
Joint Center for Satellite Data Assimilation

CRTM: Subversion Repository and trac SCM Guide

Paul van Delsta

JCSDA/EMC/SAIC

August, 2009

apaul.vandelst@noaa.gov

Change History

Date Author Change

2008-08-29 P.van Delst Initial release.
2008-08-30 P.van Delst Added Build Conventions chapter.
2008-11-06 P.van Delst Added Commit Log Messages chapter.

Added bibliography.
2009-08-12 P.van Delst Updated for new server URL.

Updated branching structure description.

Contents

1 Introduction 1

2 Repository Organisation 2

2.1 trunk subdirectory . 2

2.2 branches subdirectory . 2

2.3 tags subdirectory . 3

3 Build Conventions 9

3.1 Macro Definitions . 9

3.2 Install of script files . 9

3.3 Master Make Include Files . 10

3.4 Building the CRTM Library . 10

3.5 Cleaning up . 11

4 Commit Log Messages 12

4.1 Log message format . 12

4.2 Branch creation log message format . 13

4.3 Branch commit log message format . 13

4.4 Merge log message format . 13

i

List of Figures

2.1 The root of the CRTM repository organised into the typical trunk, branches, and tags subdirectories. 2

2.2 The trunk of the CRTM repository, showing the various categories. 3

2.3 Snapshot of the branches subdirectory of the CRTM repository, showing the current branches. 5

2.4 Snapshot of the branches/src subdirectory of the CRTM repository, showing the current branches.
Note that this strategy of only branching the src directory has been replaced by complete trunk
branches as shown in figure 2.3. 6

2.5 Snapshot of the tags subdirectory of the CRTM repository, showing some current tags. 7

2.6 Snapshot of the tags/src subdirectory of the CRTM repository, showing some current tags. Note
that this strategy of only tagging the src directory has been replaced by complete trunk or b̊ranches
tags as shown in figure 2.5. 8

4.1 Commit log message format for a commit to the trunk. 13

4.2 Multiple entry commit log message format for a commit to the trunk. 13

4.3 Commit log message format when creating a branch. 13

4.4 Commit log message format for a commit to a branch, in this case the RB-1.2 branch. 14

4.5 Commit log message format for a merge from a branch, in this case the RB-1.2 branch, to the trunk . 14

ii

List of Tables

2.1 Description of the contents of the CRTM repository trunk categories. 4

3.1 Environment variables used by CRTM makefiles. 9

3.2 Include files used by CRTM makefiles. 10

3.3 Cleanup targets in the CRTM library build makefiles. 11

iii

1
Introduction

This document describes the CRTM subversion repository and the trac Software Configuration Management (SCM)
and Project Management (PM) system to aid in organising CRTM future development and dealing with current
issues.

This guide will discuss how to access the repository and trac pages, and describe how to set up your local environment
to allow you to build the CRTM library, and any associated programs, directly in your working copy. It is assumed
the user is familiar with subversion.

The CRTM is one of many projects in main EMC repository on the subversion server svnemc.ncep.noaa.gov. The
location of the actual CRTM repository is

https://svnemc.ncep.noaa.gov/projects/crtm.
It is this URL that should be used for initial checkouts from the repository, or for subversion operations directly on
the repository (e.g. creation of branches or tags).

The day-to-day graphical user interface to the CRTM repository is via the CRTM trac webpage at
https://svnemc.ncep.noaa.gov/trac/crtm.

All descriptions of the CRTM repository will be described via the functionality of the trac system.

1

http://subversion.tigris.org/
http://trac.edgewall.org/
http://subversion.tigris.org/
https://svnemc.ncep.noaa.gov/projects/crtm
http://trac.edgewall.org/
https://svnemc.ncep.noaa.gov/trac/crtm
http://trac.edgewall.org/

2
Repository Organisation

If you access the repository via the trac browser, you should see something like figure 2.1, where the repository is
organised into the usual trunk, branches, and tags subdirectories.

Figure 2.1: The root of the CRTM repository organised into the typical trunk, branches, and tags
subdirectories.

2.1 trunk subdirectory

Mainline development of the CRTM is done in the trunk. Navigating the trunk link of the web page shown in figure
2.1, displays the various categories of the CRTM repository as shown in figure 2.2. A short description of the trunk
subdirectories are shown in table 2.1

As indicated, the src subdirectory is the one that contains the actual CRTM source code. This and the fix directory,
which contains all of the spectral, transmittance, aerosol, cloud, and surface emissivity coefficient datafiles, are the
two main parts of the CRTM repository.

2.2 branches subdirectory

Development independent of the main CRTM trunk is done in the branches subdirectory. The current state of the
CRTM branches subdirectory is shown in figure 2.3. Note that previously, only the src directory was branched –

2

http://trac.edgewall.org/
https://svnemc.ncep.noaa.gov/projects/crtm/trunk

Figure 2.2: The trunk of the CRTM repository, showing the various categories.

see figure 2.4 for a list of those branches. This branching methodology has been superceded by a branch of the entire
trunk so that any branch is a completely self-contained copy of the CRTM trunk.

There are two types of branches in the CRTM:

1. Experimental developmental branches where wholescale changes to the CRTM may result in instability. The
naming convention is EXP-desc where desc is a short description of the experiment. For example, a branch
named EXP-Visible has been created to incorporate visible sensors in the CRTM.

2. Code release branches where the code is tested and “tweaked” prior to a release. The naming convention here
is RB-rel where rel is the planned release version number.

2.3 tags subdirectory

If a snapshot of development is wanted, or if development has been completed on a trunk or branch revision, a copy
is made and placed in the tags subdirectory. Note that there is no development in a tag directory - it is strictly a
snapshot of a trunk or branch revision.

There are three tag naming conventions in current use:

1. For official software releases, REL-rel ; where rel is the software relase number. For example, the current official
CRTM release has the tag REL-1.2.1.

2. For pre-release snapshots, REL-rel stage.YYYY-MM-DD ; where stage is the release stage, typically alpha or
beta, and YYYY-MM-DD is the date on which the tag was created. Note that the current release number is
no longer associated with a tag. An example is REL-1.2.1 beta.2009-05-01.

3

Category Description

doc CRTM documentation
externals Library of third party software used in the CRTM and/or support software
fix Coefficient datafiles used by the CRTM.
scripts Hierarchy of script software, for various languages, used in CRTM build, test-

ing, visualisation, etc.
src Main CRTM Fortran95 source code directory. Contains the core CRTM mod-

ules as well as support software.
test CRTM testing. Contains code to perform unit and component test on the

CRTM.
validation CRTM validation. Contains code to validate the CRTM and components.
web The CRTM webpage source.

Table 2.1: Description of the contents of the CRTM repository trunk categories.

3. For experimental branch snapshots, EXP-desc.YYYY-MM-DD ; where desc is a short description of the exper-
imental branch. An example of this is EXP-Visible.2009-05-07.

The current state of the CRTM tags subdirectory is shown in figure 2.5. As with the branches directory, previously
only the src directory was tagged – see figure 2.6 for a list of those tags. This tagging methodology has been
superceded by a tag of the entire trunk so that any tag is a completely self-contained copy of the CRTM trunk or
branch.

4

Figure 2.3: Snapshot of the branches subdirectory of the CRTM repository, showing the current
branches.

5

Figure 2.4: Snapshot of the branches/src subdirectory of the CRTM repository, showing the current
branches. Note that this strategy of only branching the src directory has been replaced by complete
trunk branches as shown in figure 2.3.

6

Figure 2.5: Snapshot of the tags subdirectory of the CRTM repository, showing some current tags.

7

Figure 2.6: Snapshot of the tags/src subdirectory of the CRTM repository, showing some current
tags. Note that this strategy of only tagging the src directory has been replaced by complete trunk or
b̊ranches tags as shown in figure 2.5.

8

3
Build Conventions

This sections details the environment setup to enable the CRTM library, or any support software, to be compiled in
a user’s working copy. For the purposes of explanation we will assume that the entire CRTM trunk working copy
has been checked out using something like the following commands,

cd $HOME/CRTM
svn checkout https://svnemc.ncep.noaa.gov/projects/crtm/trunk trunk

where a user’s home directory is referred to by the environment variable $HOME, and the root directory of a user’s
working copy of the CRTM is $HOME/CRTM and reflects the same directory structure as the repository.

Additionally, it is assumed there exists a user directory, $HOME/bin, which is defined in a user’s $PATH. Compiled
executables and scripts will be placed in this directory by the install target common to all makefiles.

3.1 Macro Definitions

All of the makefiles in the CRTM repository use environment variables as required to locate the particular category
subdirectories described in table 2.1. The environment variable names, along with example definitions for a working
copy are shown in table

Environment Variable Name Example Definition

CRTM ROOT $HOME/CRTM/trunk
CRTM SOURCE ROOT $CRTM ROOT/src
CRTM FIXFILE ROOT $CRTM ROOT/fix
CRTM TEST ROOT $CRTM ROOT/test
CRTM SCRIPTS ROOT $CRTM ROOT/scripts
CRTM EXTERNALS ROOT $CRTM ROOT/externals
CRTM DOC ROOT $CRTM ROOT/doc
CRTM VALIDATION ROOT $CRTM ROOT/validation

Table 3.1: Environment variables used by CRTM makefiles.

Ideally, the environment variables of table 3.1 should be defined in a user’s environment definition file to ensure they
will be defined in any shell invocation.

For now, just note the multiple examples for the CRTM SOURCE ROOT macro. The reason for this will be explained
later (see section 3.4).

3.2 Install of script files

The simplest way to build a library is to have all the source code in a single directory. The CRTM source code modules
in the src directory, however, are organised into separate subdirectory hierarchies according to their application. It

9

is expected that this organisational structure will change over time. Rather than create makefiles that need to know
what the directory structure is to find all the various source files, a shell script (linkfiles) is used to link all the
necessary files into the CRTM library build subdirectory, src/Build.

So, the second step in setting up the CRTM build environment is to install the necessary scripts. The current method
for doing this is through unsophisticated use of makefiles. The sequence of commands for the script install are,

cd $CRTM_SCRIPTS_ROOT/shell/Utility
make install

This installs all the scripts currently used in the CRTM build process. Note there is also an uninstall target that
removes all the scripts from a user’s local bin directory.

3.3 Master Make Include Files

All of the makefiles in the CRTM repository use three standard include files: make.macros, make.common targets
and make.rules. These files reside in the CRTM SOURCE ROOT subdirectory and their function is described in table
3.2.

Include File Name Description

make.macros Defines macros for all the compiler and linker flags for the sup-
ported compiler/platform combinations, as well as commonly
used operating system commands and utilities, e.g. cp, rm, ar,
etc.

make.common targets Defines the common targets used in builds, e.g. all, install,
clean, etc.

make.rules Defines the suffix rules for compiling Fortran source code.

Table 3.2: Include files used by CRTM makefiles.

3.4 Building the CRTM Library

Having setup the environment on a system, the sequence of commands to build and install the CRTM library in a
checked out working copy is,

cd $CRTM_SOURCE_ROOT
make create_links
make
make install

The first target, create links, searches for all the required CRTM source code starting at $CRTM SOURCE ROOT and
links it all into the Build/src subdirectory1.

The second make does the actual source code compilation and library creation.

The last target, install, moves the created CRTM library, libCRTM.a, into the Build/lib subdirectory and all of
the associated *.mod module files into the Build/include subdirectory.

If you wish to build a particular branch or release (tag) of the CRTM library, all you need to do is redefine the
CRTM SOURCE ROOT environment variable to your working copy location for that branch or release. The redefinition
can be system-wide (e.g. if you’re working solely on a release branch in preparation for the release) or for a single
shell session (e.g. if you’re building an older or experimental version alongside the current release).

1For some systems, notably the IBM systems at NCEP, this can take several minutes. For linux desktop systems, it should only take
a few seconds. A ruby version of the script does exist that is quite a bit faster.

10

If the build is a final one (e.g. you’re not testing the CRTM), the Build/lib and Build/include subdirecto-
ries are typically copied or moved to a generic location outside of the working copy, e.g. $HOME/local/lib and
$HOME/local/include, or $HOME/local/CRTM/lib and $HOME/local/CRTM/include
As mentioned in section 3.3, compiler flags for varous platforms (or in the case of linux, for various compilers) are
defined in the make.macros file. Instructions on how to modify the make.macros for different compilers on a linux
systems can be found in the Build/README file.

3.5 Cleaning up

There are three targets that tidy up after a CRTM build. Depending on your needs they clean up intermediate files
to varying degrees. A description of the clean targets is shown in table 3.3.

Target Name Description

clean Removes all the *.o, *.mod, *.a files from the Build/src subdirectory.
distclean Same as clean but also deletes the Build/lib and Build/include subdi-

rectories.
realclean Same as distclean but also deletes the source code symbolic links in the

Build/src subdirectory.

Table 3.3: Cleanup targets in the CRTM library build makefiles.

If you invoke the realclean target and want to subsequently rebuild the CRTM libarry, you will have to recreate
the links as detailed in section 3.4. And, remember, creating the links can take some time on some systems.

11

4
Commit Log Messages

The purpose of this section is to describe the convention for commit log message formats. This may seem overly
meticulous, but the goal is to use the repository commit messages to form the change log for CRTM releases. The
change log should show the history of the devleopment of the CRTM and as more developers contribute to the CRTM
directly by committing to the repository, the log message format should not differ from one developer to the next.

It is conceivable that at some point in the future the subversion log outputs will be automatically processed via a
script to create the change log file for distribution with a CRTM release–or posting on a web page–so developers
should endeavour to adhere to this formatting standard so as make parsing the log output easier.

Nearly all of the advice and format descriptions in this section are either taken directly or paraphrased from either
the Change Logs section of the GNU Coding Standards, FSF [2008(a)], or the Change Log Guidelines section of the
GNU guile project FSF [2008(b)].

Some generic points for good log messages (taken from [FSF, 2008(b)]) are:

1. Log messages should consist of complete sentences, not fragments. Sentence fragments can be ambiguous.
Fragments like “Initial commit” for a new file, or “Added function” for a new function are acceptable, because
they are standard idioms.

2. Log messages should mention every file changed, as well as mention by name every function and/or subroutine
changed. Some common sense exceptions,

� For trivial changes (e.g. renaming a variable), all affected procedures do not have to be listed.
� For a complete rewrite of a file, a log entry description such as “Rewritten” is acceptable.

3. Group log message entries in “paragraphs”, where each paragraph describes a set of changes with a single goal.
4. Do not abbreviate filenames or procedure names. It makes the log message output difficult to search for changes

to these files and procedures.

Specific formats requirements with examples follow.

4.1 Log message format

An example of a log message format for a CRTM commit is shown in figure 4.1, starting with a header line that
describes the CRTM category (in this case src, but see table 2.1 for all the current categories) and the relative source
file location (here Utility/InstrumentInfo/SpcCoeff), followed by descriptions of the changes being committed.

Each entry is bulleted using the “*” character, followed by the filename (or list of filenames). Functions and
subroutines are surrounded by parentheses. Always use the specific procedure name in the source code, not the
generic (or overloaded) procedure name. Additionally, if similar changes were made to many procedures such that
the list doesn’t fit on a single line, close the parentheses before the line break and reopen them on the next line
continuing with the procedure list. This makes the modified procedures easier to search for in the log messages1

An example of a multiple entry log message is shown in figure 4.2. Note the separate <category>:<directory> header
lines

1A lesson the author learned the hard way as you will undoubtedly encounter log messages that do not do this and these cases tend
to break simple searching commands or scripts.

12

http://www.gnu.org/prep/standards/html_node/Change-Logs.html#Change-Logs
http://www.gnu.org/software/guile/changelogs/changelogs.html

src:Utility/InstrumentInfo/SpcCoeff subdirectory.
* SpcCoeff_Define.f90 (Associated_SpcCoeff): Removed Skip_AC optional argument.

(Assign_SpcCoeff): Removed Skip_AC actual argument in call to Associated_SpcCoeff.

Figure 4.1: Commit log message format for a commit to the trunk.

src:Statistics/FitStats subdirectory.
* FitStats_Define.f90: Made the maximum number of predictors a public entity.
* FitStats_netCDF.f90: Major rewrite. The various netCDF utility modules are no

longer used.

src:Statistics/FitStats/Test_FitStats subdirectory.
* Makefile, make.dependencies: Updated to reflect changes to the FitStats_netCDF

module.
* Test_FitStats.f90: Decreased the number of loops used in the memory leak checks for

use with valgrind.

src:Statistics/FitStats/FitStats_ASCII2NC subdirectory.
* FitStats_ASCII2NC.f90: Modified for use with microwave statistics files where there

is no ozone component.
* Makefile, make.dependencies: Updated to reflect changes in the main FitStats modules.

Figure 4.2: Multiple entry commit log message format for a commit to the trunk.

4.2 Branch creation log message format

When a branch is initially created the log message should state the branch name, and also identify the revision and
source from which it was created. The log message for the creation of the CRTM v1.2 release branch is shown in
figure 4.3.

RB-1.2 branch. Created from r2376 trunk.

Figure 4.3: Commit log message format when creating a branch.

As is clear, the name of the branch is RB-1.2 and it was created from revision 2376 of the trunk. It is useful to list
the source since a branch may be created from another branch, although this practice is generally discouraged.

4.3 Branch commit log message format

When committing to a branch, the log message format is the same as for the trunk, except that the branch name
should always be listed first. Doing this allows searching of the log messages for all instances of commits to a
particular branch. An example of a branch commit log message is shown in figure 4.4.

4.4 Merge log message format

When merging changes from a branch to the trunk (or vice versa), the range of revisions merged should be specified
in the log message. An example of a merge log message format is shown in figure 4.5

13

RB-1.2 branch.
src:Surface subdirectory.
* CRTM_Surface_Binary_IO.f90 (Read_Surface_Record, Write_Surface_Record): Updated I/O

statements that contained references to the SensorData structure components to be
consistent with the structure definition updates from r2572.

Figure 4.4: Commit log message format for a commit to a branch, in this case the RB-1.2 branch.

Merged RB-1.2 branch r2377:2444 into the trunk.

Figure 4.5: Commit log message format for a merge from a branch, in this case the RB-1.2 branch, to
the trunk

Thus, the log message contains a record of what was merged, what revisions were merged, and what they were
merged into. Inspection of the log messages informs developers at what revisions future merges should begin (in the
example of figure 4.5, that would be r2445).

14

Bibliography

FSF. GNU Coding Standards, 2008(a). URL http://www.gnu.org/prep/standards. Last accessed 2008-11-06.

FSF. Guile, Project GNU’s extension language, 2008(b). URL http://www.gnu.org/software/guile. Last accessed
2008-11-06.

15

http://www.gnu.org/prep/standards
http://www.gnu.org/software/guile

	Introduction
	Repository Organisation
	trunk subdirectory
	branches subdirectory
	tags subdirectory

	Build Conventions
	Macro Definitions
	Install of script files
	Master Make Include Files
	Building the CRTM Library
	Cleaning up

	Commit Log Messages
	Log message format
	Branch creation log message format
	Branch commit log message format
	Merge log message format

