared.

In this case, it is necessary to add a separate random representativeness error to the simulated observation before it is assimilated.
Both instrument and representativeness errors must be accounted for in the observation error covariance matrix used during the assimilation.
One way to ensure that measurement errors, representativeness errors, and forecast (background) errors are all properly specified is to compare the statistical properties of y-H(x) of the OSSE with those of real world assimilation for each observing system.  They should match.
2.4.  Calibration of the OSSE

The most common way of calibrating an OSSE is to find out whether the assimilation of a specific type of observation has the same statistical effect on a forecast in simulation as it does in the real world.  For example, if automated aircraft reports are withheld from an operational data assimilation system, will the statistical measures of forecast degradation be the same as they would be in a system where all observation types are simulated and NR provides truth?


Extensive calibration is more convincing than token calibration, but calibration is labor intensive.  Each assimilating model must be separately calibrated.  For example, the calibration results for NCEP’s GFS model might differ from those of the Navy’s NOGAPS model.


It is taken for granted that the assimilating model is different from the model that produced NR.  If the model from which hypothetical observations are extracted is the same as the assimilating model, the OSSE results are unrealistically optimistic.

2.5.
Evaluation of the OSSE

It is vital to state in advance the main purposes for which the new observing system is intended.  It could range from better prediction of thunderstorm development to better 24-h precipitation amounts to better 5-day forecasts of winds aloft where commercial jets fly.  The phenomena to be predicted and the range of the forecast (6 h, 24 h, 7 days, etc) dictate the metrics used to judge the success (if any) of the new observing system.
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