
EMC Subversion
Seminar Series

6. Branching and Merging Best Practices

Paul van Delst

http://creativecommons.org/licenses/by-sa/3.0/

Introduction

• This is a sort-of refresher of the the branching and merging seminars based on usage of
the version control setup over the last year or so.

• Much of what you’ll see here is a amalgam/compression of previous branching and
merging seminars.

– Only covering synchronisation merges

• I will repeat three things from the intro seminar about what Subversion is not:

– Magic

– It is not a substitute for management

– It is not a substitute for developer communication. Which leads me to…

• Document the branch creation, code modifications, sync merging commands and
results in the trac ticket you created for your work.

• What would you like to see presented regarding using Subversion?

– E.g. conflict resolution?

1 EMC Subversion Seminar Series: 6. Branching and Merging Best Practices. March 2014

IB-date

RB-x

Context: Subversion usage scenario

NCO checks out
latest revision from

release branch

Create a release
branch for version

“x” based on feature
set NCO commits

changes for
successful tests

REL-x

Branch tagged for
implementation

Branch merged back
into trunk

Development
trunk

(EMC, NOS,
MDL, etc server)

NCO commits
exported model(s)

NCO creates
implementation

branch for single, or
multiple(?), models

NCO commits further
changes for successful

tests. These changes should
be minor, with biggest

changes occurring on the
development server

OPS-date NCO tags trunk as
operational

Production
trunk

(NCO server)

NCO exports tagged
release(s) into their

implementation branch

NCO merges branch
back into trunk

NCO changes reconciled
back into the release

branch (“reverse export”)

OPS-x

Branch tagged as
operational

Trunk development
continues

Revision commits

2 EMC Subversion Seminar Series: 6. Branching and Merging Best Practices. March 2014

Outline

• Branching

– Guidelines

– Creating and checking out a branch

– Externals definitions

– How not to create a branch

– Why should I create a branch? (some common patterns)

– When should I create a branch?

• Merging

– Guidelines

– Sync merge command syntax

– Sync merge setup

– Possible merge problems

3 EMC Subversion Seminar Series: 6. Branching and Merging Best Practices. March 2014

Branching guidelines
• Preface: These are general guidelines and aren’t written in stone. Context is key – your

team should determine any strict policy-driven methodologies.

• Branch the entire trunk if you can.
– This way your branch will be a complete representation of the project.

– It will also simplify merging.

• Keep your branching as shallow as possible. Bugfix branches aside,
– Branch from the trunk.

– Try not to create branches from existing branches.

• Keep your branch lifetimes as short as possible.
– Remember, the trunk is (should be) the mainline of development, not the branches.

• Avoid the “crawl-in-a-hole” strategy.
– For situations where branches do exist for a long time (for a suitable definition of “long”),

merge the trunk into the branch (aka “synchronisation”) as frequently as possible.

– Frequent synchronisation of a branch will minimise the number of conflicts that occur at any
particular merge, be it trunkbranch, or branchtrunk.

4 EMC Subversion Seminar Series: 6. Branching and Merging Best Practices. March 2014

Creating and checking out a branch
• A branch is simply a copy of a particular revision of the source filesystem, but with

history (important for successful merging).

• To create a branch, you use the svn copy command,

 where the <FROM> is the trunk URL, and the <TO> is the branch URL, e.g.

• When the branch has been created, you use the svn checkout command to get a
working copy on disk:

5 EMC Subversion Seminar Series: 6. Branching and Merging Best Practices. March 2014

$ svn copy <FROM> <TO>

$ svn copy –m “Creating EXP-MyBranch from trunk” \

 https://.../projects/modelX/trunk \

 https://.../projects/modelX/branches/EXP-MyBranch

$ svn checkout [--ignore-externals] \
 https://.../projects/modelX/branches/EXP-MyBranch

This optional switch will prevent the checkout
of any externally linked projects.

Externals definitions in GFS and GSI
• The svn:externals property is a way of linking in other separate and distinct

projects.

• If you want to checkout everything, great. If not, use --ignore-externals.

6 EMC Subversion Seminar Series: 6. Branching and Merging Best Practices. March 2014

Aside about externals
• Because of project dependencies using externals, typically it’s A Good Thing™ to:

• Create externals that link to a specific release or implementation tag.
– This will ensure that a created branch in the “master” project contains exactly what was in

the trunk when the branch was created.

– If the external link is to the HEAD of trunk, or some branch, then that is also what will be
checked out or updated in a working copy.

– Once a branch is created, you can update the externals to whatever dependent project
versions you want to point at.

• Communicate important changes in a dependent project to the development
team/code manager of the “master” project, and test those changes.
– This may seem like common sense, but it is not always done.

– Example: CRTM changes that were self-consistent (and, ehem, seemed like a good idea at the
time) caused some consternation in the GSI a few years back.

– Now the CRTM group maintains a GSI branch where we test CRTM changes simply, e.g. single
cycle tests just to make sure data files are in the right place, have the expected names etc.

7 EMC Subversion Seminar Series: 6. Branching and Merging Best Practices. March 2014

How not to create a branch
• Subversion has no concept of trunk, branches, or tags. Any special meaning

attributed to them via their names is simply because we choose to give them that
meaning.

• Thus, you could create a “branch” like so:

 Please do not do this.

• Because there was no svn copy performed, a branch created like that above has no
history.

• No history means merging is much more difficult – and it can “pollute” the history of
whatever you are merging into.

• If you know what you are doing, and can convince the project and code managers to
agree, fine. Otherwise, boo!

8 EMC Subversion Seminar Series: 6. Branching and Merging Best Practices. March 2014

$ cd branches

$ svn mkdir my-new-branch

$ cd my-new-branch

$ svn add …a whole bunch of files…
$ svn commit …

Why create a branch? (1)

• The trunk is the mainline of development - it should always pass a standard set of tests
and be “nearly ready” for release or usage. As such, we always should try to Protect
The Trunk.

• Branching is a way to isolate yourself, or others, from change.

• There are three typical scenarios to create a branch:

1. Release Branch: You want to release the code and work with NCO SPAs.

a. Development is “frozen” for the release.

b. Release-specific bug-fixes may be needed.

2. Feature Branch: You want to introduce a new feature into the mainline

a. It’s not unreasonable to assume you will break the code (syntax errors, new bugs, etc) in the
course of implementing and testing the new feature.

b. You still want to be able to commit unfinished code.

3. Bugfix branch: You need to fix a complicated bug

a. We won’t cover this type in this seminar.

9 EMC Subversion Seminar Series: 6. Branching and Merging Best Practices. March 2014

Why create a branch? (2)

• For releases.

– At some point the development team needs to switch from adding new features to getting
ready for the next implementation.

– Creating a branch for this allows other developers to continue adding new features to the
trunk.

– The release branch is also what NCO SPAs can work on prior to an implementation release.

Release Branch

 RB-2.1

Trunk Development continues on trunk.
No code freeze necessary.

Tidying up the software for release
is done in the release branch.

10 EMC Subversion Seminar Series: 6. Branching and Merging Best Practices. March 2014

Why create a branch? (3)

• For experimental development.

– If proposed changes will take some time to implement, or break the software build, create a
branch to isolate these changes from the rest of the development team.

– If the experiment is successful, the branch can be merged to the trunk. If it is not, it can be
“deleted”.

– Most of the EMC project branches are these development branches.

Release Branch

 RB-2.1

Trunk

Development continues on trunk.
No code freeze necessary.

Tidying up the software for release
is done in the release branch.

 EXP-xyz

Experimental development is implemented
and tested in its own branch.

11 EMC Subversion Seminar Series: 6. Branching and Merging Best Practices. March 2014

When to create a branch?

• Before creating branches, ensure your entire team is aware the branch is going to be
created.

– Why? So they have the opportunity to merge or commit their working copy changes to the
trunk making their changes available for branching.

• Create release branches from the trunk when you get to the point where you wish to
start collaborating with NCO SPAs for an implementation.

– This avoids code “freezes” as work can always be committed to the repository in other
branches and the trunk.

• Experimental and bugfix branches can be created anytime based on developer needs.
But always always try to ensure the rest of the development team is aware of the
experiment.

– The proposed changes may affect someone else’s current work later on.

– Other developers can suggest potential solutions.

– The work may already have been done somewhere else.

12 EMC Subversion Seminar Series: 6. Branching and Merging Best Practices. March 2014

Merging guidelines
• Preface: Again, these are general guidelines intended to simplify the merging process,

both sync and reintegration. Context is key – your team should determine any strict
policy-driven methodologies.

• Frequent synchronisation of trunk changes into your branch minimises the likelihood of
“surprise” conflicts when the branch is reintegrated back into the trunk.
– Each development team needs to determine the “best” frequency of synchronisation merges.

E.g. Once a day? Week? Month?
• This is where developer communication is important.

• Are there changes in the trunk you should merge?

• Are those trunk changes compatible with your changes?

• Perform merges on the root of the branch, not the subdirectories.
– Otherwise svn:mergeinfo property is written at the subdirectory location.

• Ensure your merge target working copy contains no “sparse” directories.
– Similarly with subdirectory merges, svn:mergeinfo property is written at subdirectory

location.

• Don’t use the --ignore-ancestry switch unless you discuss with your code
manager

• Never, ever edit the svn:mergeinfo property directly.

13 EMC Subversion Seminar Series: 6. Branching and Merging Best Practices. March 2014

Sync merge command syntax

• Because subversion tracks merge information, the syntax for regular synchronisation of
the trunk to a branch is quite simple:

$ svn merge ^/modelX/trunk [my-branch-working-copy]

14 EMC Subversion Seminar Series: 6. Branching and Merging Best Practices. March 2014

Note the caret syntax.
Saves you typing out the
full URL.

Yay!

The working copy target is
still optional. Defaults to
current directory if not
specified.

• You can only merge into a working copy, not directly into the repository.

• How does subversion “know” what revisions need to be merged?

– That’s what the svn:mergeinfo property is for. Storing the merge information.

Sync merge setup

1. Go to the root of your branch working copy.

2. Execute an svn status command,

 to determine if:
a. There are later versions of files in the repository (* in column 9 of output)
b. You have any local modifications (M in column 1 of output)

3. If (2a) is the case, you must issue an svn update command,

 to bring your working copy up-to-date. You should do this anyway as part of your
workflow to make sure all the metadata is also up-to-date.

4. If (2b) is the case, you should commit your local modifications prior to performing the
merge,

5. At this point you have a “clean” working copy. It’s o.k. if you still have unversioned files
in there (? in column 1 of status output).

15 EMC Subversion Seminar Series: 6. Branching and Merging Best Practices. March 2014

$ svn status --show-updates

$ svn update

$ svn commit

Sync merge scenario

• Let’s say this is the merge scenario:

1. Issue the merge subcommand in the branch working copy (use --dry-run first!),

2. Deal with any conflicts. (Ha! Easy to say. Separate seminar?)

3. Commit the changes.

16 EMC Subversion Seminar Series: 6. Branching and Merging Best Practices. March 2014

$ svn merge ^/modelX/trunk .

$ svn commit -m \

 “EXP-TestX branch: Sync’d trunk to branch”

r31001

EXP-TestX

Trunk
r31000

r31010 r31021

r31015 r31050

r31054

Possible merge problems (1)

• Commit fails with an “directory out-of-date” error.

 Issue an “svn update .” to get all the directory metadata up-to-date.

• The sync merge was performed into a branch subdirectory, not the root directory.

– This is not really a “problem”, but it does mean there will be mergeinfo associated with that
subdirectory rather than the root. Can be confusing for subsequent reintegration.

17 EMC Subversion Seminar Series: 6. Branching and Merging Best Practices. March 2014

$ svn commit -m ”my log message”

svn: Commit failed (details follow):

svn: Directory ‘.’ is out of date

Lots of mergeinfo at
subdirectory level. Some from
branches with different named
directories. (Yoicks!)

BTW, not singling out this
branch in GFS…just a random
selection. These merges prolly
weren’t done in this branch.

Possible merge problems (2)

• The sync merge was performed into a “sparse” checkout.

– A sparse checkout is where you specify the directory depths you want in your working copy
via the “--depth” switch to svn checkout, and the “--set-depth” depth switch to
svn update.

– Again, not really a problem, but it does modify mergeinfo in directories where no changes
were made. But, it can be confusing when you see subsequent commits modifying directory
properties you know you didn’t change because you didn’t even check them out.

18 EMC Subversion Seminar Series: 6. Branching and Merging Best Practices. March 2014

These are the actual
changes I made merging
into my sparse copy.

These are the actual
changes committed to my
branch. The “_M” means
only properties have been
changed.

Possible merge problems (3)

• Update a sparse working copy for merging using:

19 EMC Subversion Seminar Series: 6. Branching and Merging Best Practices. March 2014

Funky new mergeinfo status!

Subsequent merges still
modify the subdirectory
mergeinfo – “with no actual
effect”. Sheesh.

$ svn update --set-depth=infinity [branch root dir]

Summary, final thoughts

• Branching

– Branch the entire trunk, not subdirectories.

– Keep the branching shallow.

– Keep branch lifetimes short.

• Merging

– Sync your branch with the trunk frequently.

– Merge into the root directory of your branch, not subdirectories.

– Don’t merge into a sparse checkout of your branch.

– Don’t use the --ignore-ancestry switch.

– Don’t edit the mergeinfo directly.

• Document the branch creation, code modifications, sync merging commands and
results in the trac ticket you created for your work. (You created one, right?)

• If you have any questions or worries about branching or merging, please don’t hesitate
to contact me, Nicole, Kate, or Mike for help.

– Particularly if you’ve encountered conflicts – they should be dealt with as they arise.

– Just like personal ones. Otherwise they fester away…

20 EMC Subversion Seminar Series: 6. Branching and Merging Best Practices. March 2014

