Validation of stratospheric temperatures in ECMWF analyses with CHAMP radio occultation climatologies

A.K. Steiner1,2, A. Gobiet1,2, U. Foelsche1,2, M. Borsche1,2, G. Kirchengast1,2, T. Schmidt3, and J. Wickert3

1Wegener Center for Climate and Global Change (WegCenter), University of Graz, Austria
2Inst. f. Geophysics, Astrophysics, and Meteorology (IGAM), University of Graz, Austria
3GeoForschungsZentrum Potsdam (GFZ), Dept Geodesy and Remote Sensing, Germany
ECMWF Validation with CHAMP

Outline

• CHAMPCLIM Project Overview
• CHAMPCLIM Pre-Operational Status
• ECMWF – CHAMPCLIM Comparison Setup
• Results
• Summary and Outlook
CHAMPCLIM Project Overview
ECMWF Validation with CHAMP

The CHAMPCLIM Project

CHAMPCLIM Project

- Wegener Center / IGAM, University of Graz
- GeoForschungsZentrum (GFZ) Potsdam

CHAMP Mission

- Operated by GFZ Potsdam
- Low earth orbit (~ 370 km), near polar orbit (87.2°)
- Mission objectives: Gravity + magnetic field, atmospheric sounding (radio occultation)
CHAMP radio occultation experiment

- Continuous since March 2002 (August 2001)
- ~250 RO events/day → 130 – 180 atmospheric profiles/day
- Expected lifetime: ~ end 2007

→ First opportunity (starting point) for RO-based climatologies
CHAMPCLIM Major Objective:

“... ensure that the CHAMP/GPS RO data are exploited in the best possible manner, in particular for climate monitoring”

- RO Retrieval Advancement
- Retrieval Validation
- Climatologies & Error Specification

CHAMPCLIM Part I (finished)

CHAMPCLIM Part II (started)
ECMWF Validation with CHAMP

Retrieval Overview

CHAMPCLIM Retrieval

- **Excess phases** (provided by GFZ Potsdam)
 Operational GFZ

- **CHAMPCLIM bending angle / refractivity retrieval**
 Advanced stratospheric retrieval (EGOPS/CCR v2, geometric optic).
 Background information:
 a) ECMWF operational analyses (IGAM/ECMWF) – for direct climatologies
 b) MSISE–90 based search library (IGAM/MSIS) – for DA use (refractivity)

- **CHAMPCLIM atmospheric parameter retrieval** (temperature, …)
 Dry air/moist air retrieval (EGOPS/CCR v2)
 Virtually no further background information.
ECMWF Validation with CHAMP

CHAMPCLIM Retrieval

<table>
<thead>
<tr>
<th>EGOPS/CCR v2</th>
<th>IGAM/MSIS</th>
<th>IGAM/ECMWF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outlier Rejection and Smoothing</td>
<td>“3σ” outlier rejection on phase delays and smoothing using regularization.</td>
<td>Like IGAM/MSIS</td>
</tr>
<tr>
<td>Ionospheric Correction</td>
<td>Linear combination of bending angles. Correction is applied to low-pass filtered bending angles (1 km sliding average), L1 high-pass contribution is added after correction. L2 bending angles < 15 km derived via L1-L2 extrapolation.</td>
<td>Like IGAM/MSIS</td>
</tr>
<tr>
<td>Bending Angle Initialization</td>
<td>Statistical optimization of bending angles 30-120 km. Vertically correlated background (corr. length L = 6 km) and observation (L = 1 km) errors. Obs. error estimated from obs. profile > 60 km. Background error: 15%. Backg. information: MSISE-90 best fit-profile, bias corrected.</td>
<td>Like IGAM/MSIS, but co-located bending angle profile derived from ECMWF operational analysis as background Information (above ~60 km: MSISE-90). No further pre-processing.</td>
</tr>
<tr>
<td>Hydrostatic Integral Initialization</td>
<td>At 120 km: pressure = p(MSISE-90).</td>
<td>Like IGAM/MSIS</td>
</tr>
</tbody>
</table>
ECMWF Validation with CHAMP

Data Quality (Temperature)

10 – 30km “RO optimum range”
Temperature bias: < 1 K, std. dev.: < 1 – 3 K, climat. std. dev.: order 0.1 K

CHAMPCLIM – CHAMP GFZ
- Latitude: mid (30°–60°)
- 409 events

CHAMPCLIM - ECMWF
- Latitude: mid (30°–60°)
- 432 events

CHAMPCLIM – MIPAS
- Latitude: mid (30°–60°)
- 41 events

(GFZ operational version 4)
(MIPAS data provided by IMK Univ. Karlsruhe)
ECMWF Validation with CHAMP

Climatologies Setup

Global Climatologies – Two Modes

Direct climatology
(RO only)

3DVar Analysis
(RO Refractivity + ECMWF MM 3DVar)

Temperature Humidity Geopotential

Monthly Seasonal Yearly

CHAMPCLIM Primary Products
Vertical Grid: 0-50 km (internal), var-30 km (users), 500 m steps
Horizontal Grid: Direct: 10°lat, zonal means, 10°lat x 60°lon
Analysis: 2.8°x 2.8° (Gaussian T42 grid)

CHAMPCLIM Special Products
Trends (future goal), tropopause height, tropopause temperature, ...
ECMWF Validation with CHAMP

CHAMPCLIM Pre-Operational

- CHAMPCLIM Pre-Operational Status
ECMWF Validation with CHAMP

CHAMPCLIM Pre-Operational

GFZ
(atmospheric excess phases)

IGAM
Operational retrieval
MSIS ECMWF
(atmospheric parameters)

Operational + semi–operational
quality control

ECMWF
Daily and MM analyses

Direct climatologies
Analyses
ECMWF Validation with CHAMP

CHAMPCLIM Pre-Operational

GFZ
(atmospheric excess phases)

~ 190 profiles/day
Mar 2002 to Jun 2005 (transferred)
Pre-Operational (late 2005)
7 day packages within 48 hrs

quality control

Direct climatologies
Analyses

ECMWF
Daily and MM analyses
ECMWF Validation with CHAMP
CHAMPCLIM Pre-Operational

Products
T, Z, ln(SP), q

Resolution
T42L60, 4 time layers

Daily analysis
Operational download every day with 12 hrs delay

Monthly means
Monthly download with 24 hrs delay

ECMWF
Daily and MM analyses

Direct climatologies

Analyses

Quality control
ECMWF Validation with CHAMP
CHAMPCLIM Pre-Operational

Implementation Status

GFZ
(atmospheric excess phases)

Operational timescale

IGAM
Operational retrieval
MSIS ECMWF
(atmospheric parameters)

Operational + semi–operational
quality control

Direct climatologies

Analyses

< 14 days

ECMWF
Daily and MM analyses
ECMWF Validation with CHAMP

Validation Setup

- ECMWF – CHAMPCLIM Comparison Setup
Validation Setup

Spatial- Temporal Characteristics CHAMP

- IGAM/ECMWF retrieval
- Validation period: MAM 2002 – DJF 2004/05 (3 years, ~150,000 temperature profiles)
- Temporal resolution: seasonal mean (3 month, ~12,500 profiles per season)
- Horizontal resolution: Zonal means (10° latitude bands, several hundred to > 1000 events per latitude band)

→ Robust statistics
ECMWF Validation with CHAMP

Validation Setup

Spatial- Temporal Characteristics CHAMP

- IGAM/ECMWF retrieval
- Validation period: MAM 2002 – JJA 2004 (2.5 years, 124,355 temperature profiles)
- Temporal resolution: seasonal mean (3 month, ~12,500 profiles per season)
- Horizontal resolution: Zonal means (10° latitude bands, several hundred to > 1000 events per latitude band)

→ Robust statistics

JJA2003: CHAMP Occultation Event Distribution (Global)
ECMWF Validation with CHAMP

Validation Setup

Spatial- Temporal Characteristics CHAMP

- IGAM/ECMWF retrieval
- Validation period: MAM 2002 – JJA 2004 (2.5 years, 124,355 temperature profiles)
- Temporal resolution: seasonal mean (3 month, ~12,500 profiles per season)
- Horizontal resolution: Zonal means (10° latitude bands, several hundred to >1000 events per latitude band)

→ Robust statistics
ECMWF Validation with CHAMP

Validation Setup

Characteristics ECMWF operational analyses

- 4DVar data assimilation combining short range forecast with observations
- Resolution T511L60 (~40 km horizontal, 60 levels up to 0.1 hPa)
- Provided 4 times per day (00, 06, 12, 18 UT)
- Used as initial conditions for ECMWF’s IFS, for many atmospheric process studies, often as reference dataset in validation studies
- Reduced horizontal resolution (T42L60, ~ 300 km)
- Profiles extracted at positions of occultation events (to avoid sampling errors)
ECMWF Validation with CHAMP

Validation Setup

Characteristics ECMWF operational analyses

- 4DVar data assimilation combining short range forecast with observations
- Resolution T511L60 (~40 km horizontal, 60 levels up to 0.1 hPa)
- Provided 4 times per day (00, 06, 12, 18 UT)
- Reduced horizontal resolution (T42L60, ~300 km)
- Used as initial conditions for ECMWF's IFS, for many atmospheric process studies, often as reference dataset in validation studies
- Profiles extracted at position of occultation event (avoid sampling errors)
ECMWF Validation with CHAMP

Validation Setup

Statistics

- Based on temperature difference profiles ECMWF - CHAMPCLIM
 - seasonal/zonal mean difference ("bias")
 - seasonal/zonal std. deviation of differences
ECMWF Validation with CHAMP

Results

- Results
ECMWF Validation with CHAMP

Results

ECMWF – CHAMP Seasonal Zonal Bias: <0.5 K, 2 features
ECMWF Validation with CHAMP

Results

Tropopause Bias

Cold low latitude tropopause bias in ECMWF (1 – 2 K)
ECMWF Validation with CHAMP

Results

ECMWF Tropopause Bias

[Graph showing ECMWF Tropopause Bias with temperature standard deviation in JJA2003]
ECMWF Validation with CHAMP

Results

ECMWF Polar Vortex Bias (JJA 2003)

wavelike structure (−2.5 to 3.5 K), Deficiencies in representation of Antarctic polar vortex in ECMWF
ECMWF Validation with CHAMP

Results

Polar Vortex Bias

2002:
warmer, polar vortex vortex split late Sep.

2004:
wave pattern: >20 km red. magnitude, rev. sign
Below: shape more pronounced than in 2002, 2003
ECMWF Validation with CHAMP

Results

Upper Stratosphere Bias
ECMWF Validation with CHAMP

Summary

• Summary and Outlook
Summary

• Generally good agreement of ECMWF analysis and RO seasonal zonal mean stratospheric temperatures (bias < 0.5 K) but:

 • ECMWF polar vortex bias (-2.5 to +3.5 K) (related to DA scheme, AMSU, bias adjustment, ?)

 • Cold low latitude tropopause bias in ECMWF (1 – 2 K), probably related to weak tropopause height variability in ECMWF (work ongoing)

 • Cold upper stratosphere bias (-1 to -3 K) (work ongoing)

• CHAMPCLIM: Accurate seasonal climatologies (10° zonal mean, 10°x60°) obtainable from a single RO receiver
ECMWF Validation with CHAMP

Outlook

• Tropopause study (variability)
• Further CHAMPCLIM retrieval advancement (troposphere, moist air)
• Detailed CHAMPCLIM error characterization (sampling error, local time sampling, …)
• Detailed CHAMPCLIM vertical resolution characterization
• Include more (future) RO data (SAC-C, GRACE, Metop/GRAS, COSMIC, …)
• Open (web-based) access to CHAMPCLIM products