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ABSTRACT

Through the use of observation operators, modern data assimilation systems have the capability to ingest
observations of quantities that are not themselves model variables but are mathematically related to those
variables. An example of this is the so-called line-of-sight (LOS) winds that a spaceborne Doppler wind lidar
(DWL) instrument would provide. The model or data assimilation system ideally would need information about
both components of the horizontal wind vectors, whereas the observations in this case would provide only the
projection of the wind vector onto a given direction. The estimated or analyzed value is then calculated essentially
as a weighted average of the observation itself and the model-simulated value of the observed quantity. To
assess the expected impact of a DWL, it is important to examine the extent to which a meteorological analysis
can be constrained by the LOS winds. The answer to this question depends on the fundamental character of the
atmospheric flow fields that are analyzed, but, just as important, it also depends on the real and assumed error
covariance characteristics of these fields. A single-level wind analysis system designed to explore these issues
has been built at the NASA Data Assimilation Office. In this system, simulated wind observations can be
evaluated in terms of their impact on the analysis quality under various assumptions about their spatial distribution
and error characteristics and about the error covariance of the background fields. The basic design of the system
and experimental results obtained with it are presented. The experiments were designed to illustrate how such
a system may be used in the instrument concept definition phase.

1. Introduction

Despite tremendous progress in numerical weather
prediction (NWP) and analysis systems over the last
several decades, operational weather forecasts still oc-
casionally go seriously wrong. At a workshop sponsored
by the World Meteorological Organization on the impact
of observations on NWP (World Meteorological Or-
ganization 2000), the lack of independent knowledge
about the wind profile in the free troposphere over the
oceans was cited as the single most important cause of
sporadic, abnormally large forecast errors in the North-
ern Hemisphere extratropics.

Whereas radiosondes provide adequate wind profile
observations over the densely populated land area of
the Northern Hemisphere, much of the information
about the wind profile over the oceans comes from the
multivariate assimilations of satellite temperature
soundings (e.g., Lönnberg and Hollingsworth 1986), in
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which temperature observations are used to derive in-
formation about the atmospheric flow under certain as-
sumptions about the nature of the prevailing balance.
An additional important source of information is the set
of wind observations calculated by tracking features in
the cloud and water vapor images obtained by the geo-
stationary satellites (e.g., Velden et al. 1997; Menzel
2001).

However, both of these sources of information are
incomplete. The flow information embedded in the tem-
perature field is indirect, and it is only used correctly
when the balance of the real atmosphere corresponds to
what is assumed in the analysis system. The geosta-
tionary wind data are of a less indirect nature, but for
the current generation of satellites the observations are
intrinsically single-level or vertically averaged winds,
coverage is limited to areas where features can be de-
tected and tracked, the motion of the selected features
may not always correctly reflect the mean flow field in
their area, and the correct assignment of altitude level
to the derived winds remains problematic. Very little
useful information about the flow beyond 608 latitude
in either hemisphere can be obtained from geostationary
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orbit, and current scan practices severely limit the
amount of available information beyond 408S. Note that
assimilation of feature-tracked winds using imagery
from the Moderate-Resolution Imaging Spectroradi-
ometer (MODIS) instrument has shown promising re-
sults in initial tests (e.g., Riishøjgaard and Zhu 2002).

Direct measurement of winds away from the areas of
relatively good radiosonde coverage therefore remains
a high priority for the global observing system. Such
observations are expected to be especially valuable in
situations in which the balance assumptions used for
assimilation of satellite sounding data are invalid and
in regions where the geostationary wind observations
are either poor or missing altogether. A spaceborne
Doppler wind lidar (DWL) is one of the candidate sys-
tems for providing these data. The measurement prin-
ciple is based on the fact that the Doppler shift of the
return from an emitted pulse of monochromatic elec-
tromagnetic radiation can be translated into information
about the radial velocity of the air at the origin of the
return. Only the velocity component aligned with the
lidar beam is measured, and the observations are there-
fore often referred to as line-of-sight (LOS) winds. A
DWL instrument can provide a direct wind measurement
with an accurate height assignment, and it can provide
a relatively uniform horizontal coverage. Several con-
cepts for such wind instruments have been studied in
the past (Emmitt 1987; European Space Agency 1999;
Gentry et al. 1998), and the European Space Agency
has selected the Atmospheric Dynamics Mission (ADM)
as one of its two Earth Explorer Core Missions, for a
projected 2006 launch.

Both the ADM and some of the concepts studied ear-
lier are single-perspective instruments; that is, the ori-
entation of the LOS with respect to the flight direction
of the spacecraft is fixed. The observations therefore
consist of a series of projections of the local horizontal
wind vector onto essentially parallel lines, which elim-
inates the need for a scanning mechanism and simplifies
the instrument design. Because raw LOS winds have
little direct value for the user, the main target application
for these observations is data assimilation for numerical
weather prediction purposes. The underlying assump-
tion is that the data assimilation system will be able to
correctly infer the unobserved wind component orthog-
onal to the instrument LOS from a combination of the
observations themselves, the background field, and the
assumed error statistics of the background field.

The purpose of this article is to examine this as-
sumption, along with a few important trade issues that
need to be addressed in the definition phase for such an
instrument. This examination is done through a series
of analysis experiments based on simulated observations
obtained from simple, idealized random observation
networks. The word analysis is used here in its com-
monly accepted NWP sense to indicate both the process
of blending observational data into a model-estimated
field and the result of such a process. The analysis sys-

tem used for the experiments, although simple, captures
some of the essential features of a full-scale meteoro-
logical analysis system for wind observations. We em-
phasize here that the goal is not to propose an alternative
to the established methodology of observing system
simulation experiments (OSSEs; e.g., Atlas 1997) for
quantifying the expected impact of a new observation
type. Instead, the goal here is to present a simple and
versatile framework in which a much broader range of
issues can be studied than is possible in the more com-
plete but computationally much more expensive OSSE
framework.

Before any experiments can be meaningfully inter-
preted, a metric of success (or information content) for
the different wind observation configurations needs to
be defined. Because the target application for these par-
ticular observations is data assimilation, we have chosen
to use the analysis error variance as the main metric. In
other words, the criterion for success of a given ob-
serving system configuration is the extent to which it
contributes toward producing an analysis with a low
expected error. Issues such as measurement error and
density of horizontal coverage are considered irrelevant
by themselves and are important only insofar as they
contribute to achieving this goal.

In the following section, the experimental setup will
be reviewed. Next, a series of analysis experiments will
be presented. The main issues addressed are 1) the per-
formance of one versus two DWL perspectives, 2) sep-
arate versus spatially collocated dual perspectives, and
3) the dependency of the analysis error on the angle
between the two perspectives. All of these experiments
are carried out with a highly idealized background error
covariance model. Based on a fourth set of experiments,
the implications of using a more realistic error covari-
ance model are discussed. The fifth and final set of
experiments addresses the trade-off between horizontal
coverage/resolution on the one hand and measurement
accuracy on the other.

2. The experimental setup

To explore some of the basic configuration issues for
a spaceborne DWL, a simple analysis system for sim-
ulated wind observations was developed at the National
Aeronautics and Space Administration Data Assimila-
tion Office (DAO). The system takes user-specified
‘‘truth’’ and background states as input, simulates a set
of observations of the true state with the required cov-
erage and error characteristics, and produces a wind
analysis based on the background and the simulated
observations as output.

The analysis equation and the background error co-
variance models are both similar to what is used in the
DAO’s operational Physical-Space Statistical Analysis
System (PSAS; Cohn et al. 1998). The most important
differences with respect to the full data assimilation sys-
tem are that 1) the DWL analysis domain consists of a
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limited area on a single level, 2) only wind observations
are analyzed, and 3) the system does not include a fore-
cast model. The system is easy and inexpensive to set
up and run, and it is therefore very well suited to test
how observations with different coverage and error
characteristics propagate through the analysis equation
and, ultimately, how successful they are in reducing the
analysis error.

As in most modern meteorological analysis systems
(e.g., Lorenc 1986), the analyzed state wa is found by
solving the Kalman filter analysis equation

a b o bw 5 w 1 K(w 2 Hw ). (1)

In this equation, wb is the prior, or background state
(in an operational context generally coming from a
short-range forecast), K is the gain matrix, wo is the
vector of the observations, and H is the observation
operator that translates information from the back-
ground state into a vector of simulated observations.
For n state variables and p observations, both wa and
wb are n vectors, wo is a p vector, and H is a p 3 n
matrix. The optimal gain matrix, in the sense that the
resulting analysis has the smallest expected error, is giv-
en by

T T 21b bK 5 P H (HP H 1 R) , (2)

where Pb is the background error covariance matrix and
R is the observation error covariance matrix. From Eqs.
(1) and (2) it is evident that the analysis depends not
only on the background field and the observations but
also on the assumed error covariance characteristics of
the observations and of the background. In rough terms,
the diagonal elements of the background and observa-
tion error covariance matrices determine the relative
weights assigned to the background and observations in
the analysis, whereas the off-diagonal elements of the
background error covariance matrix in particular define
the impact of the observations on the analysis at the
unobserved locations and on the unobserved variables.

The length of the state vector for a typical global
meteorological forecast model is currently on the order
of 107. The background error covariance matrix Pb nom-
inally contains n2/2, that is, on the order of 1014, ele-
ments. Because there is no known way of reliably spec-
ifying this many independent parameters describing the
error statistics for a given forecast system, this matrix
is normally modeled using crude assumptions. It is im-
portant to keep in mind that any conclusions regarding
the impact of a given type of observation on an analysis
system will depend critically on the assumptions used
in modeling the covariance matrix of that system.

Generally, the univariate background error covariance
between the values of a given state variable at twobPij

different locations with indices i and j is given by
bP 5 s s r ,ij i j ij (3)

where si is the background error standard deviation at
point i, and rij is the background error correlation be-

tween points i and j. In actual implementations, this is
often simplified by assuming, for example, that the fore-
cast error correlations only depend on the distance be-
tween i and j and that the forecast error standard de-
viations are constant on a given vertical level.

Because the wind is a vector quantity rather than a
scalar, the problem of specifying background error co-
variances for winds is slightly more complicated. With-
out regard for the vertical component of the wind, it
involves specifying the covariances for a set of two
scalars as well as the possible cross covariances between
them. The two scalars could be orthogonal wind com-
ponents, or vorticity and divergence, or velocity poten-
tial and streamfunction. However, the actual choice of
scalars and the functional form of the covariance can
both have a profound impact on the quality of the wind
analysis. This is particularly evident in the case of in-
complete observations, such as wind measurements tak-
en along parallel lines of sight. Here, all of the obser-
vational information pertains to one of the two scalars
involved, and any information added to the analyzed
state about the wind component orthogonal to the ob-
served direction, therefore, comes entirely from the as-
sumptions built into the forecast error covariance ma-
trix.

The assumption of nondivergence, which is frequently
used in atmospheric modeling and analysis, can be used
to illustrate this last point. Assume that both the truth
and the background states are nondivergent. Also, the
background error will then be nondivergent. Now, let the
two-dimensional wind field u 5 (u, y) be defined in terms
of a streamfunction c with a known error covariance
matrix through the following relationship:bPc

u 5 k 3 =c, (4)

where k is the unit vector in the vertical direction.
For discretized numerical applications, it is conve-

nient to express this in operator form:

u 5 Ac, (5)

where

 ]c
2 ]y 

A 5 . (6) 
]c 
]x 

Using this operator, the wind error covariance matrix
is easily obtained from the streamfunction error co-bPu

variance:
b TbP 5 APc A ,u (7)

where AT is the transpose of A. The matrix will, inbPu

general, be full; that is, there will be terms in it that
link the error of one wind component to the error of
the other. Thus, even if observations of, say, the u com-
ponent are provided, the analysis system would still
update both the u and y components based on the as-
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FIG. 1. Vector winds plotted for the true state on a 31 3 21 grid
with 100-km grid spacing.

sumption of nondivergence that links the two errors.
One might even expect observations of just a single
wind component to contain enough information to ef-
fectively constrain the analysis in such a case, because
the assumption of nondivergence reduces the number of
degrees of freedom per grid point from two to one.
However, it is easy to see from Eq. (4) that even full
knowledge of one wind component mathematically only
allows determination of the other component to within
a constant of integration. The first set of experiments
discussed in the next section was set up to test whether
this theoretical limitation can be expected to pose real
problems for the single-perspective observations.

3. Experimental results

For the experiments described in this section, the true
state wt is a nondivergent zonal flow with a single eddy,
as shown in Fig. 1. The analysis domain is a rectangular
array of regularly spaced grid points defined at a single
vertical level—31 in the zonal direction by 21 in the
meridional direction. The grid spacing is fixed at 100
km. The extent of the domain is thus 2000 km 3 3000
km, and the dimension of the state vector is 1302 (31
3 21 3 2).

The background state is a zonal flow with a constant
velocity over the domain (not shown), and thus the ex-
periments essentially test the ability of the analysis to
extract correctly the information from the observations
about the presence of a wave in the flow and add it to
the background state. This is equivalent to the early
detection from real observations of a developing wave
that was not present in the short-term forecast, a fre-
quently occurring situation in operational meteorolog-
ical analysis. The rms difference between the true and
background states is 2.4 m s21 in both the zonal and
meridional wind component. Because both the true state
and the background are nondivergent, the background

error will be nondivergent in this framework. Real back-
ground errors, on the other hand, are combinations of
divergent and nondivergent errors, and the relative
amounts in which the two types of errors are present in
a given situation is generally unknown. The controlled
framework of the experiments presented here has the
advantage that the error is known, and the error co-
variance can therefore be specified correctly (i.e., con-
sistent with the actual background error) or incorrectly
(e.g., reflecting typical assumptions made in operational
practice about the nature of the background error) as
desired.

a. One versus two perspectives

In the first series of experiments, the impact on the
analysis of having one versus two perspectives of the
flow at a given location is explored. The observations
consist of samples of the true field at a set of locations
that are randomly scattered over the domain. A simu-
lated observation error in the form of uncorrelated
Gaussian mean-zero noise with a standard deviation of
1.0 m s21 is added to the samples. The number of ob-
servations p is set by the experimenter. For the one-
perspective experiments, the samples are p projections
of the true field onto a randomly oriented line of sight.
For the initial set of two-perspective experiments, the
samples are p/2 projections onto both this and the or-
thogonal direction. The two types of experiments thus
contain the same amount of information, in the sense
that the observational dataset contains the same number
of scalar values. The purpose of the experiments is to
examine whether they also contain the same amount of
information in an analysis error reduction sense.

The background error is assumed to be nondivergent
and the background wind error covariance matrix is
therefore derived from a streamfunction error covari-
ance matrix using Eq. (7). As already mentioned, the
assumption of nondivergence is expected to be useful
for constraining the unobserved wind component or-
thogonal to the LOS. The disadvantage of using this
assumption is that it excludes any potentially important
divergent flows from the analysis. This component of
the flow typically contains smaller scales, and it is dif-
ficult, at best, to diagnose it from the wind observations
that are currently available operationally. Some analysis
systems exclude nondivergent flows from the analysis
increments altogether outside the tropical regions. The
problems that arise from doing this may become more
pronounced as the resolution of the models and, hence,
the analyses progresses to smaller horizontal scales.

We emphasize again that, although the assumption of
nondivergence is correct for this particular experiment,
the amount of nondivergence in any given actual at-
mospheric situation is unknown. The background error
covariance formulation used here, however, allows and,
in fact, requires the user to specify explicitly the relative
amounts of information about the rotational and diver-
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FIG. 2. An example of randomly distributed single LOS
observations of the wind state as shown in Fig. 1.

FIG. 4. Orthogonal LOS observations of the state as shown in Fig. 1.

FIG. 3. Analysis based on the observations shown in Fig. 2. FIG. 5. Analysis based on the observations shown in Fig. 4.

gent components of the flow that should be extracted
from the observations.

In Fig. 2, a random set of single-perspective obser-
vations is shown for p 5 40, and an LOS azimuth angle
of 608. Although the pattern of samples is atypical of
proposed DWL concepts, the random data voids can be
thought of as areas of cloud obscurations.

An analysis obtained from the observations in Fig. 2
is shown in Fig. 3. When comparing Figs. 3 and 1, it
is evident that, despite the highly favorable specification
of the background error, the analysis is only marginally
capable of detecting the presence of the eddy from the
observations. The analyzed structure lacks intensity, and
nonzero y components are evident throughout the me-
ridional range of the plot.

The rms differences for u and y between the true and
analyzed states (Figs. 1 and 3) are 1.3 and 1.7 m s21,
respectively. As one would expect, the error reduction

is largest for the u component because the projection of
this component on the particular LOS shown in Fig. 2
is the larger of the two.

In Fig. 4, a random set of dual-perspective obser-
vations is shown for p 5 40 and LOS azimuth angles
(defined as the positive angle between the local meridian
and the line of sight) of 608 and 1508 (note that p 5 40
translates into 20 complete vector observations). An
analysis obtained from the observations in Fig. 4 is
shown in Fig. 5. The analysis is based on the same
background wind error covariance formulation as the
one used for the single-perspective analysis in Fig. 3.
It is clear that the dual-perspective analysis is superior
to the single-perspective analysis for the flow config-
uration and the parameters shown here. The analyzed
eddy has the correct location and horizontal extent, with
the main shortcoming being a lack in intensity. The rms
analysis error with respect to the background field is
now 0.8 and 1.3 m s21 for u and y, respectively, which
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FIG. 6. Analysis errors for u and y for one and two perspectives vs the number of observations
p. The solid lines show the mean error over 15 independent experiments for each value of p, and
the error bars show the standard deviation of the errors. Note that, although the number of LOS
(number of observations) is the same for one vs two perspectives, the number of sounding locations
for the two-perspective case is one-half of that for the one-perspective case. The dashed line at
2.4 m s21 denotes the rms variability in the true wind field (Fig. 1); the dashed line at 1 m s21

denotes the random error in the wind component observations.

again indicates a substantial improvement over what
was seen in the single-perspective analysis.

To examine the difference between the one-versus
two-perspective analyses more extensively, a series of
experiments similar to the ones just described was car-
ried out with values of p ranging from 10 to 320. For
each value of p, 15 single-perspective and 15 dual-per-
spective experiments were carried out to generate rea-
sonably robust statistics. In each individual single-per-
spective experiment, the azimuth LOS angle was ran-
domly selected between 08 and 1808. The purpose of
this approach was to obtain a representative sample of
experimental results irrespective of any preferential di-
rection present in the truth and/or background states.

In Fig. 6, the mean and standard deviations of the
rms analysis errors for u and y are shown for both single-
and dual-perspective experiments as functions of p.
Again, it is clear that the analyses based on dual-per-
spective observations are superior to the ones based on
the single LOS winds. The difference between the two
increases with p, indicating that true vector information
gets increasingly important at smaller scales, whereas
the impact of the scalar single-perspective observations
saturates at a relatively coarse resolution (low number)
of observations. The analysis error of the dual-perspec-
tive experiments is also more robust: lower error bars
in the plot indicate relatively uniform analysis errors

over the 15 experiment samples. This result is probably
mostly due to the fact that the impact of the single LOS
observations on a given wind component is sensitive to
the alignment between the individual LOS and that com-
ponent.

Note that the analysis error for the dual-perspective
experiments saturates at around 0.25 m s21, well below
both observation and background errors. This result is
consistent with what one would expect from estimation
theory, assuming that the error covariances are correctly
specified. The analysis error for the single-perspective
experiments, on the other hand, saturates at levels that
are 3–4 times as large. This supports the notion dis-
cussed in the previous section that even the simple non-
divergent flow configuration tested here cannot be fully
determined from observations along a single direction,
even though it only contains one degree of freedom per
grid point.

b. Coincident versus separately located dual-
perspective observations

In the previous section it was shown that dual-per-
spective observations are much more useful than single-
perspective observations for reducing the analysis error
in the simple test case explored here. One of the issues
that would need to be addressed before one can specify
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FIG. 7. An example of orthogonal LOS observations at separate
horizontal locations of the state shown in Fig. 1.

FIG. 8. Mean analysis errors with error bars, similar to Fig. 6, but for two orthogonal
perspectives obtained at either separate or coincident locations.

the user requirements for dual-perspective observations
is the level of spatial and temporal coincidence that
would be required between the two perspectives. It is
likely that a somewhat relaxed requirement on this will
provide added degrees of freedom in the design and/or
the operations phase of a given instrument. We do not
explore here the issue of temporal coincidence beyond
simply noting that if the two perspectives of a given
atmospheric situation are obtained during one overflight
(same orbit), the time difference between them would
at most be on the order of minutes. This is insignificant

when compared with the temporal resolution of the anal-
yses and of the rest of the observing system.

To test the performance of observations in the limit
of an extremely low degree of spatial coincidence, a
series of experiments was carried out with observations
taken along two orthogonal directions but at random,
separate locations. The overall flow is thus sampled
along two independent directions, but any individual
location is likely to be sampled along just one of these
directions. An example of such observations for p 5
40 is shown in Fig. 7.

Again, the total number of observations p was al-
lowed to vary, and, for each p, 15 individual experi-
ments were carried out. The resulting analysis errors
with uncertainty estimates are shown in Fig. 8 as func-
tions of p (see Fig. 6 caption). Even though the collo-
cated-perspectives experiments tend to outperform the
separate-perspectives experiments in the middle range
of p values, the two sets of curves are much closer
together for all values of p than is seen in Fig. 6. The
two sets of experiments are similar also in their level
of consistency over the 15 experiment samples (roughly
similar error bars). Overall, the results indicate that,
from an analysis point of view, getting independent in-
formation about the two wind components is of para-
mount importance, whereas it seems to be considerably
less important that these two pieces of information be
obtained at the exact same geographical locations. In
particular, we note that, for the single-perspective ob-
servations, the analysis error saturates at the 0.7 m s21

level (Fig. 6), with no apparent benefit to be expected
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FIG. 9. Mean u and y analysis errors with error bars for dual-perspective observations, p 5 50,
as a function of the angle between the two wind observations.

from increasing the number of observations beyond the
maximum value of 320. In the dual-perspective, separate
location experiments shown in Fig. 8, the mean analysis
error has fallen well below 0.7 m s21 already at p 5
80 (40 observation pairs).

c. Angle between perspectives

The experiments described thus far were all based on
either orthogonal or parallel perspectives. The evidence
is that there are substantial benefits to be harvested from
obtaining orthogonal perspectives. Some proposed in-
strument configurations fall in between these two ex-
tremes in providing two perspectives along intersecting
but nonorthogonal lines of sight. It is, therefore, of in-
terest to study also the impact of dual-perspective ob-
servations as a function of the angle between the lines
of sight.

In Fig. 9, the mean analysis error and uncertainty are
shown for a series of experiments in which the angle a
between the two lines of sight was varied from 08 to
908. The total number of observations was held fixed
at p 5 50 for these experiments. For each value of a,
15 experiments were run, and the overall orientation in
space of the two LOS was selected randomly for each
experiment in order to generate reliable statistics for
both wind components. It is seen that the analysis skill
improves dramatically when a increases from 08 to 308.
From 308 to 608 there is a modest improvement, and
beyond 608 the analysis error is nearly constant.

d. Impact of the covariance model

As already mentioned, both the truth and background
fields used in our experiments are nondivergent. All
experiments discussed so far in the paper have been
based on a forecast error covariance model that assumes
nondivergence of the error. This ensures that the analysis
increment, and therefore the analysis itself, will be non-
divergent. For real applications, one would typically
assume a mix of divergent and nondivergent errors, and
at any given location the real error is likely to be of a
different composition than the average mix of the two
that is assumed in the covariance model. It is, therefore,
of interest to see how the conclusions presented so far
would be affected by using a more realistic background
error covariance model.

To test this question, a series of experiments was
carried out using the same nondivergent truth and back-
ground states as for the previous experiments but a back-
ground error covariance that assumed a mix of divergent
and nondivergent errors.

Using the basic fact that a divergent (fully irrota-
tional) velocity field can be derived from a velocity
potential x (Helmholtz theorem; e.g., Holton 1992),

u 5 2=x, (8)

and using an argument entirely parallel to Eqs. (4)–(7),
we see that the error covariance of a divergent wind
field can be derived from the error covariance of an
underlying velocity potential:
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FIG. 10. Mean u and y analysis errors with error bars, similar to Fig. 6, but for a mixed
rotational/divergent forecast error covariance model.

Tb bP 5 BP B ,u x (9)

where B is the operator used for obtaining the gradient
of the velocity potential in the discretized version of
Eq. (8). Under the reasonable assumption that the ro-
tational and divergent components of the wind error are
mutually uncorrelated, the total wind error covariance
is simply the sum of the error covariances from Eqs.
(7) and (9). In our experiments, the relative error var-
iances of the streamfunction and velocity potential were
set so that the magnitude of the rotational increment
was 4 times that of the divergent increment. Because
the actual wind error is fully rotational, this amounts to
a misspecification of the error characteristics. To expect
a full recovery from the background error with such an
error specification effectively constitutes a severe test
of the resolution of the observing system. It is none-
theless relevant to test the extent to which various ob-
serving geometries and configurations can provide in-
formation about the divergence characteristics of the
flow that is truly independent from any assumptions
about the background error.

Figure 10 shows a summary plot similar to the one
shown in Fig. 6, except that it is now assumed that the
forecast error contains both a rotational and a divergent
component as described in the two previous paragraphs.

For the experiments with two separate perspectives,
the error saturates at close to the same level as that of
Fig. 6. However, for the single-perspective experiments,
the error apparently is saturating already at a fairly low
number of observations (40). Furthermore, the error lev-

el of saturation is above the level of the background
error (1 m s21, indicated by the lower of the two dashed
lines in the plot). This result is consistent from what
one would expect from a misspecified background error
covariance. These results indicate that a single-per-
spective system would put much more of a burden on
the assimilation system in terms of correctly discerning
even basic characteristics of the flow and that the quality
of the outcome would be much more sensitive to the
specification of the background error. Dual-perspective
observations, on the other hand, can provide the analysis
system with the means to overcome even a fairly drastic
misspecification of the background error. Of interest is
that they can also continue to improve the analysis result
at very high resolutions, even in a case such as the one
studied here in which the background error is of a rel-
atively large scale.

e. Observation error versus coverage

For an active instrument such as a DWL, there is a
trade-off to be made between the number of observa-
tions that can be provided per time interval and the
accuracy of these observations, essentially because an
increased level of accuracy requires a larger number of
raw measurements per final ‘‘observation’’ or retrieved
parameter. The designed energy consumption of the la-
ser sets a limit to the maximum number of measurements
that can be obtained per time unit, and there is, therefore,
a trade-off between the total number of retrievals and
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FIG. 11. The u component analysis errors (noted on contours) as
a function of various combinations of individual observation error
(abscissa) and the number of observations (ordinate). Dual-perspec-
tive sampling is assumed.

their individual accuracy. A set of experiments in which
the number of observations and the observation error
standard deviation were varied simultaneously was set
up to illustrate how this trade-off can be seen from the
point of view of the analysis.

Truth and background states were the same as for the
experiments described so far in this article, and the back-
ground error was specified (correctly) to be fully rota-
tional. Only dual-perspective experiments were done,
and the total number of observations was allowed to
vary from p 5 10 to p 5 100. For each value of p, the
observations were simulated—and subsequently fed
into the analysis—with error standard deviations rang-
ing from so 5 1 m s21 to so 5 10 m s21. For each (p,
so) pair, 15 experiments were run, and the rms analysis
error for u and y was calculated for each of these ex-
periments.

Figure 11 shows the rms analysis error for the u com-
ponent as a function of so, the observation error (ab-
scissa), and p, the total number of observations (ordi-
nate). Each point in the plot corresponds to the mean
over the 15 experiments carried out for that particular
combination of p and so.

It is immediately evident from Fig. 11 that there is a
close connection between the number of observations
and the observation error and the analysis error. It is
also evident that even very large random observation
errors can still lead to a useful analysis, in particular,
when there is an abundance of observations. The reader
is discouraged from dwelling too much on particular
numbers given here. The observations are simulated to
be unbiased and have mutually uncorrelated random er-
rors. Neither of these assumptions would probably hold
for a real instrument, and the potential impact of high
observation errors is therefore likely to be overestimated
in our experiments. However, it remains true that ob-

servations with errors of the same magnitude, or even
larger, than the background error are likely to have an
impact if there are a large number of them.

As mentioned earlier in this article, from a numerical
weather prediction and data assimilation point of view,
the purpose of bringing in an observation is to reduce
the error of the initial condition of the forecast model,
that is, to minimize the analysis error. A reasonable end-
user requirement for a given observing system targeted
at NWP applications could well be formulated in terms
of acceptable analysis error. Again without regard for
the actual numbers, the plot in Fig. 11 is a clear illus-
tration of the fact that even a very specific goal in terms
of acceptable analysis error can be achieved via a num-
ber of different routes in terms of quality versus quantity
of the observations.

4. Discussion

The results shown in the previous section provide a
fairly strong indication that it would be preferable to
obtain LOS wind observations along two independent
directions rather than along one. It is admitted that the
analysis system, the simulated observations, and the
flow configurations studied here are gross simplifica-
tions of the corresponding real-world systems, and one
might therefore be concerned whether the findings on
one versus two perspectives do indeed carry over to real
NWP applications and real observing systems. It is
worth emphasizing again that most of the experiments
described here actually tend to favor the single-per-
spective experiments. The basic test to which the ob-
servations are subjected is to help the analysis recover
from a nondivergent error that is correctly specified, in
the sense that it uses a background error covariance
matrix that is derived under the assumption of nondiv-
ergence. This test is much easier to pass than is the more
realistic one of correcting an error with an unknown
mix of rotational and divergent components to which
real-world analysis systems are subjected. An incom-
plete observing system, such as a single-perspective
wind instrument, will thus get a substantial amount of
help from the correctly specified background error co-
variance matrix in our experiments, whereas a real-
world observing system would have to overcome not
only an erroneous background field but also an incor-
rectly specified background error covariance.

Providing only single-component wind observations
thus puts a large part of the burden of getting a correct
analysis on the first guess and on the assumptions un-
derlying the error covariance model. This approach is
likely to work well whenever the background field is
reasonable and the balance assumptions built into the
covariance matrix are valid. However, if the purpose of
flying a satellite DWL is specifically to reduce the fre-
quency of abnormally large forecast errors, it is clear
that the observations would be particularly valuable
when and where new and unexpected developments oc-
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cur, that is, precisely in those situations in which the
background field, by definition, is in error. One might
fear that these situations could also be ones in which
the normal assumptions about geostrophy and, hence,
nondivergence could be violated.

5. Summary and conclusions

The question of information content in wind obser-
vations obtained along one versus two directions has
been examined in the context of a simple analysis sys-
tem. Information content is defined here as the ability
to reduce the analysis error. It was shown that dual-
perspective observations are more than 2 times as ef-
ficient in reducing analysis errors as compared with an
equal number of single-perspective measurements. It
was further shown that the two perspectives need not
be strictly collocated, as long as the flow field is sampled
sufficiently along two independent directions. Nor do
the two perspectives need to be exactly orthogonal. Most
of the benefits from having dual perspectives are real-
ized when the angle between the lines of sight is larger
than 608. The quality of the analysis decreases with the
angle when this is less than 308.

The impact of an incorrect (but realistic) specification
of the background error covariance was illustrated
through a series of experiments in which a rotational
background error was imposed but the observations
were assimilated with a mixed rotational/divergent
background error covariance matrix. Results from these
experiments showed that biperspective observations al-
lowed for the analysis system to capture correctly the
rotational true state, whereas the impact of the single-
perspective observations saturated at a relatively low
number of observations and at a substantially higher
level of analysis error.

In the final series of experiments presented, the total
observation error and the total number of observations
were varied simultaneously to illustrate that there is no
unique combination of these two parameters that will
lead to a certain desired analysis accuracy. This outcome
provides instrument designers with additional degrees
of freedom within an overall target specified in terms
of analysis accuracy.

For the application of these findings to real observing
systems, it was argued that the results may tend to be
too positive toward the single LOS observations. It is,
therefore, likely that the difference between analyses of
single-versus dual-perspective wind observations would

be even larger in a more complete analysis system, es-
pecially as analysis systems continue to move toward
higher and higher horizontal resolution. Some of these
issues will be addressed through future work planned
to be done with the simple two-dimensional analysis
system. This work will be based on real meteorological
situations, and the observations will be simulated using
realistic satellite data acquisition patterns.
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