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ABSTRACT

A theory of the interaction of a cumulus cloud ensemble with the large-scale environmenl is developed.
In this theory, the large-scale environment is divided into the subcloud mixed layer and the region above.
The time changes of the environment are governed by the heat and moisture budget equations for the sub-
cloud mixed layer and for the region above, and by a prognostic equation for the depth of the mixed layer.
In the environment above the mixed layer, the cumulus convection affects the temperature and moisture
fields through cumulus-induced subsidence and detrainment of saturated air containing liquid water which
evaporates in the environment. In the subcloud mixed layer, the cumulus convection does not act directly
on the temperature and moisture fields, but it affects the depth of the mixed layer through cumulus-induced
subsidence. Under these conditions, the problem of parameterization of cumulus convection reduces to the
determination of the vertical distributions of the total vertical mass flux by the ensemble, the total detrain-
ment of mass from the ensemble, and the thermodynamical properties of the detraining air.

The cumulus ensemble is spectrally divided into sub-ensembles according to the fractional entrainment
rate, given by the ratio of the entrainment per unit height to the vertical mass flux in the cloud. For these
sub-ensembles, the budget equations for mass, moist static energy, and total water content are obtained.
The solutions of these equations give the temperature excess, the water vapor excess, and the liquid water
content of each sub-ensemble, and further reduce the problem of parameterization to the determination of
the mass flux distribution function, which is the sub-ensemble vertical mass flux at the top of the mixed layer.

The cloud work function, which is an integral measure of the buoyancy force in the clouds, is defined for
each sub-ensemble; and, under the assumption that it is in quasi-equilibrium, an integral equation for the
mass flux distribution function is derived. This equation describes how a cumulus ensemble is forced by
large-scale advection, radiation, and surface turbulent fluxes, and it provides a closed parameterization of
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cumulus convection for use in prognostic models of large-scale atmospheric motion.

1. Introduction

The many individual cumulus clouds which occur in
a large-scale atmospheric disturbance have time and
space scales much smaller than the disturbance itself.
Because of this scale separation, it may be possible to
predict the time change of the large-scale disturbance
by describing not each of the many individual clouds,
but only their collective influence. This is the goal of
cumulus parameterization.

The importance of cumulus convection for large-
scale tropical disturbances was recognized through ob-
servational studies (Riehl and Malkus, 1958, 1961;
Yanai, 1961a, b). The need to parameterize cumulus
convection became clear with the failure of early theo-
retical attempts to explain the size and growth rate of
tropical cyclones [see review article by Yanai (1964)].
Recognition of this need led to the classical papers of
Chamey and Eliassen (1964) and Ooyama (1964), in
which the concept of conditional instability of the
second kind (CISK) first appeared. In CISK, the

1Present affiliation: Department of Atmospheric Science,
Colorado State University, Fort Collins.

cumulus-scale and the cyclone-scale motions cooperate,
the cumulus clouds providing the heat which drives the
cyclone, and the cyclone providing the moisture which
maintains the cumulus clouds. The simple parameteri-
zations used in these papers not only gave insight
into this cooperative mechanism, but also led to con-
siderable success in the numerical simulation of tropical
cyclones (e.g., Ooyama, 1969).

In spite of this success, these early parameterizations
were too crude to be used for more general situations,
and several attempts were made to obtain more widely
applicable parameterizations [see review articles by
Yanai (1971a), Bates (1972) and Ogura (1972)7]. These
attempts, however, were based on a high degree of
empiricism and intuition, and lacked a theoretical
framework for describing the mutual interactions
between a cumulus ensemble and the large-scale
environment.

There is now general agreement on the way in
which an existing cumulus cloud ensemble produces
time changes in the large-scale temperature and mois-
ture fields (Arakawa, 1969, 1971, 1972; Betts, 1973a, b;
Gray, 1972; Lépez, 1972a, b; Ooyama, 1971; Yanai,
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F16. 1. A unit horizontal area at some level between cloud base and the highest
cloud top. The taller clouds are shown penetrating this level and entraining environ-
mental air. A cloud which has lost buoyancy is shown detraining cloud air into the

environment.

1971a, b; Yanal e al., 1973). The cumulus convection
modifies the large-scale temperature and moisture fields
through detrainment and cumulus-induced subsidence
in the environment. The detrainment causes large-scale
cooling and moistening, and the cumulus-induced sub-
sidence causes large-scale warming and drying. Using
a cumulus ensemble model similar to the one presented
in Sections 2 and 3 of this paper, Yanal et al. (1973)
quantitatively derived these effects from observations
at a large-scale network of stations. Their results show
the importance of the coexistence of shallow clouds
with deep clouds in maintaining the large-scale heat and
moisture budgets. This agrees with the results obtained
with an early version of the UCLA general circulation
model, which used a parameterization (Arakawa, 1969)
in which there was only a single cloud type at a given
time and place. Simulations of the general circulation
with that parameterization produced an excessively dry
lower troposphere in the regions of deep cumulus
convection.

Ooyama (1971) recently developed a cumulus
parameterization theory which takes into account the
coexistence of clouds of different sizes. He assumed that
cumulus clouds can be represented as non-interacting
spherical bubbles, dispatched from below. He concluded
that the problem of parameterization of cumulus con-
vection reduces to a determination of the dispatcher
function. However, the determination of the dispatcher
function was left as an open question, so that the
parameterization was not closed.

This paper presents a closed theory of the mutual
interaction of a cumulus cloud ensemble with the large-
scale environment. The theory includes a formulation
of the way in which the cloud ensemble is controlled by
the large-scale fields. The control mechanism is formu-
lated as a large-scale forcing, which is a destabilizing
effect by large-scale processes both above and within
the subcloud mixed layer.

The basis of the theory is a quasi-equilibrium of the
cloud work function, which is an integral measure of the

buoyancy force of the cumulus clouds defined for each
cloud type. This concept of quasi-equilibrium, originally
proposed by Arakawa (1969), provides a closure con-
dition on the parameterization.

2. Modification of the large-scale environment by
cumulus clouds

Consider a horizontal area at some level between
cloud base and the highest cloud top. This horizontal
area, which we designate as our unit horizontal area,
is shown schematically in Fig. 1. It must be large
enough to contain an ensemble of cumulus clouds but
small enough to cover only a fraction of a large-scale
disturbance. The existence of such an area is one of the
basic assumptions of this paper.

Because we are not concerned here with acoustic
waves, the mass continuity equation can be simplified
to its quasi-Boussinesq form ¢

d
V- (pv)+—(pw)=0, (L
9z

where the density p is a function of height only, v is
the horizontal velocity, V the horizontal del operator,
w the vertical velocity, and z the vertical coordinate.

Let a;(2,f) be the fractional area covered by the ith
cloud, in a horizontal cross section at level z and time .
The vertical mass flux through ¢, is

Mi=/ pwdo = pow;, (2)

/ do

is the integral over the area ¢; and w; the average
vertical velocity of the 7th cloud at this level.

The inward mass flux per unit height, normal to the
lateral boundary of the ith cloud, is given by oM ,/dz

where
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Fi6. 2. A schematic diagram of the mass continuity
for a thin layer in the sth cloud.

from the mass continuity equation (1) (see Fig. 2).
Here the boundary is not necessarily vertical. Then the
mass added to the cloud, which may be horizontally
expanding or shrinking, is dM;/dz+pdo:/d! per unit
height and unit time. The entrainment and detrain-
ment of mass are given by

Entrainment:
oM; Oo; S IM;  do;
E;= ( —I—p——), when —+p0—>0 (3)
0z at 03 at
Detrainment:
oM; Qo oM; Oo;
D;= —(———f—p ), when +p—<0. (4)
0z at 0z ot

E; can be rewritten as ¢;9 (pw;)/ 92+ p(8/di+w.:8/3z)0 ;.
Thus, an entrainment of mass, which is caused by
turbulent mixing at the cloud boundary, appears either
as a vertical divergence of the mass flux within the cloud,
as a horizontal expansion of the cloud as it rises, or
as a combination of these, depending on the dynamics
of the cloud.

The total vertical mass flux by all of the clouds in the
ensemble is

M=% M, )

where 3_; denotes the summation over all clouds which
are penetrating the level being considered.

Let pw be the net vertical mass flux over the large-
scale unit horizontal area. It satisfies the continuity
equation '

_______ 9
V- (pv)+-—(o0)=0, - (6)
0z

" where the bar denotes the average over the unit hori-
zontal area. In general, the total vertical mass flux M,
in the clouds is not the same as the large-scale net
vertical mass flux pw. The difference between M. and
pW is equal to the downward mass flux between the
clouds, i.e.,

. =M =M,—pw. (7

With sufficiently intense cumulus activity, M, can ex-
ceed pw and subsidence (negative M) appears in the
environment, as in Fig. 1.
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At a given height, some clouds may be detraining
while other clouds are entraining (see Fig. 1). We de-
fine total entrainment £ and total detrainment D, at
each level, by

B3 B, ®)
D=3 D.. 9)

Here >",. denotes the summation over all clouds
which are entraining at that level, and > 4 .. the sum-
mation over all clouds which are detraining at that level;
E and D, as well as M, are functions of z. From (3),
(4), (5), (8) and (9), we obtain

oM, do.
E—-D= — (10)
0z at
where :
T=2.0; (11)

is the total fractional area covered by all the clouds of
the ensemble.
We define the static energy by

s=cpT+ g3, (12)

where ¢, is the specific heat of air under constant
pressure, I' the temperature, and g gravity; ¢,7T is the
specific enthalpy of the air, and gz is its geopotential
per unit mass. The static energy s is approximately
conserved by the individual air parcel, during dry
adiabatic processes. Hydrostatic balance, which we
assume for the environment, gives

ds p\Rlor 56
)"
9z ﬁo 0z

where p is pressure, po a standard pressure, R the gas

(13)

“constant, and 8= (po/p)®/*»T the potential temperature.

From the budgets of static energy and water vapor
in the environment, we obtain

i) -
—a—l[(l—-ac)p§:|= —V-(ovs)—E3+3 Disp;
d.c.
0 ) .
——(M3)—LE+(Or, (14)
9z :
0 -
:9;[(1‘00)1997:]: —V-(pVQ)—E!i-I‘dZ Digp;
. ) |
——(Mg)+8,  (135)
0z

where the bar denotes the average over the large-scale
horizontal unit area, the tilde denotes the value in the
environment (which is assumed to be horizontally
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homogeneous for all of the variables), and the subscript
D; denotes the value in the detraining air from the ith
cloud; L is the latent heat per unit mass of water vapor,
& the evaporation of the liquid water detrained from
the clouds per unit height, Or the radiational heating
of the environment per unit height, and ¢ the mixing
ratio of water vapor. The first three terms on the right
in (14) and (15) come from the horizontal area integra-
tions of —V-(pvs) and —V-(pvq) over the environ-
ment. The terms —9(M75)/dz and —a(M§)/0z repre-
sent the vertical flux convergences in the environment.
Using (10), (9), (7) and (6), Egs. (14) and (15) may

be rewritten as
35 35
(1—Uc)p—= Z Di(SD,-'—:S") —LE—M—
ot de. 0z

~[V-(ovs)—V-(oV)5]+ 0, (16)
aq _0q
(1—o)p—=2 Diqp;:—3)+E—M—
ot d.c. 0z

—[V-(vg)—V-(ev)g7]. (17)

To simplify Egs. (16) and (17), we use the empirical
fact that the total fractional area covered by active
clouds is small compared to unity (see, e.g., Malkus
et al., 1961). This is consistent with the theoretical
finding, first obtained by Bjerknes (1938), that con-
ditional instability favors the smallest possible hori-
zontal cross section for the saturated rising motion
(and the largest possible horizontal cross section for the
unsaturated sinking motion) if there is neither friction
nor entrainment. Asai and Kasahara (1967) found that
cumulus convection most efficiently transports heat
upward, and therefore most efficiently releases kinetic
energy, when the fractional horizontal area of the rising
motion is of the order of several percent. It seems that

is an acceptable first approximation.
By definition,
§=(1—0 )5+ o:is:, (19)
7= (1= )7+3 o (20)
3
and using (11),
§=3+2 (5s—%)ay, (21)
7=q+% (¢:i—os (22)

where (5;—3) and (g;—g) are the excess static energy
and the excess mixing ratio of water vapor over the
environmnetal values in the ith cloud. Using the ap-
proximation (18) and the empirical fact that the tem-
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perature difference between the cloud and the environ-
ment is small, or max(s;—3)<5, we obtain, from (21),

(23)

However, the corresponding inequality, max(g:—q)
&4, holds only when the environment is near satura-
tion. Therefore, we use max(g;—§*)<<g*, where §* is the
saturation mixing ratio of water vapor in the environ-
ment. Using this in (22), we obtain

§=7,

q=q+@*—Qoe,

1—r
=9'|:1+ Uc:|)
7

where 7 is the relative humidity of the environment,
G/q*. When r>a./(140.)=~0,, that is, when the en-
vironment is not extremely dry, the second term in the
bracket of (24) can be neglected. Then,

(24)

7=q. (25)
We further assume that
V-(pv)=V-(pV), (26)
V- (pvs) = V- (p¥5), @7
V- (v~ V- (7). (28)

Here the bar on the right-hand sides denotes a running
horizontal space average, on the scale of the unit area,
and not the average within the fixed area. The approxi-
mations (26)-(28) are valid when the net lateral hori-
zontal transports across the boundary of the fixed
large-scale area by cumulus convection (the horizontal
cumulus eddy transports) are negligible compared to
the horizontal transports by the large-scale motion.

Using the approximations (18), (23) and (25)-(28),
Egs. (16) and (17) may be rewritten as

a3 _0§ ~
p—=2_ Di(sp;—38) —LE—M——p¥-V5+(Qr, (29)
dl  d.e. 9z

g ) 97
p—=2. Digp;—3+E—M——p¥-Vg,
{  d.e. Jz

(30)

where 83/9z is a measure of the static stability of the
environment [see (13) and (23)], which is usually
positive, and — 95/ 9z represents the adiabatic warm-
ing of the environment when /7 <0 (and cooling when
M>0) due to the vertical motion. For 43/9z<0 (the
normal condition), —733/dz represents the drying of
the environment when /<0 (and moistening when
M>0) due to the vertical motion. From (7), M is
given by —M .+ pw.

In addition to the detrainment and evaporation
terms, cumulus clouds modify the environment through
the cumulus-induced subsidence, — M., in the environ-
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ment. The latent heat released within the clouds does
not directly warm the environment, but it maintains
the buoyancy of the clouds against the adiabatic cooling
due to the upward motion and the coollng produced
by the entrainment of drier and colder air from the
environment. Thus, the latent heat released within the
clouds maintains the vertical mass flux of the clouds
and, thereby, the cumulus-induced subsidence in the
environment. The drying and warming of the environ-
ment, by the cumulus-induced subsidence, are the in-
direct effects of condensation and release of latent heat,
but their vertical distributions can be very’ different
from the vertical distribution of the condensation within
the clouds. This important role of the cumulus-induced
subsidence in the environment was explicitly used for
the first-time in parameterizing cumulus convection by
Arakawa (1969).2

Egs. (29) and (30) were derived from budgets for the
environment only. But they approximately govern the
time changes of 5§ and g, which are averages over the
total area. This means that the prediction of the large-
scale field is practically the same as the prediction of the
cloud environment, insofar as the thermodynamic vari-
ables are concerned. This important simplification,
which was used in the earlier parameterizations by
Arakawa (1969, 1972) and by Ooyama (1971), comes
from the neglect of accumulative storage of the static
energy and water vapor in the ensemble of clouds. In
fact, we can rederive the right-hand sides of (29) and
(30), as was done by Yanai et al. (1973), from budgets
for the total area. These budgets give

05 - 90 __
p—=—V-(pvs) ——(pws)+ L3 C;—8)
at 03 i
+( Qr+0r), (31)
g a9 _
p—=—V-(pvg) ——(pwq) — (X C:—8), (32)
at _ Jz i

where C; and Qg; are the rates of condensation of water
vapor and radiational heating per unit height ih the
ith cloud. Using the approximations (27), (28), (26),
and Eq. (6), (31) and (32) can be rewritten as

93

J
p—=——Lpws—pws ]+ L Ci—8)+3 Qx:
a oz i :

05
—pV-V5—pth——+Qg, (33)
0z
G 0
= —-—[pwq pwq ]~ (ZC —8)
a7
—pV-Vi—pi—. (34)
0z .

2 A description of this parameterization was given by Haltiner
(1971, p. 188).
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The quantities inside the brackets are the eddy vertical

transports by.cumulus convection. The eddy tranqport
of s may be written as

pWS — pUBS= (Z_ M isi+M3) — pass.

Using (7), (19), (11) and (2), the eddy transport can be
rewritten as

pws—pw8=73_ po[wi(si—3) —@(s;—3)],
i
where 7 is the vertical velocity in the environment. The

second term in the bracket is negligible compared to the
first, since w;>>|@| and s;—3§=s5,—3. Therefore

pUSs — PS> T Mi(si—3). (35)

Similarly, the eddy transport of ¢ may be rewritten as

p@—pwézzz Mi(g:i—7q). (36)

When there are no accumulative storages of mass, static
energy and water vapor in the cloud ensemble,

oM,
9z
d

Es—3%° Di3Di_5‘ 3 Misi+LY, CiAY Qri=0, (38)

d.c. VAR i 7

a3

Eqg—3 Diqm—a— S Mqi—3 Ci=0.  (39)

d.c. ;A i

Using (35)-(39), we can easily show that (33) and (34)
are identical to (29) and (30), where the heat of con-
densation and the radiational heatlng in the clouds do
not explicitly appear.

If we assume that the evaporation of the detrained
liquid water takes place at the same level where the
water is detrained from the clouds, then

8= Dip,, (40)
d.c.

where Ip; is the mixing ratio of liquid water in the air
detrained from the 7th cloud. This assumption is prob-
ably justifiable for the detrained cloud droplets, but
not for any large raindrops that might be detrained from
the clouds. With the assumption (40) and Eq. (7), (29)
and (30) can be rewritten as

95
—Ll)p,—3]+M—
0z

¥ DG
d.e.

a5 _
—pV- V§—P'L€75‘+QR, (41)
z
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ag g 9
p =2 DL{y+D)pi~q]+M:——pV: VG—pi—.
A d.c. 0z 0z

(42)

The detrainment terms will be further simplified in the
next section.

3. Budget equations for an individual cloud and
assumptions on detrainment

We first consider the budgets of mass, static energy,
water vapor, and liquid water for an individual cloud.
In the entrainment layer of the ith cloud, the budget
equations can be written as

Mass:

a 9
—(pos)=Ei——M; (43)
ot dz

Static energy:
] ]
—(pa,'si) = EiS "—(Misi) +LC1'+QR5 (44)
a¢ 0z

Water vapor:

a J
—(pa,'qi) = E;q—_(Mng —C; (45)
at 0z
Liquid water:
Ie] d
—(poil;)= ——(M ;) +C;—R.. (46)
at 0z

Here I; is the mixing ratio of liquid water in the form
of cloud droplets and R; the rate of conversion of the
liquid water to precipitation per unit height. The ap-
proximations (23) and (25) have already been used.
The budget equations in the detrainment layer are

Mass:

d d
——(pai) = —Dl——M, (47)
at 9z

Static energy:

d a
—(pois)=—Dspi~—(Mis)+LC:+Qr;  (48)
at dz

Water vapor:

i} a
—(poig:) = —Digp;——(Mq:) —C; (49)
ot dz

Liquid water:

d d
—(poidi)= —Dilp;~—(Md;)+Ci—R.. (50)
at dz
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Egs. (37)-(39) can be obtained by summation of (43)-
(45) over all entraining clouds, and of (47) -(49) over all
detraining clouds, and by subsequent dropping of the
time derivative terms.

Eliminating C; from (44) and (45) and from (45) and
(46), we obtain

d 9 _
~—(paih;)= Eih——(M :h)+Qriy (51)
at 0z

d 0
—[paz(q—]-l),]: th—’—[Mz(Q‘l‘l)z]_Ru (52)
ot 0z

where the moist static energy % is defined by

h=s+ Lg=c, T+ g+ Lyg. (53)

The moist static energy is approximately conserved by
an individual air parcel during moist adiabatic pro-
cesses. Egs. (51) and (52) describe the budgets of the
moist static energy and water substance for the en-
trainment layer of the ith cloud.

We assume that the air is saturated in the clouds.
Then ¢;=¢*(T:,p:), where the asterisk denotes the
saturation value. If the effect on ¢* of a pressure differ-
ence between the cloud and the environment is ne-
glected,? then

g~ q*(T:,p),
og*
(=) (-9 (54)
Cp 6T P
Here g*=¢*(Tp), and
1 _
1+y
Fo ' iy (56)
gi—4q ~1+’y L i ]
where
L /oG*
TE‘—<*:> . (57
Cp (")77 ?

The symbol A*= 3§+ Lg* is the saturation value of moist
static energy of the environment; 84%/dz Z 0 defines,
respectively, the moist adiabatically stable, neutral,
and unstable lapse rates of the environment.

The ith cloud may be in its growing stage, with a
rising cloud top. We then assume that there is entrain-
ment into the cloud at all levels including the cloud top.
Only after the cloud top has reached its maximum height
and has stopped rising does detrainment take place in a

3 Although the scale analysis by Ogura and Phillips (1962) did
not justify this approximation, the recent numerical integration
by Wilhelmson and Ogura (1972) indicates that the pressure
difference was overestimated by the scale analysis.
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thin layer at the cloud top. We further assume that the
maximum height of the cloud top is approximately equal
to the helght of the vanlshlng buoyancy level.?

The sign of the buoyancy is determined by the excess
of the virtual static energy in the cloud over the en-
vironmental value. The virtual static energy is 4pprox1—
mately given by

sy=s+¢,T(6g~1), (58)
where 6=0.608. The excess virtual static energy is
So;—8p=5i—3+c,T[8(qi—q)—1:] (39)

The level &;, at which the cloud top loses buoyancy, is
given by

, (S0;—580)2m3,=0, (60)
or, from (59),

{5:—=5+¢,T[6(q:i—7) — 1]} o=z, = (61)

Let us assume that all clouds which lose buoyancy at

the same level z have a common value / for /; at that
level. Then,

(li—1)sms,=0. (62)

We let ] be a function of z, where [ at different levels is
for different types of clouds. Although [ is the liquid
water mixing ratio at the level of vanishing buoyancy,
it is not necessarily equal to the liquid water mixing
ratio of the air which spreads into the environment,
because an additional condensation (or evaporation)
may be taking place near the cloud top due to concen-
trated radiational cooling (or heating) there.

Use of (55), (56) and (62), with the vanishing
buoyancy condition (61), gives

(hi—il*)z=2;=0) (63)
where
I (H—v)
h¥*=h*— —q)—! 64
P [5(9 -1, (64)

and é=c,T/L.
For the detrainment layer, it is convenient to elimi-
nate C; from (48) and (50). Then we have

d d
——[po’,‘(s—.Ll)i]= —Di(S—Ll)Di——[Mi(S_Ll)iJ
at . 0z '

LR O,

We also have the budget equation for water substance

(65)

0 0
5;[901‘((1’[—1) iJ=—D i(9+l)Di_'a;[M {g+D)i]—R:. (66)

Because the thickness of the detrainment layer, Azp;,

¢ The conventional assumption that a cumulus cloud ceases
vertical growth when its temperature sounding recrosses the
environment curve is supported by the cloud model of Simpson
et al. (1965).
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is assumed to be small, the mass budget equation (47)
for the detrainment layer may be approximated by

DiAZDi - (Mi)z=2,', (67)

where M; at =8, is the mass flux of the cloud entering
the detrainment layer from below. Similar-simplifica-
tions of (65) and (66), and use of (67) give

Di(s_Ll)Di=Di[(S—Ll)i]z=2,~+Qm, (68)
Di(g+Dpi=Di (gt )=, (69)

The radiation term in (68) is retained because Qr:iAzp;
is finite even when Azp; is infinitesimally small.
Use of (35), (36), (62), (63) and (64) in (68) and (69)

gives

> Di(s—Lh)p;=D(E~L)+ X Qns, (70)

d.c. d.c.
dZ Di(g+0) = D(@*+D), (11)

where D is the total detrainment 3" 4... D; and
R (A 1, (72)
1+'ye
§*=q*— [a(g*~ 11 (73)
14-ved

Substituting (70) and (71) into (41) and (42), we obtain

- 3 o3
= D(§—-.§—LZ)+MC-——pV'V§—Pu_"j+QR, (74)
at 9z 9
where
QREQR+Z Qriy (74)/
d.c. '
gmd
g q 95
p—= D(@*+l—-+M ———pv vg— p—. (75)

Note that Qr appears in (74), whereas Qr appears in
(41). These are the basic equations-we use to describe
the time changes of the large-scale temperature and
moisture fields. Similar equations were derived for a
three-level model of the large-scale temperature and
moisture fields by Arakawa (1969), and for the con-
tinuous atmosphere by Ooyama (1971), Arakawa (1971)
and Yanai (1971b). Yanali ef al. (1973) used these equa-
tions to determine the bulk properties of tropical cumu-
lus cloud clusters from the observed large-scale budgets
of heat and moisture. In that study, the large-scale
tendency terms were given from observations. But our
problem is a prognostic one, and the large-scale tend-
ency terms are precisely what we wish to obtain from
the parameterization of cumulus convection.
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4, Spectral representation of the cumulus
ensemble

Egs. (74) and (75) show which properties of the
cumulus ensemble must be found to predict the large-
scale temperature and moisture fields. The modifica-
tion of the large-scale fields by cumulus convection
depends on 1) the total mass flux in the clouds, M .(2),
2) the total detrainment from the clouds into the en-
vironment, D(z), and 3) the mixing ratio of liquid water
at the vanishing buoyancy level, I(z). Therefore, the
problem of parameterization of cumulus convection
has reduced to relating these properties of the cumulus
ensemble to the large-scale temperature, moisture and
velocity fields. (In addition, cumulus clouds modify the
large-scale temperature through - Qg;, the radiational
heating.) d.e.

The total detrainment D(z) at different levels refers
to different types of clouds. When the thickness of the
detrainment layer, Azp;, is infinitesimally small, the
total detrainment in the layer between z and z+ds,
D(z)dz, is equal to the total mass flux, at level 2, of the
clouds which lose buoyancy within that layer. It is now
clear that finding the total detrainment D(z), as a func-
tion of height, is equivalent to finding the distribution
of the mass flux in the different types of clouds which
lose buoyancy at the different levels. This suggests that
we represent the cloud ensemble in spectral form, by
dividing the ensemble into sub-ensembles, each of
which has a characteristic cloud type.

For simplicity, we assume that a single positive
parameter A can fully characterize a cloud type. Then
the detrainment level zp, which is the maximum height
of the cloud top, becomes a function of \. We will
choose N so that zp(\) will decrease as X increases, as
shown schematically in Fig. 3. A more specific definition
of A will be given later. Let Ap (2) be the A of the clouds
which are detraining at level 2. Then Ap (2) is the inverse
function of zp(\), which satisfies

z=2p[A\p(3)] (70)

identically; and Ap(2) is the maximum value of A at

dz {

|
POSITIVE
BUOYAI‘:CY !

[ ,

-

Fi16. 3. The detrainment level zp as a function of \, or Ap of the
detraining clouds as a function of z,
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FiG. 4. A schematic diagram which shows the sub-ensemble of
type A clouds and the subcloud mixed layer. The updraft, which
originates in the mixed layer, is unsaturated in the region between
z¢ and zg.

level z, because the clouds which have A larger than
Ap have detrainment levels lower than z.

The total mass flux in the clouds, M., can be expressed
as

. AD(z)
M (2= / Mz NN, a7

where

MENIA= > M(z)

Ae(h A+dN)

(78)

is the sub-ensemble mass flux due to the clouds which
have the parameter X; in the interval (\, \d\).

The total detrainment D(z)dz in the layer between z
and z4-dz is equal to the sub-ensemble mass flux, at
level z, due to the clouds which have parameter \; in
the interval Ap(z)—(—dA\p(2)/dz)dz to Ap(g), as is
shown in Fig. 3. Then we have

(]}\D(Z)
D(z)= —91t(z,\p(2)) . (79)
dz
It is convenient to normalize M (z,\) by
M (2,1) =95 (N (2,\), (80)
where
NMpN)=(z5,)), (81)

and zp is a properly chosen base of the updrafts associ-
ated with the clouds. Obviously,

7{z5,\)=1. (82)

We shall find it convenient to choose the top of the sub-
cloud mixed layer as the base zz as shown in Fig. 4.
In the next section, we will refer to observations which
show that the top of the mixed layer is located some-
what below the cloud base z¢. The vertical mass flux
below the cloud base should be interpreted as the mass
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flux of the updrafts associated with the clouds but not
in the clouds.

Next, we consider the budgets of mass, moist static
energy, and water substance for the sub-ensemble. The
summation of (43) over all members of the sub-en-
semble, and subsequent dropping of the time derivative
term, gives

an(z,\) oy

0z Xie (N, N+dXN

) Ei(z)J/[91s(N)aN],  (83)

where (78) and (80) have been used. Similarly, (51)
and (52) give

3 an(z,\)
“[W(Z:X)hc(z;)\)]: k(Z), (84)
a9z dz
J
-{n(z,)\)[qc(z,)\)+l(z,>\):]} ‘
dz
In(z,)\)
= e g(z)—n(z,Nr(z,)), (85)

dz

where (78), (80) and (83) have been used. The symbols
he(2,\), qo(2,\) and I(z,\) are &, ¢ and I, respectively, in
the clouds which are members of the sub-ensemble; and
r(z,\) is defined by \
> R

Nie (X \+dX)

Nz,\)7(2,\)dN= (86)

The radiational heating in the entrainment layer is
neglected.
Eqgs. (84) and (85) can be rewritten as

Ahe(z,\) ~
= _,“<Z7>\)[hc(zy)‘> -“]’L(Z)], (87)
0z
i}
5;[%(23\) +l(Z,)\)]
= —,u<Z,>\) ch(z’)\) +l(z,)\) —q‘(z)]—r(z,)\), (88)

where u(z,\) is the fractional rate of entrainment for
the sub-ensemble, given by

N = 1 37)(3,>\)
/J,(Z, )=7](z,)\) oz .

(89)

Except for the dynamical and cloud microphysical
processes which determine r(z\) and the subcloud
layer processes which determine %.(z5,\) and g.(zz)\),
the problem of parameterizing cumulus convection has
now been reduced to finding the normalized vertical
profile of the sub-ensemble mass flux #(z\), and the
mass flux distribution function at the top of the mixed
layer 9 z(\). In order to show this, let us assume that
n(z)\) [and, therefore, u(z,\)] is known. In this case
he(2,\) can be readily obtained by integrating (84) or
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(87) with respect to height, with given 2 (z) and %.(z5,\) ;
and ¢.(z,\) above cloud base is then obtained by using
the saturation condition (56), rewritten in the form

1 _
qc<z,x>—q*(z>=i;z[hxz,x)—h*(z)]. (90)

The value of ¢.(z,\) below cloud base can be obtained
by integrating the water substance budget equation
[(85) or (88)] with I(z,\)=0, and with given §(z) and
g.(zp,\). Cloud base can be determined by the con-
tinuity of g.(z,\) below cloud base and above cloud base.
Above cloud base g.(z,\)+1(3,\) can be obtained by
integrating the water substance equation further up-
ward, with a parameterized r(zA). Then from the
known ¢.(z,\) and ¢.(z\)+1(z,\) above cloud base, we
can find I(z,\). The liquid water mixing ratio at the
vanishing buoyancy level is given by

=)=z ()], o1

where \p(z) is the inverse function of zp(A), and the
detrainment level zp(\) is found from the condition of
vanishing buoyancy (63), rewritten in the form

heLzp WM ]=h*Cap (V). (92)
Here h* is defined by (64) and
ILzo M) ]=Uzo M) AoLzp (M)},
=ILzp(\),\]. (93)

Then, only the mass flux distribution function MMz (A),
which is needed for computing M (z) and D(z) from
(77) and (79), remains unknown.

Although our knowledge of the dynamics of clouds is
far from adequate, the determination of the normalized
vertical profile of the sub-ensemble mass flux n(g,\) is
logically more straightforward than the determination
of the mass flux distribution function Mt z(A). We may
assume that the members of a sub-ensemble are at
random phases in their life cycle and, therefore, the
summation of the mass flux over all members of the
sub-ensemble, as in (78), is proportional to the mass
flux of a single cloud averaged over its entire lifetime.
The constant of proportionality is the number of clouds.
But the constant of proportionality does not matter for
n(g,\), since n(z\) is normalized. A dynamical model
which governs the life cycle of a single cloud will deter-
mine the vertical profile of the time-averaged mass flux
of that cloud and, therefore, will determine 5(z,\) for
each cloud type characterized by parameter A. But we
are assuming that a single scalar parameter X is sufficient
to characterize the cloud type. For this assumption to
be approximately valid, we must choose the parameter
\ properly.

The one-dimensional model of the cumulus tower,
developed by Simpson et al. (1965) and Simpson and
Wiggert (1969, 1971), has been extensively tested
against observations. This model specifies the fractional
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rate of entrainment by

b= (94)

R

where R is the radius of the rising cumulus tower and
a the entrainment constant (see also Simpson, 1971);
R is either measured or assumed at the cloud base and
given to the model as an input. The assumption that R
is constant with height, in the Lagrangian sense, leads
to better agreement with observations than the alter-
native assumptions of horizontally expanding thermals
or starting plumes (Simpson et al., 1965).

In our model, also, we assume that R is constant with
height in the Lagrangian sense. We do not assume that
the cloud is a column-like steady jet; but we do assume
that the fractional rate of entrainment for the time-
averaged mass flux of the cloud is approximately con-
stant with height. Therefore, the cloud may consist of
a sequence of active elements which have a negligible
horizontal expansion rate below the level of vanishing
buoyancy. We choose this constant fractional rate of
entrainment as the parameter A which characterizes the
cloud type. Although the dependence of the entrain-
ment on the radius, as given by (94), is not used ex-
plicitly, we may interpret the larger A as representing
the smaller clouds and the smaller \ as representing the
larger clouds.

The assumption of constant fractional rate of entrain-
ment greatly simplifies the determination of n(z,A). This
assumption decouples the determination of 7(z,\), the
normalized time-averaged mass flux, from the solution
of the entire system of equations which governs the
life cycle of a cloud. An assumption about the geometry,
such as that of expanding spherical bubbles used by
Ooyama (1971), gives a similar simplification.

Z-2g

[/ /
[/,

=
7

Fic. 5. Schematic profiles of the normalized mass flux n(z,A) for
various A. The envelope of these curves is [2,Ap(3)].
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Fic. 6. Vertical profiles of h(p), k*(p) and k. (p\); ke(p,\)
lines are dashed and labeled with the value of A in percent per
kilometer. Profiles of ~ and A* were obtained from Jordan’s (1958)
“mean hurricane season’’ sounding. The top p5 of the mixed layer
is assumed to be 950 mb; /s is assumed to be 82 cal gm™1,

Replacing u(z,\) in (89) by A, we obtain

an(z,\)

0z

=\n(z,\). (95)

Eqgs. (95), (82) and the definition of zp(\) immediately
give
er (z—zB)’

ZB<Z<ZD()\)

0(27)‘): 0, ZD(}\) <z

(96)

Thus, the sub-ensemble vertical mass flux increases
exponentially with height due to the entrainment.
Above the detrainment level zp()\), the mass flux be-
comes zero. Fig. 5 schematically shows 7 (z,\) for various
A.

To determine zp(\), we must find %.(z,\). The solu-
tion of (84) is given by

ho(z,\) = ! )[hc(zB,)\)—i—)\ / ’ n(z’,)\)ﬁ(z’)(lz’:l. 97)

7)(27}‘ B

Here, (95) has been used. Above the condensation level,
(55) gives

1

se(z,N) —38(z) = " [he(zN) —h*@)],  (98)

v(2)

where v is defined by (57).® As an example, for given
h(z), h*(z), zp and a constant h.(zs,\)=ha, k.(2\) is

8 Below the condensation level z¢, Eq. (98) must be replaced by

56N —8(2) =ﬁx—)[sc<zm) EN / “n(E W@ |5, 98)

B

The condensation level is obtained by the consistency of (98)
with (98") at z¢.
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F1c. 7. The function v(p) for Jordan’s “mean
hurricane season” sounding.

shown by the broken lines in Fig. 6 and v (z) is shown in
Fig. 7. In the figures pressure is used as the vertical
coordinate. For A=0, 5(3,0)=1 and the second term in
the bracket of (97) vanishes. Then %,(z,0)= Ay for all 2.
As )\ increases, /.(z,\) is more rapidly diluted by %(z).
When the difference between h* and A* is neglected, the
detrainment level is given by the intersections of the
broken lines with the curve #*(z) in Fig. 6. The curve
#p (M), the pressure at the detrainment level thus ob-
tained, is shown in Fig. 8. This figure shows that smaller
clouds (larger A) have lower detrainment levels than
larger clouds (smaller \) because smaller clouds, which
have a larger entrainment rate, lose positive buoyancy
more quickly than larger clouds.

To find the mixing ratio of liquid water, we integrate
(85) with respect to height from a given ¢.(z5, ). In
addition, a parameterization of the rainfall rate r(z,\)
is necessary; a very crude, but perhaps adequate
parameterization, is used in Appendix B.

It remains to find the base level variables, 23, %.(25,A),
gc(28,\), and most importantly, the mass flux distribu-
tion function, Mg(A). Up to this point our theory is
not substantially different from that of Qoyama (1971),
as far as the basic logic is concerned. Ooyama concluded
that the problem of parameterization of cumulus con-
vection reduces to finding a ‘“‘dispatcher function,”
the rate of generation of buoyant bubbles as a function
of the initial state of the bubbles. However, Ooyama
left the determination of this dispatcher function as an
open question and because of this his parameterization
is not complete.

5. Budgets of static energy and moisture for the
mixed layer

In this section we present a model of the subcloud
mixed layer which interacts with the cumulus ensemble.
Observations over the Caribbean by Bunker et al.
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(1949) and Malkus (1958) show that between the ocean
surface and the cloud base level there typically exists a
mixed layer in which the potential temperature 6 and
the mixing ratio of water vapor ¢, and therefore s and
h, are approximately constant with height. The top of
the mixed layer is somewhat (~200 m) lower than the
cloud base level. Except for the region directly below
the clouds, there typically exists a thin transition layer
immediately above the mixed layer in which 6, and
therefore s, rapidly increase and ¢ rapidly decreases
with height.

We denote the height of the mixed layer by zp (Fig.
9), where z5 is assumed to be lower than the cloud base
2¢, which is approximately the level of lifting condensa-
tion. Therefore, we consider here only non-saturated
mixed layers.® We model the transition layer as a dis-
continuity in s and ¢ at 5. In this respect, our approach
is similar to those given by Ball (1960), Lilly (1968),
Deardorff (1972) and Betts (1973a). We define

As=5(zp+)—sar, (99)
Aq=3q(zpt+)—qu, (100)
A=l (a5 ) —uag, (101)

where §(zp+), §(zs+) and 2(zs+) are values of 3, g,
and % evaluated just above the discontinuity at zs,
and su, gur and /iy are the mixed layer values of s, ¢
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T16. 8. The function pn(A) or Ap(p) corresponding to Fig. 6.

¢ Saturated mixed layers will be discussed in a forthcoming
paper by Randall and Arakawa (1974).



APRIL 1974

cloud
ensemble

AKIO ARAKAWA AND WAYNE

HOWARD SCHUBERT 685

T
3Fs 3F

Fic. 9. A schematic diagram of the subcloud mixed layer in which s and ¢ are
constant with height, The transition layer (the layer between z=3p and z=2z5+)
just above the top of the mixed layer is assumed to be infinitesimally thin and dis-
continuities in s and ¢ are assumed to occur at zp. We assume that the mixed layer
is unsaturated so that z¢ is above zp. M p—ppp is the downward environmental
mass flux at zg. In typical situations the surface turbulent fluxes of s and g are up-
ward, while at zp the turbulent flux of s is downward and the turbulent flux of ¢ is

upward.

and /. The quantity Ak is given by

Ah=As+ LAq. (102)

In typical cumulus situations LAg dominates As, mak-
ing Ak negative. The quantity Ak* is given by

Ah*=[14+v(zg)]As, (102)

where v is defined by (57). Typical vertical profiles of

h and /&* near the mixed layer are shown schematically

in Fig. 10. Because of the sign of A%, the cumulus cloud

updraft prefers to originate from the mixed layer. In

this paper, we shall only treat that type of situation.
In the mixed layer,

as M 8F

p—=—pV:Vsyy——+Qk, (103)
at 0z
aqM _ 6Fq
p——= —pV Vgar——) (104)
ot 0z

where F; and F, are the vertical turbulent eddy fluxes
of s and ¢. Integration of (103) and (104) with respect
to z from zero to zp gives

aSM 1
pir——=— (V) 3r- Vssur+—L(Fa)o— (Fs)5]
at 2R
+(Qr)a, (105)
O 1
pu——=—(pV) s Vgrr+—L(Fo)o—(Fo)r], (106)
at %p
where . .
pu=— / pdz, (107)
Zp Jo
1 2B
(pV)M:—"——-/ pvdz, (108)
2 Jo
1 zB
(QR)ME—'/ QOrdz. (109)
Zr Jo

The terms (F,)o and (F,)o are the fluxes of s and ¢ at
the surface, while (F,)z and (Fg)z are the fluxes of s
and ¢ at zp (Fig. 9). The turbulent eddy fluxes jump
to zero across the infinitely thin transition layer, the
layer between zz and 2+
To derive equations for the time change of zp we
consider the heat and moisture budgets in the infinitely
thin transition layer shown in Fig. 9. The total vertical
mass flux M g beneath the clouds, at level 23, is given by
Amax
MBEM,,(ZB> = STZB()\)(Z)\.

0

(110)

The subsidence between the clouds at the top of the
mixed layer is given by M p—ppwps. The mass flux into
the mixed layer, the depth of which may be changing
with time, is given by pp(Dzp/Dt—wg)+Mp. The
downward fluxes of s and ¢ through the top of the
transition layer, at =254, are

DZB
(SM+AS) [pB(—“—’lI)B>+MB}, (111)
Dt

CONDENSATION

MIXED
LAYER

SURFACE
LAYER

F1c. 10. A schematic diagram of typical vertical profiles of %
and %* near the mixed layer. % is constant with height in the
mixed layer, and 4* decreases rapidly with height in the mixed
layer since the temperature lapse rate is dry adiabatic.
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) DZ[,-
((jm‘l‘Al[) [pg(*““—'wb')‘*_Mb’}- (112)
- Dt

The downward fluxes of s and ¢ through the bottom of
the transition layer, at 25, are

DZB
S/L/[ﬂn(%—ﬁ)n)‘an:l—(Fs)n, (113)
Dt
Dz
qu:pB<“——-wn)+MB:l (Fo)s, (114)
D¢
where we have defined
D a3
Dt ot

The continuity of heat and moisture fluxes across zz
yields

DZB 1
pp—= —(MB—p[;wB)_"_(Fs)B, (116)
Dt As
DZB
(117)

ps——=—(Mp—pstp)——(Fq)5.
Dt Ag

Here, we have ignored the possible discontinuity of the
radiation flux at zp. This effect is of critical importance
when the upper part of the mixed layer is saturated
and has a layer of stratus cloud (see Lilly, 1968), but
not with our unsaturated, mixed layer. Consistency of
(116) and (117) requires

Ag
(F)p=-—(F.)s. (118)
As

A relation between the fluxes of virtual s at the bot-
tom and top of the mixed layer can be derived from the
turbulent energy balance, following Lilly (1968). We let

(Fsv)3= —k (Fsu)o- (119)
The flux of virtual s is Igiven by |
Foo=F+c,TF,, (120)

where T is'a reference temperature and §=0.608; %
takes a value between 0 and 1. Lilly (1968) discussed
the extreme cases k=0 and k=1, which he called the
minimum and maximum entrainment cases. The mini-
mum entrainment case corresponds to total frictional
dissipation of turbulent kinetic energy, while the maxi-
mum entrainment case corresponds to zero frictional
dissipation of turbulent kinetic energy. Deardorfl et al.
(1969) suggested k£=0.10 from laboratory experiments
on non-steady penetrative convection in a water tank.
Betts (1973a) suggested £~0.25.
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Egs. (118), (119) and (120) can be combined to give

. kAs :

(Fs)p=—~——(Fs.)o, (121)
As,
kAq

(F'I)B= “_"(Fsu)n, (122)
As,

where
As,=As+c,ToAq. (123)

Positive As, is required for dry convective stahility.
Egs. (121) and (122) show that with an upward sur-
face flux of virtual s, there is a downward flux of s and
an upward flux of ¢ at 2. This is shown schematically
in Fig. 9.

Egs. (105), (106), (116), (121) and (122) combine to

give
aSM
par——=—(pV) - VS,w‘i“"l:(r )0+k~_<F”)°]
d¢ zn Asy

+(Qr)u, (124)

dq;
pﬂ[_’vf'_' —(pv) M V‘IM‘*' I:(F(I)O—}_k—_(Fs”)O]’ (125)
ot 2B As

DZB k
pr——=—(Mp—ppwp)+-——(Fsp)o. (126)

Dt As,
Eqgs. (124) and (125) give

Oy
pPyM—= -—(pV)M V/’lM'l'_[(Fh)O"'k—(Fsv)O]

at ZB ASv

+(Qr)ar, (127)

where (F})o is the surface flux of 4.

In (124)-(127), As, appears as a denominator. When
As, is small, a direct estimate of As, may be inaccurate.
Following Deardorff et al. (1969) and Betts (1973a),
we derive the following approximate alternative expres-
sion for As,, which may be used when As, is small (see
Appendix A):

k 98,
As,,z——-—zB( ) ,, for small As,. (128)
1+k .0z z2=—zB+

Eq. (126) reflects the fact that what determines the
mass inflow into the mixed layer is the entrainment
due to turbulent eddies, which depends on the turbulent
eddy flux of virtual s at the surface. Without the en-
trainment, the top of the mixed layer is simply pushed
down by the subsidence, M z—p 50 5.

Without cumulus clouds (M p=0), the depth of the
mixed layer increases with time when ppwWs+k(Fso)o/
As,>0. With cumulus clouds, however, the cumulus-
induced subsidence between the clouds counteracts the
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deepening of the mixed layer. When the cumulus en-
semble is very active, the cumulus-induced subsidence
may even make the mixed layer shallower. However,
the mixed layer cannot become too shallow, because
the shallower it becomes the smaller is the fraction of
air which enters the cloud from the mixed layer, and
the greater is the fraction of air which enters the cloud
from the environment above the mixed layer; and that
environmental air has not been reached by the turbu-
lent upward transport of moisture. A shallow mixed
layer is therefore not favorable for maintaining an in-
tensely active cumulus ensemble. In this sense, the
variable depth of the mixed layer is part of the mecha-
nism which controls the total mass flux into the clouds
from the mixed layer. Betts (1973a) obtained M 5 from
(126) and (128), for a given wp and (F,,),, assuming
zp=2¢. We do not assume zz=2¢, but instead let zp
vary with time, in order to let the depth of the mixed
layer be one of the controls on the intensity of the
cumulus convection. A more quantitative formulation
of this mechanism is given later in this paper.

In this section, we have shown that zg, sy and gar,
and therefore /s, can be determined prognostically.
However, there remains the question of whether it is
adequate to replace s.(z5,\), ¢.(25,\) and k.(z5\) by
the characteristic values sy, gar and %y in the mixed
layer. This depends on whether the cumulus clouds
have their roots in the thermodynamical variables
within the mixed layer. It has been reported that cloud
roots are not observed in the mixed layer for trade-
wind cumuli (Bunker e al., 1949; Malkus, 1952). In
general, evaporation from falling precipitation would
make s.(zp,\) lower than sy and ¢.(z5,\) higher than
gar, but would leave /4y unmodified. The liquid water
mixing ratio /(z) does depend on g.(z3,\), but it depends
even more on how we parameterize the rainfall r(z\).
Apparently, some perturbations of the mixed layer are
necessary for triggering the onset of a cloud within an
otherwise uniform environment. But even then, the
perturbation could be on 2z, rather than on sy or qu
(see Malkus, 1963). In this paper, we postulate that the
primary role of the mixed layer is to supply moisture
and static energy to the cumulus clouds and, therefore,
we let

se(z5,N) =S, (129)
9e(28,M) = qar, (130)
he(zp,N) =y, (131)

6. The cloud work function

Our final problem is to find the mass flux distribution
function, 9Mp(\). The real conceptual difficulty in
parameterizing cumulus convection starts from this
point. We must determine how the large-scale processes
control the spectral distribution of clouds, in terms of
the mass flux distribution function, if they indeed
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do so at all. This is the essence of the parameterization
problem.

For the special case in which the mass flux distribu-
tion function has a sharp maximum around a certain A,
the entrainment relationship (94) will give the pre-
dominant size of the clouds. In this particular case,
therefore, finding 9z(\) will also solve the problem
of the cumulus size. However, as Simpson (1971)
stated, “Although cumulus size appears to be at least
roughly proportional to the horizontal convergence in
the synoptic regime, what really determines the scale
of convection remains one of the critical unsolved
problems in meteorology.”

The solution for 9Ms(\) may be even more difficult
than just the determination of the predominant cloud
size; instead, we must determine the entire spectrum
of the clouds. But, on the other hand, in a parameteriza-
tion theory it is necessary to find only the statistical
properties of the cumulus ensemble, under given large-
scale conditions, and not the properties of each in-
dividual cloud at a given place and time. Also, with the
approximations that are used in this parameterization
theory, we need to obtain only the mass flux distribution
function, 9Mz(\), and not necessarily the population
distribution in A space. These two are generally not
equivalent.

As preparation for an attempt to solve the problem,
which will be made in the next section, we now look into
the generation of the kinetic energy of cumulus
convection.

The time change of the kinetic energy of each sub-
ensemble can be written as

d%(n

Tdt—)=A()\)mBO\)_'®O‘): (132)

where X (A\)d\ and D(N)dX are, respectively, the kinetic
energy and its dissipation rate due to the circulations
associated with all the clouds which have fractional
entrainment rates between A and A+d. The first term
on the right in (132) is the rate of generation of kinetic
energy due to work done by buoyancy forces, i.e., A (\)
is the kinetic energy generation per unit 9z (\)dA. It
is important to note that (132) holds for two- or three-
dimensional cumulus convection, in which mass con-
tinuity is satisfied in a vertically bounded domain and
which allows kinetic energy conversion between vertical
and horizontal velocity components. However, mechan-
ical interactions of the cumulus convection with the
vertical shear of the horizontal velocity of the environ-
ment and with other types of clouds are neglected.

We call A(\) the “cloud work function.” Because
A()\) is the kinetic energy generation per umit mass
flux, it is a measure of the efficiency of the kinetic
energy generation. It is given by

zD{A)
A= /
2B 5

77(27)‘)[3“‘(27)‘) —§,,(z):]dz, (133)

4
12’1_7(2)
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where n(z,)\) is the previously defined normalized mass
flux and g[s,.(z\)—3,(2)]/(c,T) the buoyancy force.
Therefore, A (\) is an integral measure of the buoyancy
force with the weighting function 5(zA). |

It is important to note that the buoyancy force for a
given X is a property of the environment, including the
subcloud mixed layer. For simplicity, let us temporarily
neglect the difference between static energy and virtual
static energy. Eqgs. (97), (98) and (131) give

77(23>‘> I:Sc(Z,)\) —é(z)]

1 z
——J et | (B e |
‘1+'Y(Z> zB
for zc¢(\)<z<zp(0N), (134)
and Egs. (98) and (129) give
n(z’x)[sv(zix)_g(z)]
=swrt [ e Wi =5,
for zp<z<3c(M). (135)

From (134) and (135), we see that the buoyancy force
[and, therefore, the detrainment level zp(A)] for each
\ is completely determined by the thermodynamical
vertical structure of the environment.” Then, the cloud
work function 4 (\), which is given by (133), is also
determined for each A by the thermodynamical vertical
structure of the environment. Moreover, the cloud work
function is the only property of the environment which
can influence the kinetic energy generation of type A
clouds.

In the special case of z¢(A)=2p+, substitution of
(134) into (133) gives

. zp(\)
A= / (2)8E)

x[hMH / , n(z',w(z')dz'—n(z,mﬁ*(z)]dz, (136)

ZB

where?

p(2)B(z)= (137)

e T@[1+v()]
Using the identity '

z 6 _ '
HENR*E) =F* @ t)+ [ DoV (139

7 This conclusion also holds when the virtual static energy is

used.
8 Later we redefine 8(z) to include an effect of the difference

between static energy and virtual static energy.
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and Eq. (95) in (136), we obtain
2D (\) ) z )
A= [ o8 b=t t)+ [ e
2B 2B+

ah*(z")
9z’

X {)x[ﬁ(z’)—ﬁ*(z’)]— }dz’]dz, (139)
where p(2)8(2)[har—h* (33+)] is the buoyancy at cloud
base; —0h*(z)/dz is positive when the lapse rate ex-
ceeds the moist adiabatic lapse rate. When there is no
buoyancy at cloud base [ky=Ah*(z5+)], and the en-
vironment is saturated (k=A%), (139) is simply an
integral measure of the conditional instability, —ah*/
dz. When the environment is not saturated, the con-
tribution to A(\) by 2z—A* [i.e., L(g—q*)] is always
negative and opposes the positive contribution by the
conditional instability. To have positive 4 (A), which is
necessary for kinetic energy generation, the environ-
ment must not only be conditionally unstable, but it
must also be moist enough to give a sufficiently small
{k—h*|. This effect becomes increasingly important as
\ increases. Non-entraining clouds, for which A=0, are
not influenced by the environmental humidity above the
cloud base. 4 (\)>0 can therefore be considered as a
generalized criterion for moist convective instability.
Because of entrainment, the criterion depends on cloud
type. The condition 4 (A\)=0 for all \ gives a neutral
environment.

Logically, A(\)>0 is not a sufficient condition for
kinetic energy generation. Actual kinetic energy genera-
tion depends also on 9z (M), for the kinetic energy gen-
eration is zero when 9 (\)=0, regardléss of the value
A (\). However, we have seen that 4 (\) is also a meas-
ure of moist convective instability. We therefore expect
the development of cumulus clouds, and consequently
the increase of M 5(A) whenever 4 (\)>0, provided that
there is a triggering mechanism to get the cumulus
convection started.

In order for 9Mz(M\) to reach a significant size, 4 ()
must remain positive for a sufficient length of time.
This motivates us to look into the time change of the
cloud work function 4 (A). ‘

Because the cloud work function depends only on the
vertical distributions of the static energy and the water
vapor mixing ratio in the environment, including the
subcloud mixed layer, the prognostic equations (74),
(75), (124), (125) and (126), which govern the time
derivatives of §(2), (), sar, ¢ and zp, respectively, are
sufficient to give the time derivative of the cloud work
function. These prognostic equations involve terms of
two types: “cloud terms,” which depend on the mass
flux distribution function either through the total ver-
tical mass flux, M,.(z) (or M), or through the total
detrainment D(z); and “large-scale terms,” such as
large-scale advection, surface eddy fluxes, and radia-
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tional heating terms, which do not depend on the mass
flux distribution function. Then the time derivative of
the cloud work function can be expressed as a summa-
tion of cloud terms and large-scale terms. We may write

. 1),

where the subscripts C and LS denote, respectively, the
cloud terms and the large-scale terms.

We call the large-scale terms the large-scale forcing
F(N). Positive F(\) means a positive rate of increase of
the cloud work function (destabilization), for cloud
type N\, by large-scale processes. The cloud terms
linearly depend on M.(3) and D(z). M.(z) is a linear
integral transform of 9 z(\) [see (77) and (80)]. D(z)
also linearly depends on 9tz(\) [see (79) and (80)].
Thus, the cloud terms linearly depend on 91z (\). Be-
cause the whole spectrum of cloud types participates in
determining M,(z) and D(z), we may write the cloud
terms in the form

(140)

dA(N) Amx
[———] = KOMN)IMG(\V)dN.  (141)
dt Jde Jo

Typically, the kernel K{(A\\') is negative. Then K (\,\")
XN p(N)dN is the rate of decrease (stabilization) of the
cloud work function for type A clouds through the
modification of the environment by type A’ clouds. Eq.
(140) is now rewritten as

dAQ\) e
—= / KON)MV)IN+FQ).  (142)
at o

The actual forms of F(A) and K(\,\") as well as their
derivations are given in Appendix B.
The large-scale forcing can be divided into two parts:

F\)=Fc(N+Fu), (143)

where F¢(M) originates from the large-scale terms in
Eqgs. (74) and (75) [we call F¢(A) the “cloud layer
forcing”]; and Fi(\) originates from the large-scale
terms in Eqs. (124), (125) and (126) [we call F4r(\) the
“mixed layer forcing”].

The most dominant effect in the cloud layer forcing
seems to be the increase of the cloud work function due
to the cooling of the environment above the mixed layer
by large-scale processes, typically by adiabatic cooling
due to large-scale upward motion. The mixed layer
forcing includes the increase of the cloud work function
through the deepening effects on the depth of the mixed
layer by large-scale upward velocity at the top of the
mixed layer, and by the upward flux of virtual static
energy at the earth’s surface. An examination of the
relative importance of Fec(A) and Fy(N), for actual ob-
served situations, will be presented in Part II of this
paper (Schubert and Arakawa, 1974).
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TYPE A CLOUDS

TYPE A CLOUDS TYPE X' CLOUDS

Fic. 11. A schematic diagram of the mutual influence of a sub-
ensemble pair through the first part of the vertical mass flux
kernel. The arrows inside the clouds show the normalized vertical
mass fluxes #(z,\) and n(z\"); n(z\")>n(z\) because A’>A. In
the upper part of the figure, the warming of the environment due
to type A’ clouds is shown, and in the lower part of the figure, the
warming of the environment due to type A clouds is shown. Note
that (warming due to type N clouds) Xn(z\')= (warming due to
type A’ clouds) X#(z,\) holds for 253<z<zp(’), which is the entire
depth of the mutual influence.

The kernel can be divided into three parts:
KON =KyQAN)+FEKp(AN)+HKar(V),  (144)

where Kv(A,N), Kp(A\") and Ky (\) originate, respec-
tively, from M.(z) in (74) and (75), D(z) in (74) and
(75), and M3 in (126). We call Ky (\,\') the “vertical
mass flux kernel,” Kp(A\,\") the “detrainment kernel,”
and Ky (\) the “mixed layer kernel.”

The most dominant effect in the vertical mass flux
kernel (and also in the entire kernel) is typically the
decrease of the cloud work function, for type A clouds,
through adiabatic warming of the environment due to
the subsidence induced by type A’ clouds. If the other
effects in Kv(A,\') are neglected, Ky (A,\’) is symmetric
with respect to A and M\'. This symmetry of Ky(\,\)

< MOISTEN, COOL

MOISTEN, COOL ——ps S

TYPE A CLOUDS TYPE X CLOUDS

I'16. 12. A schematic diagram of the influence of type A’ clouds
on type X clouds through the detrainment process. The detraining
air is saturated and contains liquid water. The detrainment
moistens and evaporatively cools the environment, Type A clouds
have no influence on type A’ clouds but type A’ clouds have a co-
operative influence on type X clouds.



690 JOURNAL OF THE
means that the amount of decrease of 4(\) by type A\’
clouds, per unit 9Mg(A)d\" (through the mechanism
described above), is equal to the decrease of A(\') by
type A clouds, per unit 9z(\)dA. This situation is
illustrated in Fig. 11.

The detrainment kernel is zero for A<\, and nearly
always positive for A’>\. This means that shallower
clouds increase the cloud work function of deeper
clouds through cooling of the environment (by the
evaporation of detrained liquid water) and through
moistening of the environment (by the evaporation and
the detrainment of the saturated air from clouds).
This situation is illustrated in Fig. 12.

The role of a varying zp in controlling the intensity
of the cumulus convection was discussed in Section 3.
This role is included in the mixed layer kernel.

7. The quasi-equilibrium assumption

The purpose of cumulus parameterization is to relate
the statistical properties of a cumulus cloud ensemble
to the large-scale variables, and thereby to obtain a
closed system of prognostic equations for the large-
scale variables. We have already shown that such a
closed system will be obtained if we can determine the
mass flux distribution function, MMz (\), which is the
sub-ensemble vertical mass flux at the top of the mixed
layer. However, there is no e priori reason to believe
that this is always possible.

One might take the view that the mass flux distribu-
tion is determined entirely by subcloud layer processes.
This point of view is supported by one-dimensional
cumulus cloud models, in which the horizontal velocity
components and induced pressure gradients are ne-
glected. With the exception of precipitation effects,
such one-dimensional cloud models do not allow dy-
namical interaction between the upper and lower parts
of the cloud. An initial cloud base condition determines
the solution only along a characteristic line in the z-¢
plane. While such a model can predict the height and
some other properties of the cloud top reasonably well,
the prediction of the properties of the cloud air which is
not near the cloud top is doubtful, unless proper cloud
base conditions are given as a continuous time sequence
of “initial” conditions. Because a one-dimensional
cloud model does not allow the dynamical process above
cloud base to control the cloud base conditions, a

continuous sequence of “initial” conditions can be.

specified independently, as long as an updraft is given
near the cloud base. Therefore, only the local subcloud
layer processes remain as a possible mechanism for
determining the cloud base conditions.

The situation is different in models which have more
than one dimension. An impulse is still needed, if the
initial condition is otherwise horizontally uniform, but
only for the first cloud to get started. After the initial
time, the cloud base conditions for the first cloud and
for all subsequent clouds cannot be specified, for they
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are a part of the solution of the entire system of equa-
tions, which includes the dynamics of both the cloud
and subcloud layers.

Small turbulent perturbations in the mixed layer be-
low the clear environment are not likely to trigger new
clouds, if the top of the mixed layer is sufficiently be-
low the condensation level. Thus, the formation of new
clouds between existing clouds usually requires stronger
impulses, possibly stimulated by the downdrafts
associated with neighboring clouds, Otherwise, a new
cloud (or a new active part of a cloud) is likely to form
in the wake of a preceding cloud (or a preceding active
part of a cloud), because the solenoidal field associated
with the preceding cloud (or the preceding active part
of the cloud) produces a circulation in a vertical plane.

The cloud work function, 4 (\), defined in the last sec-

tion, is an integral measure of this solenoidal field.

It was pointed out in Section 4 that the sub-ensemble
mass flux is the population times the mass flux of a
single cloud averaged in time over its entire life. At
level zg, we have

IL(N)dN
) MBO\).

NMp(N\)dr= (145)

T

Here 9t(\)d\ is the population of the sub-ensemble,
7(A) the lifetime, and Mp(\) the vertical mass flux,
at level zg, of a single cloud integrated over ils entire
lifetime. Because all clouds which exist at time £ must
have formed during the time interval [1—r(\), ],

“(N)dN/7(N) is the rate of cloud formation. This cor-

responds to the ‘“dispatcher function” of Ooyama
(1971). Mz(\) is the total mass which passes level zp
through the entire life of a single cloud. If we represent
each cloud by a spherical bubble, as Ooyama (1971) did,
the total mass becomes the mass of the bubble, which
depends only on its radius. Because the radius is re-
lated to the fractional rate of entrainment A, through an
entrainment relation similar to (94), the total mass
Mp(\) becomes a prescribed function of A, which re-
mains the same regardless of the large-scale conditions.
Then the mass flux distribution function M gz(\) for
different large-scale conditions is controlled only
through different ‘“dispatcher functions.” This agrees
with Ooyama’s conclusion. However, if we do not
assume sphericity, or any other prescribéed geometry
which relates the vertical dimension to the horizontal
size, the functional form for Mp()\) is unknown. Mz(\)
is a gross measure of the activity of a single cloud of
type A, and it is highly probable that large-scale con-
ditions control the mass flux distribution function by
giving different functional forms to Mz(A).

The numerical simulation of a cloud with the “one-
and-a-half” dimensional model of Ogura and Takahashi
(1971) clearly shows that the time-integrated mass
flux near cloud base is highly sensitive to the rate of
conversion of cloud droplets to rain drops (see Fig. 7
of their paper). When the conversion rate is sufficiently
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small, the cloud attains a steady state® [i.e., Mp()\) is
infinitely large], while with larger conversion rates the
cloud undergoes a life cycle [mp(A) is finite]. Accord-
ing to Ogura and Takahashi’s interpretation, this differ-
ence is due to the drag force by raindrops in the middle
portion of the cloud where the buoyancy force is acting.
This does not directly show that mMg(A) is sensitive to
the large-scale conditions, but it does indicate that
Mp()\) is sensitive to work done by forces 1% the cloud,
i.e., the kinetic energy generation or destruction.

Recently, rapid progress toward the realistic simula-
tion of cumulus clouds has been made with two-dimen-
sional models, notably by Arnason et al. (1968, 1969),
Arnason and Greenfield (1972), Murray (1970), Murray
and Koenig (1972), Orville (1968), Orville and Sloan
(1970), Takeda (1971), and Wilhelmson and Ogura
(1972). But those studies have been limited to the
formation and decay of a single cloud. There has been
no numerical simulation of a cumulus cloud ensemble,
analogous to the numerical simulation of the general
circulation of the atmosphere.

Due to our lack of theoretical understanding and
empirical knowledge, we do not attempt in this paper
to determine 9U(\), r(A\) and Mp(\) separately, al-
though that should be an eventual goal of statistical
cumulus dynamics. In the rest of this section, we will
show that this separation is not necessary to determine
the mass flux distribution function, 9z (A), if a cumulus
ensemble is in quasi-equilibrium with the large-scale
forcing. We will also show observational verification of
the quasi-equilibrium assumption.

However, in order to understand the quasi-equilib-
rium, some physical insight into the transient phase is
necessary. Suppose that we perform a numerical simu-
lation experiment with an initial condition in which
there is no cumulus convection and no large-scale forc-
ing, but in which the vertical distributions of tempera-
ture and moisture give a positive cloud work function
A(N) for a certain range of . Cumulus clouds will then
develop, provided that there is a triggering mecha-
nism, and the mass flux distribution function will in-
crease with time. Then, modification of the environ-
ment by the cumulus clouds, through the cloud terms
in (74), (75) and (126), will begin. Typically, the
modification will warm and dry the environment above
the mixed layer and decrease the depth of the mixed
layer. Such modification of the environment will pro-
duce a smaller buoyancy force in the clouds and, there-
fore, a smaller cloud work function. This decrease of
the cloud work function (stabilization) is through the
cloud terms in (140). If the large-scale forcing remains
negligible in time,¢ this stabilization and kinetic energy
dissipation will eventually make the cumulus cloud
activity die out. The final state will be a neutral state

? The time change of the environment is neglected in their model.
Y This will be true if conditional instability of the second kind
does not exist.
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[i.e., A(A\) =0 for the entire range of A] with no cumulus
clouds. We call the time needed for this adjustment to
a neutral state, “the adjustment time.”

However, if there is a counteracting increase of the
cloud work function (destabilization) by large-scale
forcing, the cumulus activity will be maintained. As an
idealization, let us ignore any time change of the large-
scale forcing. Then the adjustment will not be toward
a neutral state, with no cumulus clouds, but will be
toward an equilibrium state determined by the large-
scale forcing. This equilibrium is characterized by
dA(N)/dt=0, L.e., by the exact balance of the cloud and
large-scale terms in (142). At least when the large-scale
forcing is weak, the equations which govern the adjust-
ment process are approximately linear and, therefore,
the time needed to reach the equilibrium state will be
about the same as the adjustment time.

Usually the large-scale forcing is changing in time
and, therefore, the cumulus ensemble will not reach an
exact equilibrium. The properties of the cumulus en-
semble will then depend on the past history of the
large-scale forcing, but this dependency should be
significant only within the time scale of the adjust-
ment time. When the time scale of the large-scale forc-
ing, 713, is sufficiently longer than the adjustment time,
TapyJ, the past history, within the time scale of the
adjustment time, can be represented by the current
large-scale forcing. This means that the cumulus en-
semble follows a sequence of quasi-equilibria with the
current large-scale forcing. We assume that this is the
case for the cumulus ensembles we wish to parameterize,
We call this assumption “the quasi-equilibrium assump-
tion.” It is also an assumption on parameterizability,
if by parameterization we mean a relation between the
properties of the cumulus ensemble and the large-scale
variables at the same instant. Unless a cumulus en-
semble is in quasi-equilibrium with the large-scale
processes, we cannot uniquely relate the statistical
properties of the ensemble to the large-scale variables.

The problem we are considering is a problem with
two time scales: 74ps, the adjustment time scale, and
713, the time scale of the large-scale processes. Quasi-
equilibrium exists when 74p,<&rzg."* When the adjust-
ment process is filtered out, we obtain a sequence of
quasi-equilibria. In such a sequence, the large-scale
forcing and the cumulus ensemble vary in time in a
coupled way and, therefore, the time scale of the
statistical properties of the ensemble is equal to the
time scale of the large-scale processes, rrs.

In a sequence of quasi-equilibria, d4 (\)/d! is gen-
erally not zero. But following an argument similar to
that given_by Arakawal(1969), we can see that for
such a sequence d4 (A\)/d¢ in (140) is negligibly small.
The role of the cloud terms in (140) is to restore

"This situation is somewhat analogous to quasi-geostrophic
halance, which occurs when 1/f<L/V, where 1/f is the time scale
of geostrophic adjustment and L/1 the advective time scale.
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A(\) toward zero with time scale 74ps. Then the
order of magnitude of the cloud term is given by

’ [dA ()x):l 1

dt d¢
On the other hand, the order of magnitude of the actual
dA(N)/dL, in a sequence of quasi-equilibria, is given by

AN). (146)

TADJ

dA(N)
_— ——A \). (147)
dt | TLs
Combining (146) and (147), we obtain
dAN)| 71aps|[dAN)
’ [ ] . (148)
dt TLS dat [of
Therefore, when 74ps/715K1,
dA(N) dAN)T |
’<<’ [ ] , (149)
di dt ¢

and the left-hand side of (140) [and therefore of (142)]
can be neglected. Then we obtain

)\msx
/ KON\ +FN) =0 (150)

as an approximate equation which governs the mass flux
distribution function 9z (\).

Since 74ps/7rsK1 is a sufficient condition to justify
(150), the inequality sign in (147) is not necessary.
This means A(\) is not necessarily constant in time
over the time scale 715, even in an approximate sense.
A more general interpretation of our approximation is
that 4 () itself is small, because (146), (149) and (140)

give
dA(A)] |~ I:dA(A)] ,
[ i dot PN e Al

Eq. (151) means that A(\) is of the order of the in-
crease of the cloud work function, due to the large-
scale processes alone, over the short period of 74py.
Because 4 (\) =0 means a neutral state, a sequence of
quasi-equilibria can now be interpreted as a sequence
of quasi-neutral states.

Because we are not able to determine 74ps theo-
retically, we estimate its order of magnitude empirically.
From (133), the order of magnitude of A (\) is given by
A~gH (T,—T)/T, where H, is the depth of the
cloud. Observations show that the excess temperature
of clouds, T,—T, is of the order of a few degrees, so that

A~ (10" msec?)H,. (152)

We now estimate [dA4 (\)/dt]¢ from the dominant term
in the kernel Ky, which represents adiabatic warming

AMN)~Taps

(151)
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of the environment due to cumulus-induced subsid-
ence. We obtain (d4A(\)/dt)c~gH .(M./p)(d5/32)/
¢oT~N?saw H,, where N*=g(35/93)/c,T = (g9 Ind/dz)
~107* sec™% Because ¢, <10~ and v, <10 m sec™?, we
obtain sav.S$1 m sec‘1 If we use gav.~ (10~1- 1 m
sec™l),

dA(\)
<———> ~(107%-10"%m sec™3) H ,. (153)
a /e .
From (152), (153) and (146), we obtain _
Taps~ (103-10%) sec. (154)

Typically, 725> 10° sec. Then r4ps is at least one to
two orders of magnitude smaller than ..

A more precise observational verification of the quasi-
equilibrium assumption has been made with the
Marshall Islands data, provided by Yanai ef al. (1973).
Because the cloud work function is a property of the
thermodynamical structure of the environment (and
therefore of the large-scale field), we can calculate the
cloud work function from radiosonde observations.
From a time series of such data, we can calculate
dA(\)/di. The large-scale forcing F(\) can also be
calculated from observations if wind observations at a
network of stations are available. Fig. 13 gives examples
of such calculations. We can see, from the figure, that
the observed dA (\)/d! is much smaller than F(\).!2
This indicates that (150) is a good approximation.

It is important to note that quasi-equilibrium does
not mean quasi-steady temperature and moisture fields
on the time scale 715. A sequence of quasi-equilibria is
usually a sequence of different quasi-neutral states. In
such a sequence, time changes of the temperature and
moisture fields are not completely independent, because
the quasi-neutral condition 4 (A)=0 must be main-
tained, if type X clouds exist. Fig. 14 shows an example
of such a sequence. The calculations are based on ob-
servations at Eniwetok in the Marshall Islands, which
is located in the ITCZ. In the figure, I;(\) and Is(\)
are defined by

zp \)
Loy = / o)

X[hM+>\ / ’ n(z’,k)ﬁ(z’)dz'](éz, (155)

2B

2500
= [ s@BEmE R, (156)

and the approximate cloud work function (136) is given

by
AN =L(N—L(\). (157)

2 Dye to the difficulty in determining Far(A) from conventional
data, this term was not calculated. A rough estimate, however,
shows that Fu(\) is considerably smaller than Fe(\), with this
set of data.
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F16. 13. An observational verification of the quasi-equilibrium assumption for
cloud types A=8%km~! and A=16%km™?, with the Marshall Islands data provided
by Yanai ef al. (1973). The abscissa is the cloud layer forcing F¢(A) and the ordinate
is the observed time derivative of the cloud work function, d4 (\)/dt. The top of
the mixed layer and cloud base are both assumed to be at 950 mb. Zero buoyancy at
cloud base is also assumed. The dashed line is the line along which dA (\)/dt=F¢()).

As an example, 7;(\) and 7:(\) for A=89, km™ is large time changes of 7;(\) and 7;(\) compared to their
shown. Throughout the period shown in the figure, difference, 4 ()), indicates that although this is not a
A (M) is positive (so that cumulus clouds of that type steady state, it is a sequence of quasi-neutral states.
may exist) but it is only slightly positive. Relatively ~Because 7;(\) depends on the vertical distributions of
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Fic. 14, A time sequence of I;(A) and I2(A) for cloud type A=89%, km™!
at Eniwetok in the Marshall Islands.

both temperature and moisture, while 75(\) depends
on the vertical distribution of temperature only, the
small difference between the two, throughout the period,
indicates the presence of a constraint on the time
changes of the temperature and moisture fields, which
is the constraint of quasi-neutrality.

We now have a closed parameterization of cumulus
convection. Eq. (150) is a Fredholm integral equation
of the first kind for the unknown 917z(A). By solving
the integral equation, we can obtain” the mass flux
distribution function which is needed for the prediction
equations (74), (75) and (126). )

The integral equation (150) must hold for each cloud
type which exists, i.e., it must hold for each cloud type
for which 91x(\)>0. When 4 () is zero or negative,
we assume that the corresponding cloud type A does not
exist [9Mz(A)=0]. Even when A(\) is positive (but
only slightly positive), cloud type A may still not exist
because the net increase of 4 (A) by the large-scale forc-
ing plus the forcing due to other cloud types through the
kernel K(\,\') for M52\, may_be negative. Because a
cloud type \ cannot increase its own 4 (A), in that situa-
tion d4 (\)/di<0, and we can therefore assume that
Nz (M) is zero. A formal solution of (150), which neglects
dA(\)/dt, gives a negative 9 p(A) for that cloud type.
In other words, M x(\) must satisfy

Amax
Mz(\)>0 and / KON (\V)dN
0

FM)=0
or Q) [ (158)

)‘mnx
IMe(\)=0 and’ / KO N)a(\)dN
’ +FO) <0

- for each A.

The inequalities in (158) are conditions on the un-
known 9z (A). This poses an additional mathematical
difficulty, in addition to the usual difficulties associated
with the numerical solution of Fredholm integral equa-
tions of the first kind. But a simple iterative method
which overcomes these difficulties has been developed
by Schubert and Arakawa (1974). This method was
successful when applied to solutions of (158) for actual
observed situations.

8. Summary and conclusions

A theory of the mutual interaction of a cumulus
cloud ensemble with the slowly changing large-scale
environment, including the subcloud mixed layer, is
presented.

Section 2 considers the budgets of mass, static energy
and water vapor for the environment above the mixed
layer. These budget equations describe the way in
which an existing cumulus ensemble modifies the ther-
modynamical structure of the environment. With the
assumption that the total fractional area covered by
cumulus clouds is much smaller than unity, prediction
equations for the large-scale thermodynamical fields are
derived.

Section 3 considers the budgets of mass, static en-
ergy, water vapor and liquid water of an individual
cloud, for both its entrainment and detrainment layers.
The detrainment layer is assumed to be a thin layer
near the level of vanishing buoyancy. This assumption
simplifies the prediction equations obtained in Section
2, It is concluded that the modification of the large-
scale thermodynamical fields by a cumulus ensemble
depends on the total vertical mass flux in the clouds,
which determines the cumulus-induced subsidence in
the environment, on the total mass detrainment from
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the clouds into the environment, and on the mixing
ratio of liquid water at the levels of vanishing buoyancy.
Section 4 gives a spectral representation of the
cumulus ensemble. The cumulus ensemble is divided
into sub-ensembles according to the fractional entrain-
ment rate. It is shown that the sub-ensemble budget
equations determine the thermodynamical properties
of each sub-ensemble, at all levels, if the conditions at
the top of the subcloud mixed layer are known.
Section 5 considers the budgets of mass, static energy
and water vapor for the subcloud mixed layer. It is
assumed that the turbulent eddy fluxes vanish discon-
tinuously at the top of the mixed layer and, therefore,
that the transition layer between the mixed layer and
the cloud environment above is infinitesimally thin.
From the corresponding budgets for this transition
layer, a prediction equation is derived for the depth of
the mixed layer. The equation for the depth of the
mixed layer, the budget equations for the mixed layer,
the sub-ensemble budget equations (of Section 4), and
the prediction equations for the large-scale fields (of
Section 3), together describe the way in which the
mixed layer, the cumulus ensemble, and the environ-
ment above the mixed layer mutually interact. The
problem of cumulus parameterization is thus reduced
to the determination of the mass flux distribution
function, which is the sub-ensemble vertical mass flux
at the top of the mixed layer.
Section 6 introduces the cloud work function. It is
a property of the thermodynamical structure of the
large-scale environment and is a generalized measure
of the moist convective instability which depends on
cloud type. For the cumulus activity to be maintained
in time, the cloud work function must remain positive.
By considering the time derivative of the cloud work
function, destabilization or stabilization by the large-
scale processes (large-scale forcing) and by cumulus
convective processes (adjustment) are identified.
Section 7 introduces the quasi-equilibrium assump-
tion and gives its observational verification, This quasi-
equilibrium, which is the closure condition for parame-
terizability, occurs when the time scale of the large-
scale forcing is much longer than the time scale of the
ajustsment. A sequence of quasi-equilibria can be in-
terpreted as a sequence of different quasi-neutral states,
so that the time changes of the temperature and mois-
ture fields are constrained, as long as the cumulus
activity continues. To satisfy this constraint, the mass
flux distribution function, which couples the time
changes of the temperature and the moisture fields,
cannot be arbitrary. It is shown that the mass flux
distribution function, under quasi-equilibrium, must
satisfy a Fredholm integral equation of the first kind.
This is the principal conclusion of Part I of this paper.
Adjustment toward a quasi-equilibrium, which can
be interpreted as a quasi-neutral state, is crucial in this
parameterization theory. It is important to note, how-
ever, that the actual value of the adjustment time does
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not appear in the integral equation (150). Only the
existence of an adjustment mechanism which has a
time scale much smaller than the time scale of the
large-scale processes was assumed. In the first approxi-
mation, the actual value of the adjustment time does
not matter in describing the quasi-equilibrium because
the adjustment is practically instantaneous (Arakawa,
1969).

The non-homogeneous term of the integral equation,
which is the large-scale forcing F (), describes the way
in which large-scale processes control a cumulus en-
semble. Although the actual form of F()), given in
Appendix B, may appear complicated, it is not neces-
sary to calculate the individual terms of F(\) when
using this theory in numerical simulation models.
From the numerical modeling point of view, we need
only know [dA (\)/dt]]LsAt, the net change of the cloud
work function in the finite time interval A¢ due to
large-scale processes alone. If we assume that A(A)
remains practically zero for a sequence of quasi-
equilibria, the temporary non-zero 4 (\), which results
from the finite time step prediction of the temperature
and moisture fields by the large-scale processes alone,
is regarded as [d4 (\)/df]LsAtL. After solving (158) for
Mp(A)Al with this [dA(N)/dt]rsAt as the large-scale
forcing, we can calculate the additional time changes
of the temperature and moisture fields by the cloud
terms in (74) and (75). These changes bring the tem-
porary non-zero value of 4(\) back to zero. This
calculational procedure has a formal similarity to the
moist convective adjustment method of Manabe et al.
(1965). In their method, the large-scale forcing is im-
plicit while the adjustment is explicit.

On the other hand, for the theoretical understanding
of the large-scale forcing mechanism, we need an
explicit form for F(\). With the explicit form of F()),
our parameterization can be viewed as a generalization
of earlier parameterizations by Charney and Eliassen
(1964), Ooyama (1964) and Kuo (1965), in which
large-scale forcing was explicit while adjustment was
implicit. In their parameterizations the large-scale forc-
ing was expressed in terms of either large-scale frictional
convergence in the planetary boundary layer or large-
scale moisture convergence in the entire vertical column.
These effects can be identified in our large-scale forcing,
F(\), which has a more general form. In addition to
a generalization of the predominant effects of the large-
scale vertical velocity, F(\) includes the effects of
large-scale horizontal advection, surface sensible and
latent heat fluxes and radiational heating (or cooling).

Several applications of this theory have already been
made. The authors themselves have developed an
iterative numerical method for solving the integral equa-
tion. This method has been applied to calculations of
the mass flux distribution function, using observations
from a large-scale network of stations in the ITCZ
region. The results, as well as the method, will be
presented in Part IT of this paper (Schubert and
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Arakawa, 1974). In addition, a discretized version of
the parameterization has been developed and incor-
porated into the UCLA general circulation model by
Chag et al. (1974).

A part of this theory (the equations presented in
Sections 2, 3 and 4) has been used for diagnostic deter-
minations of the mass flux distribution function, with
times series of large-scale observations independently
by Ogura and Cho (1973) and Nitta (1974).

The theory, in a, simplified form, has also been used
for studies of CISK by Israeli and Sarachik (1973)
and by Arakawa and Chao (1973). Using a two-cloud
type version of the theory, in a three-level quasi-geo-
strophic model for large-scale motion, Arakawa and
Chao found that tropical cyclones have a maximum
growth rate when the size is several hundred kilometers.
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APPENDIX A
An Approximate Expression for As,

From the definition of As,, we can write

D D
—Asy=—T[8,(z5+) — 5o, (A1)
Dt

Dt

where D/Di is defined by (115) and s,p=su+c,T8qu.
Eq. (A1) can be rewritten as

D 958, Dzp /D3, Ds a1
). ) B
Di 02/ seipy Dt \Dt/..,, Dt

Using the large-scale budget equation for §,, and assum-

ing there is no detrainment from the clouds at zz+,
(A2) becomes

D DZB X é)év
p5—AS,= I:PB<__wB>+MB]< )
Dt Dt N 9z z=zpt

DS oM

4+ Qr(zs+)—ps
Dt

(A2)

(A3)

When DAs,/Di, (va— (ov)u/par)- Vsoar and Qr(zz+)
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— (Qr)ar are small, (A3) can be written
Dzp 1+%
p——=—(Mp—ppp)+———(Fsr)o. (A4)
Dt 98,

%p
02/ c—zpy

Here we have used (120), (123)-(125), and the defini-
tion of s,3. Comparing (A4) with (126), we obtain
an approximate expression for As, given by (128).

APPENDIX B

Derivation of K(2,2’) and F(3.)

The actual forms of the kernel K(A\;\’) and the large-
scale forcing F(\) are derived by taking the time
derivative of (133). We define

p(z>a<z>scp;(z), (B1)
_ & |‘1+7(2)é(z)5
= ] (B2)

where €(z)=c,T(z)/L and §=0.608. Using

g

¢, T(2)

[sve(2N) —54(2) 1= p(2)B(2) [hc(2,\) —h*(2) ]

+g0[q*(2) —q(2) 1—glz\)  (B3)

for the buoyancy force when z¢(\) <2< 2p(\), the time
derivative of (133) can be written

A )\) zo(\) F]
( = / n(ZJ\)—{p(Z)a(Z)Du(Z,X)—év(Z)]}dz
ot .5 at

zp ()

) 7] _ )
+ W(ZQ\)—“P(Z)ﬂ(z)flzc(-z’)\)—h*(z)]

20\ ot
+g6[q*(z)—q<z>3—gz(z,x>}dz

aZg
——ai—{ —~pB (ZB)Asu-f_)\A O\) . (B4)

We shall ignore time changes of p(z)a(z) and p(2)8(3).
The last term in (B4) comes from the time change of
2p In n(2z,\) and from the time change of the lower limit
of integration in (133), with the aid of (129) and (130).
A term involving the time change of zp(\) does not
appear in (B4) since we are assuming that there is no
buoyancy at zp(A).

In order to reduce (B4) to the form given by (140),
we must first express the time derivatives of the cloud
quantities s,.(z,\), k.(z\) and I(z\) in terms of time
derivatives of the large-scale fields. The time derivative
of %.(z,\) can be found from (97) and (131). It is given
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by
h(2,N)

al di

ok M

7(z,\

z oh(z") dzp
+A / (&' N)——dz' ——NAR,  (B5)
B ot ot
for, z3< < sp(N). Since both s.(z,\) and g.(z,\) satisfy
equations similar to (97) between zp and zg(A), the
time derivative of s,.(zA) is given by

asn(z,)\) 68,,M

77(2))\)
al

A f 2@

B ¢

35,(z")

623
dz —\As,, (B6)
ot

for 2p<2<zc(N).
If r(z,\) is parameterized by Col(3,\), where Cy is a
constant, the solution of (85) is

77(5)‘)1(37)‘)
=/ e—Col(z—z") {-i[n(z',)\)(]c(z’;k)]
az’

2B

+ (@, N)g(e) 1 dz’. (BT)
The lower limit of integration in (B7) can be either 2z
or z¢(M) since the integrand vanishes between these two
levels. As long as zg(\) lies above 2, the time derivative
of I(z,\) is given by

dl(z,\) s
1(2,\) - / O n(2'\\)
at 2

B

31 dq.z,N)
—-l —_—‘_’“‘__)‘[‘Ic(z,: )\) -Q(zl)]}dz,’ (BS)
at d

Z/
for 2 <2< 2p(N).

at i 2¢ (V)
aZB 2c(N)
-——a—t—{As,,I:—pBa(z,;) +)\/ a(z)p(z)dzi'

zB

v(2")

zD () g 2 a
ann [ fapor [ e —(
zg(A) L zB 9z’ 1+7(Z/)
zc(M) z 35,(3") 95,(z)
+ / a(z>p<z>{x / o N = 2(e)—

B ¢

85.(2) g [*
—a(z)p(z)n(z,\)——+—\ / e Cole=zh [n(Z’J\)<
o L J.,

AKIO ARAKAWA AND WAYNE HOWARD SCHUBERT

ldz+

1+v(z)

697
z
z=2'

(N f---- 7,
I
1
[}
i
i
1
T |
t i
} }
qZB ____l : :
] ! 1
1 | |

) | Z'
75 2o\ z(A)

Fic. 15. A diagram of the #’-z domain, showing the areas of
integration which appear in Eq. (B11).

From the definition of virtual static energy and
Log*(z)/85="(2)d5(z)/ 8!, we obtain

oh*(2) ]
—p(2)B(2) +g0—7*(x)—3(2)]
at at
35,(2)
=—p(2)a(2)—;t—- (B9)
From (90) we obtain
8 (99.(2,\)
g [t ) -10] |
at 9z
A J _ _
= —[7*(z)—A(z) ]
14-v(2) ot
| Oh (5 3[ v(2) ] (B10)
T e e 14-v(2) ’

for 2¢(\)<z<2p(\). Using (BS), (B6), (B8), (B9) and
(B10), (B4) can be written

v(z")

d0A ()\) Osuar [2¢N) Ohar 22 g Z i)
- / NANAY f { 8()p(z)+> / R ( )a’z’}a’z
" al L), 0z’ \1+4~(2")

>dz’i|rlz+)\A ) }

#D() 2 oh(z)
{ﬁ(z»(z)[x / . (zzf]
20 (N} zR at

Ie)
)—[ﬁ*<z'>—ﬁ(z'>]
ot

o/ (=) oh(z") \
+—~< ) / n(z”,)\)————~a’z”i|(iz’}dz. (B11)
0z’ \1+v(2)/ J 25 at
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In (B11) there appear five double integrals and one triple integral. The first two double integrals are identical
and are integrations over the stippled area in Fig. 15. Reversing the order of integration, the first and second double

integrals can be written

g £7.709} {/zn()\)
L 2zc(N) 2z’

9 —y(z’) g zo ) 2p(\)
o et [
9z’ \1+(3") L Jz 2c()

v(z")

—Co(z—a') dz] ( >(i2/. <B12)
1+7(z)

The third double integral is over the hatched triangular area in Fig. 15. Reversing the order of integration, the

third double integral can be written

zo()) ze (M) 08
/ { / a<z>p<z)dz}xn<z',x>

Similatly, the fourth double integral can be written as

/zb()\) {/21)()\)
2c(\) -4

and the fifth double integral as

g z2p(N) {/ZD(X)
L Jxo 2

ﬂ(z»(z)dz}xn(z',m

e~Co(e=2")dy } n(z’,h)( )—I:h*(z’) —h(z") 1dz'

14(z')/ ot

g ze(\) z2Dp(\)
S
L 2] zc(\)

The triple integral in (B11) can be written

zp () 2D (N) zp(\) =" z/)
/ {/ [:2_/ , _C"(z"’)(iz:l ( ( ) }M(z" A)
20\ 2 LJa 1+v(2")

2D (M) zD (M) g 2D (N) 9
T e
zB 20(\) L 1+’Y(Z)
zc(N\) 2c(M) g zp(\)
T
L 2¢O\ az’

Using (BIZ) -(B16) and the definitions

0,
. ’V>\ = zc(\)
Pl [ e,
2D(\) '
B(=")p(z")dz’,
p(2)b(z,\) = o
ﬂ(z’)p(z’)dz’,
z¢(A)
2D (X) ;Y(z’)
p(z)c(z,\) = / dlz )\)——< ) (z")dz’,
( 1+7(z") g
2p(\)
_./ g Colz” —z)dz
p(z)d(z,)\)— p 2DV

— 6_00(2'_2)d2/,
L zo(\)

oh
ﬁ<z>p<z>dz|xn<z',x>

3}2(2/) ¢V e
wr [
at B 2

c(\)

e Coe2dy } n(z',k)(

)dz } Ap(z”, )\)

(=)

(&)
dz’,
¢

>—[h*(z’) —h(z) )iz
14+v(z)/ 90

17

Z
aﬁ ’
)
14vy(2)
z2¢(\) <z2<z0(N)
<z<ze(N),
z2e(\) $z<z0(N)

2 SZSZC()‘):

Lz<z0(M),

zc(N) <2< zp(N)

23S 2<zc(M),

(B13)

(B14)

(B15)

(B16)

(B17)

(B18)

(B19)

(B20)
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(B11) can be written

AN as,
= a(Zg,)\)pB

M (WlM
+[b(ZB7>\) +C(237>\) ]PB———
ot ot

dzp AN 2D ()
_pB-(';[_ I:—Ol(ZB) +>\d(zB:>‘)]ASu+)\[b(ZB)>\)+C(237>\)]Ah+>\ ] +/ ’7(Z,>\) l[—a(Z)_i—)\a(z’)\)]T

ok
ERSRICANE ACANES (1+v(2))“d(z,>\)]—a(;)+>\d(z,>\)

The first three terms on the right-hand side of (B21)
involve time changes of the mixed layer variables, s,,
har and 2. The last term in (B21) involves time changes
of the temperature and moisture fields above the top of
the mixed layer. The time change of s, is derived from
(124) and (125) and can be written

O0Suar 1+k
PM—E;'Z — (V) Vsosr+——(Fsn)o.  (B22)
ZB

The time change of %y is given by (127), while the time
change of zp is given by (126), which can also be
written as

aZB

' 623
pp——= _‘MB_*‘PB(___) .
ot 9t /s
The time change of § is given by (74) while the time

changes of 5, and % can be derived from (74) and (75).
Thus,

(B23)

98 . 35 a3
p—=D(f—s—u>+Mc—+p<—~> , (B24)
ol a2 dt/ s
03, ) 08, 08,
e DL 1= (14-8) M, +p(—> . (825)
at 0z 0t/ rs
oh
b= DO~ R+ Lg*~0)]
oh oh
+Mcﬂ+p<—) (B26)
dz a LS
dA(N) [ .
- / n(z,m[[1—<1+a>e(z>][a<z>—xa(z,mu(z)
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95,(2)

PB

93(z)

}p(z)dz. (B21)
ot

In (B23) through (B26) we have defined

623 k
pB(——> = _PBVB - V23+p3wB+'—(Fsv)0; (B27)
/s As,
95 ds _
,,(_) = — i — ¥ Vs+-Qn, (B28)
ot LS 0z :
d5, 93, ~
,,( > = —pt——p¥- V5,+Qx, (B29)
/g 0z
oh oh o
,,<__> — o p¥- Vit (B30)
ot LS 0z

Eqgs. (B23) through (B26) involve terms of two types:
terms due to cumulus convection and terms due to
large-scale processes. Radiation and surface sensible
and latent heat fluxes are included in the definition of .
large-scale processes. The mixed layer equations (B22)
and (127) contain only large-scale terms. The terms
due to cumulus convection in (B24)-(B26) can be
further divided into detrainment terms and vertical
mass flux terms. Let us now substitute (B23)-(B26)
into the right-hand side of (B21) and divide the result
into terms of three types: detrainment terms, vertical
mass flux terms, and large-scale terms. This yields

FALB(a,N) Fe(zN) — (1+7(2)"d(z,N) JTh*(2) —h*(2) +L(g*(2) — (=) JHAd (@3N [$(2) —8(2) — Li(z) ] }D(Z)dz

LY 3, oh 93
+/ W(Z:)\) I [‘—a(z) +>\a(Z)}\)]_+>‘[b(Z:}‘) +C(Z>}‘> - (1+7(Z) )—ld(z)‘)J__ +)d(z>)‘)_} Mc(z)dz
2B 0z dz 0z

where

Ky(N)=[—alzs) + a(z5,M) JAsoHN[b{(z5,M) +c(z,)) JAL+)N ,

F+Ku(NMpg+Fce(N)+Fa(N), (B31)

AN

(B32)
19:]
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2 (M) Js,
Fe(\)= / 7(2,\) {[—or(2)+>\a(z,>\)]<—>
28 at

LS

oh a8
+x[b<z,x>+c<z,x>—[1+v<z>3-w<z,x>1(—a;> AN (;;) }p<z>dz, (B33)
LS LS

as oM ahM
+[0(z5,N) +c(z5,\) Jos—
ot at

. ; (92'1;
Fy(M=—K M(}\)Pb’<_(‘9_) “+a(zp,M)pn (B34)
L8

We are restricting our attention to cases where As,>0 and Ag<0. Under these conditions 2¢(Amax) <Zp (Amax)
and 2¢(\) € 2o (Amax). Therefore z¢(A) <zp(Amex). This means that there is no detrainment between zp and z¢(2),
which allows us to drop a(z,\)/(3) in the detrainment term of (B31). We can also change the lower limit of inte-
gration of the detrainment term to zp (Amax) since there is no detrainment below this level. Substituting (77), (79)
and (80) into (B31), and changing the detrainment term from an integral over z to an integral over A’, we obtain

0AMN)  rmex

at A
where

2V 93,
Ky = / HEN () {[—a(z>+xa<z,x>3-;—
zB Z

>\mnx
K b\ (V)N / Ky K (N M s +F (N +Fau(N),
0

Kp(\N)=n(zp" Nn(zp’ M){[1~(1+8)e(zp”) Ja(zp") Li(2p")
+>\[b(ZD':)§) ez’ \) — (14 (20)) 4 (50" N) TTA* (20") —R*(z0") + L(g*(z0") —3(2p") ]

and where the symbol zp’ has been used for zp(\"). Defining

(B35)
oh 98
+>\[b(2;>\)+6(2,>\)-[1+’Y(2)]"1d(2,)\)]5‘+7\d(3,>\)8* dz, (B36)
2 z
+\d(zp' N[ $(zp") —8(zp") — Li(zp) ]}, (B37)
for NN, (B38)

Kp(\\)=0

and using (110), (143) and (144), (B35) can be written as (142).

Usually, the effect of liquid water in the buoyancy
force is small. Then the terms which involve the coefh-
cients ¢(2,\) and d(3,\) can be neglected.
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