

Preparation for GOES-R OSSE: ABI Synthetic Radiances

Dr. Fuzhong Weng, Chief Sensor Physics Branch Satellite Meteorology and Climatology Division NOAA/NESDIS/STAR

Presented at OSSE Subgroup Meeting NOAA Science Center, Camp Springs, MD June 22, 2007

Team Members and Responsibility

Name	ORG	Role	Contact
Mark Liu	JCSDA	GOES-R Forward Model	
Ping Yang	Texas A&M	GOES-R Forward Model	
Yong Han and Paul van Deslt	STAR/EMC	Integration of GOES-R components into CRTM	
Allen Huang Team	CIMSS	WRF nature runs and synthetic radiance	
Fred Wu and Changyong Cao	STAR	GOES-R calibration	
Mark DeMaria Team	CIRA	RAMS nature run and RAMDIS assimilation	
Ben Ruston	NRL&JCSDA	GOES-R surface emissivity	
Tong Zhu	JCSDA&STAR	T511 and T799 synthetic radiance	
Min-Jeong Kim	JCSDA&STAR	Cloudy radiance assimilation	

GOES-R Synthetic Radiance Users

• User Community:

- For the development of operational-certified GOES-R product algorithms and processing systems
- the GOES-R Algorithm Working Group (AWG) program requests a high quality of proxy data for algorithm developments, assessment, validation
- GOES-R PDRR contractors
- NOAA Mission Goal supported
 - Weather and Water
 - Climate

GOES-R Proxy Data Management System

STAR Proxy Data Generation Tool

GOES-R Community Radiative Transfer Models

- Fast gas absorption (SARTA)
- Aerosols (GOCART)
- Cloud scattering
- BRDF/emissivity models (Prospect optical model)
- JCSDA Community Radiative Transfer Model (CRTM)
- CIMSS radiative transfer mode
- Spectral response function (SRF) data base
- Mesoscale Simulation Systems (WRF/MM5/RAMS)
 - severe weather
 - lake effect snow
 - hurricanes
 - fire hotspots embedded in severe weather
 - Fire case in the tropics that contains both cloudy and clear regions
- IDL Widget-Based Visualization System
 - display proxy data, including SEVIRI, GOES-E/W, MODIS, ABI, MM5, WRF datasets

Proxy Datasets - Observation

Observation Data							
Dataset	Time coverage	Space coverage	Temporal resolution	Spatial resolution	# of channels	Format	Data Volume
MSG-SEVERI	36 days in 2005	Full disk	15 minutes	1 km/3 km	12	McIDAS	2 TB
GOES-08	365 days in 2001	Full disk	15 minutes	1 km/4 km	5	McIDAS	6.8 TB
GOES-10	365 days in 2001	Full disk	15 minutes	1 km/4 km	5	McIDAS	6.8 TB
GOES08/SURFRAD	365 days in 2001	8 SURFRAD sites	Hourly	1 km/4 km	5	ASCII	113 GB
GOES10/SURFRAD	365 days in 2001	7 SURFRAD sites	Hourly	1 km/4 km	5	ASCII	226 GB
MODIS L1B	3 days in 2005	Globe	Day/Night	1 km	36	HDF	100 GB
ABI_(MODIS)	5 Cases	1000 x 1000 km ²	one time	0.5 / 1 / 2 km	14	NetCDF	647 MB
AERONET/MODIS	2000	ARM site	599 points	n/a	n/a	Excel	620 KB
ABI_EMIS_GOES	Mar-Apr 2003	558-55N, 135W- 15W	2-month averaged	~5 km	10	NetCDF	138 MB
ABI_(SEVIRI)	1-Oct-05	Full disk	15 minutes	1 km/3 km	10	BINARY	31 GB
NAST-I (on demand)	Flight to flight	Regional	One time	2.5 km/FOV	10 ABI	Binary	10 GB

GOES-R ABI Simulations

Simulation Data

Dataset	Time coverage	Space coverage	Temporal resolution	Spatial resolution	# of channels	Format	Data Volume
MM5 Simulation	25-Aug-05	2079 x 1971 km ²	hourly/10-min	3 km	n⁄a	BINARY	2.7 GB
WRF Simulation	25-Jun-03	12640 x 14640 km ²	40 minutes	8 km	n⁄a	NetCDF	43 GB
WRF Hyperspectral radia	25-Jun-03	12640 x 14640 km ²	40 minutes	8 km	n⁄a	NetCDF	100 GB
ABI simulation (WRF)	25-Jun-03	12640 x 14640 km ²	40 minutes	8 km	9 IR	NetCDF	452 MB
RAMS Simulation - Lili	6 hr 10/02/2002	1862 x 1562 km2	5 minutes	2 km	n/a	BINARY	196 GB
ABI simualtion (RAMS)	6 hr 10/02/2002	1862 x 1562 km2	5 minutes	2 km	10 IR	BINARY	41 GB

Visualization

IDL based interactive system can now display proxy data, including SEVIRI, ABI datasets.

SEVIRI 12 Bands

ABI 10 IR Bands Simulated from SEVIRI

GOES-R ABI Simulations using CRTM

CRTM Capability

Significance: CRTM framework is designed to accelerate transition of new radiative transfer science for assimilation of operational and research satellite data in NWP models and to improve the retrieval technology in satellite remote sensing system

Aerosol Models

- **Global Model,** Goddard Chemistry Aerosol Radiation and Transport (GOCART)
 - Dust
 - Sea Salt
 - Organic carbon
 - Black carbon
 - Sulfate
- Regional Model WRF-NMM, Community Multi-scale Air Quality (CMAQ)
 - Sulfate mass
 - Ammonium mass
 - Nitrate mass
 - Organic mass
 - Unspecified anthropogenic mass
 - Elemental carbon mass
 - Marine mass
 - Soil derived mass

Aerosols Scattering Model

- 1. Sulfur: DMS (Dimethyl sulfide), SO2, SO4, MSA (methanesulfonate)
- 2. Carbon: Hydrophobic BC/OC, hydrophilic BC/OC (water-like)
- Dust: 8 bins: 0.1-0.18, 0.18-0.3, 0.3-0.6, 0.6-1, 1.0-1.8, 1.8-3.0, 3.0-6.0, 6.0-10.0 μm
- 4. Sea-salt: 4 bins: 0.1-0.5, 0.5-1.5, 1.5-5.0, 5.-10. μm

Significance: The Goddard Chemistry Aerosol Radiation and Transport (GOCART) model simulates major tropospheric aerosol components, including sulfate, dust, black carbon (BC), organic carbon (OC), and sea-salt aerosols. It is also used by NOAA in its air quality forecast system. The same GOCART aerosol physics implemented into CRTM will attract more users for air quality data assimilation

Aerosols' effect on hirs3_n17

No clouds 0.1 g/m2 OC aerosol at 300 hPa 0.1 g/m2 Dust aerosol at 600 hPa 0.1 g/m2 Dust aerosol at 650 hPa

Aerosol Effect on hirs3_n17

ABI Sensitivity to Aerosol Altitude

Black carbon

Sulfate

BT difference (with – without aerosols)

-1.00 -0.60 -0.20 0.20 0.60 1.00

GOES-R ABI SRF Studies

• ABI SRF will not be known until it's built

- Proxy is imperative in preparation for ABI applications
- Have to build from the "specs" as in PORD shown on the right

Spectral Response Table

Nominal Center Wavelength	T1 (μm)	T2 (µm)	T3 (µm)	T4 (µm)	Nominal 50%			
(µm)					Bandwidth			
Baseline Channels								
0.47	0.02	0.054	0.054	0.07	0.04			
0.64	0.08	0.12	0.135	0.175	0.10			
0.865	0.02	0.053	0.053	0.0683	0.039			
1.378	0.01	0.02	0.0203	0.0263	0.015			
1.61	0.04	0.08	0.081	0.105	0.06			
2.25	0.03	0.0675	0.0675	0.0875	0.05			
3.9	0.1	0.27	0.27	0.35	0.20			
6.185	0.77	0.89	1.1205	1.4525	0.83			
6.95	0.34	0.46	0.54	0.7	0.40			
7.34	0.16	0.24	0.27	0.35	0.20			
8.5	0.34	0.46	0.54	0.7	0.40			
9.61	0.32	0.44	0.513	0.665	0.38			
10.35	0.3	0.675	0.675	0.875	0.50			
11.2	0.6	1.00	1.08	1.4	0.80			
12.3	0.8	1.2	1.35	1.75	1.0			
13.3	0.48	0.72	0.81	1.05	0.6			

(CCR 00092), (CCR 00214)

Spectral Response Function

Relative Difference Using MODIS-Like and Hybrid SRF for ABI

Instantaneous under all weather conditions

Static data base from retrievals

Emissivity/BRDF models

NRL High Resolution Emissivity

CIRA model domain - at 1km resolution estimate for Aug 2006 available though GOES-Proxy Data AWG

NRL Emissivity Data Base

CIMMS model domain 5km resolution estimate May 2003 available though **GOES-Proxy** Data AWG

Delivered emissivities to GOES Proxy Data Team

emissivity for GOES ABI

Interpolated from monthly HIRS-X means

Regression coefficients based on UMd land vegetation classification, soil classification of Reynolds, and ASTER spectral library

for additional information contact: ben.ruston@nrlmry.navy.mil

Vicarious calibration/validation using other high quality databases

NRL BRDF Functions

Gathered MODIS BRDF function parameters 2006 jjj's: 1, 65, 145, 193, 273, 289, 305

compute solar geometry, viewing geometry and relative azimuth

WRF Model Simulation - CIMSS

- WRF model
- GDAS and NOAH outputs
- 24 hour dataset
- 6 Km spatial resolution
- 3100 by 2600 grid points (16 MB/Band)

CIMSS GOES-R Proxy Datasets Utilized by WIND Team

- Winds group used simulated
 hyperspectral TOA radiances and water
 vapor retrievals to generate simulated
 AMVs on constant pressure surfaces
 using a water vapor tracking algorithm
- Datasets have been used primarily for demonstration purposes and for risk reduction (proof of concept)
- Potential targets that have passed preliminary quality control for a single time period are shown in the top panel
- Simulated AMVs are shown in the bottom panel

CIRA Data Sets

Proxy Dataset Archived

Hard disk:

binary RAMS forecast fields (6 hour forecast / 5 minute data) Fortran reader

ReadMe text file

ftp directory: synthetic images of brightness temperature and radiances

NetCDF ASCII

Gif (of McIDAS)

McIDAS area files

Web site:

3 mesoscale study cases (6 hour loops / one image every 5 minutes)

Status: All 3 mesoscale simulations can be viewed at http://rammb.cira.colostate.edu/intranet/GOES-R_IPO/GOESR_IPO_case_study_database.html

Hurricane Lili - 2 Oct 2002

RAMS Simulated GOES-R imagery for wavelength 10.35 μm every 5 minutes over a 6 hour period

20002 AQUA-LIB 31 3 OCT 02276 075500 05862 08816 04.00

Tropical Cyclone Data Set Archive

Lake Effect Snow Event on 12 February 2003

GOES-8 IR Image: 4 km 10.7 μm at 12 Feb 2003 1400 UTC

Synthetic GOES-R Imagery: 2 km at 10.35 μm at 12 Feb 2003 1400 UTC

- GOES-R Algorithm Working Group (AWG) has invested a considerable resource in building GOES-R OSSE infrastrure
- Synthetic radiances have been generated from several mesoscale systems (WRF, RAMS, MM5).
- GOES-R data assimilation components including CRTM, surface emissivity data base have been started
- AWG teams and GOES-R PDRR and PDR contractors have been benefited from uses of simulated radiances and Tools.

GOES-R OSSE Issues

- Special Events: Fire hot spot simulations for example
- Surface Properties: emissivity and BRDF models related to surface physical models (NOAH for example)
- Advanced Simulations of Clouds: better information
 on aerosol and cloud particles
- Instrument Characterization: Spatial (e.g. PSF) and Spectral (e.g. SRF)

Backup Slides: GOES-R ABI Full Disks

• 24 hour dataset

- 6 Km spatial resolution
- 3100 by 2600 grid points (16 MB/Band)

ABI band 1 (0.47 $\mu\text{m})$ reflectance

ABI band 2 (0.64 $\mu\text{m})$ reflectance

ABI band 3 (0.87 $\mu\text{m})$ reflectance

ABI band 4 (1.38 $\mu\text{m})$ reflectance

ABI band 5 (1.61 $\mu\text{m})$ reflectance

ABI band 6 (2.25 $\mu\text{m})$ reflectance

ABI band 7 (3.90 $\mu m)\,$ BT (K) 18:00 utc

ABI band 8 (6.19 $\mu\text{m})$ BT $\,$ (K)

ABI band 9 (6.95 $\mu\text{m})$ BT $\,$ (K)

ABI band 10 (7.34 $\mu\text{m})$ BT $\,$ (K)

ABI band 11 (8.5 $\mu\text{m})$ BT $\,$ (K)

ABI band 12 (9.6 $\mu\text{m})$ BT $\,$ (K)

ABI band 13 (10.4 $\mu\text{m})$ BT $\,$ (K)

ABI band 14 (11.2 $\mu\text{m})$ BT $\,$ (K)

ABI band 15 (12.3 $\mu\text{m})$ BT $\,$ (K)

ABI band 16 (13.1 $\mu\text{m})$ BT $\,$ (K)

ABI band 7 (3.90 $\mu m)\,$ BT (K) 18:00 utc

ABI band 8 (6.19 $\mu\text{m})$ BT $\,$ (K)

ABI band 9 (6.95 $\mu\text{m})$ BT $\,$ (K)

ABI band 10 (7.34 $\mu\text{m})$ BT $\,$ (K)

ABI band 11 (8.5 $\mu\text{m})$ BT $\,$ (K)

ABI band 12 (9.6 $\mu\text{m})$ BT $\,$ (K)

ABI band 13 (10.4 $\mu\text{m})$ BT $\,$ (K)

ABI band 14 (11.2 $\mu\text{m})$ BT $\,$ (K)

ABI band 15 (12.3 $\mu\text{m})$ BT $\,$ (K)

ABI band 16 (13.1 $\mu\text{m})$ BT $\,$ (K)

Full disk 6km Sampling ABI Visible Band Reflectances

ABI IR 6km Sampling Band Brightness Temperatures

