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ABSTRACT

Particulate matter with an aerodynamic diameter less than or equal to 2.5 um (PM,5) is a critical air
pollutant with important impacts on human health. It is essential to provide accurate air quality forecasts to
alert people to avoid or reduce exposure to high ambient levels of PM, 5. The NOAA National Air Quality
Forecasting Capability (NAQFC) provides numerical forecast guidance of surface PM, s for the United
States. However, the NAQFC forecast guidance for PM; 5 has exhibited substantial seasonal biases, with
overpredictions in winter and underpredictions in summer. To reduce these biases, an analog ensemble bias
correction approach is being integrated into the NAQFC to improve experimental PM, 5 predictions over the
contiguous United States. Bias correction configurations with varying lengths of training periods (i.e., the time
period over which searches for weather or air quality scenario analogs are made) and differing ensemble
member size are evaluated for July, August, September, and November 2015. The analog bias correction
approach yields substantial improvement in hourly time series and diurnal variation patterns of PM, 5 pre-
dictions as well as forecast skill scores. However, two prominent issues appear when the analog ensemble bias
correction is applied to the NAQFC for operational forecast guidance. First, day-to-day variability is reduced
after using bias correction. Second, the analog bias correction method can be limited in improving PM, s
predictions for extreme events such as Fourth of July Independence Day firework emissions and wildfire
smoke events. The use of additional predictors and longer training periods for analog searches is recom-
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mended for future studies.

1. Introduction

Particulate matter with aerodynamic diameter less
than or equal to 2.5 um (PM,5) and ground ozone (O5)
are the two major air pollutants in the United States.
Exposure to high levels of ambient PM,s may pose
significant health risks for people with heart or lung
disease, older adults, and children (Brook et al. 2004;
Nel 2005). For example, there are about 130 000 cases of
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premature mortality attributable to PM,s pollution
each year in the United States (Fann et al. 2012). To
protect human health, the U.S. Environmental Pre-
diction Agency (EPA) established the National Ambi-
ent Air Quality Standards (NAAQS) for PM, 5 in 1997
and lowered the NAAQS in 2006 and 2012, respectively.
The current NAAQS for 24-h averaged PM, 5 concen-
tration is 35 ugm > while for annually averaged PM, s
the concentration is 12 ugm >. According to the moni-
toring reports, many counties in the United States vio-
lated the new NAAQS of PM, 5 (EPA 2015). Thus, it is
important to provide numerical forecast guidance as a
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basis for alerting the public to avoid or reduce exposure
to unhealthy levels of PM; s.

The goal of the National Oceanic and Atmospheric
Administration (NOAA) National Air Quality Fore-
casting Capability (NAQFC) is to provide timely and
accurate operational numerical guidance for surface O3
and PM, 5 concentrations. The NAQFC was established
by NOAA in partnership with the EPA to provide
ozone and particulate matter pollutant forecasts. The
capability was initially deployed in 2004 to provide
surface ozone operational forecast guidance for the
northeastern United States (Otte et al. 2005). The ca-
pability for providing surface ozone operational fore-
casts was expanded to the conterminous United States
(CONUS) in 2007, Hawaii in 2009, and Alaska in
2010 (Stajner et al. 2012). Nationwide real-time de-
velopmental PM, ;5 forecast guidance has been provided
from the operational NAQFC system since January
2015. This guidance exhibits substantial seasonal biases:
PM, 5 is usually underpredicted in summer and over-
predicted in winter as compared with AirNow obser-
vational data (Stajner et al. 2012; Lee et al. 2017).
Uncertainties in emission inventories, meteorological
inputs, and air quality models may contribute to the
biases in model predictions of airborne chemical species
and particulate matter. Improving NAQFC PM,;;
forecast skill is imperative to ensuring its readiness for
operational use.

While many research efforts have been devoted to
improving the core chemical, meteorological, and
emissions model components, postprocessing ap-
proaches such as bias correction provide a comple-
mentary pathway to refine forecast products. Bias
correction approaches range from complex statistical
regression techniques to subjective corrections. Bias
correction methods have been widely used in numerical
weather forecasting (e.g., Glahn and Lowry 1972;
Hamill and Whitaker 2006; Delle Monache et al. 2011,
2013; Cui et al. 2012; Durai and Bhradwaj 2014; Glahn
2014; Jo and Ahn 2015; Zhu and Luo 2015) and air
quality forecasting (e.g., Delle Monache et al. 2006,
2008, 2011; Kang et al. 2008, 2010; Wilczak et al. 2006;
Djalalova et al. 2010). These studies demonstrate that
both numerical weather and air quality forecasts are
improved substantially compared with model raw fore-
casts. Recently, Djalalova et al. (2015) evaluated bias
correction methods for improving the NAQFC PM, 5
predictions over the CONUS. They tested several
postprocessing techniques, which include a 7-day run-
ning mean bias correction, a Kalman filter (KF) applied
to standard time series data, an analog ensemble, KF
applied to the series of ordered analog forecasts
(KFAS), and KF applied to analog time series (KFAN).
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All of these bias correction approaches show strong
improvement compared with the NAQFC raw forecasts.

In this study, an analog ensemble bias correction ap-
proach is integrated into the operational NAQFC real-
time system for improving the Community Multiscale
Air Quality (CMAQ) model predictions of PM, s. In the
study by Djalalova et al. (2015), a full year’s worth of
historical model predictions was used to identify 10 an-
alog cases for each forecast, which were then used to
determine PM, 5 forecast biases. Given the time limi-
tations of real-time forecast product delivery, the con-
figuration used by Djalalova et al. (2015) for bias
corrections needs to be optimized without degrading
performance. The goals of this study are to integrate the
bias correction approach into the NAQFC system and to
identify a practical configuration for bias correction us-
ing the most recent version of NAQFC. The bias cor-
rection results are compared with the model raw
forecasts and evaluated with EPA AirNow observa-
tional data (http://www.airnow.gov). The performance
of the analog ensemble bias correction approach is evalu-
ated during different seasonal months in 2015. Furthermore,
the performance during several high PM, 5 concentration
events such as wildfire episodes is discussed to demonstrate
the challenges encountered when using analog ensemble
bias correction during rare high-impact events.

2. Methods
a. NAQFC and configurations

The NAQFC is an offline meteorology—chemistry
coupling forecasting system. The NOAA North Amer-
ican Model Forecast System (NAM) Nonhydrostatic
Multiscale Model with Arakawa B grid staggering
(NMMB; Janji¢ and Gall 2012) is linked with the EPA’s
CMAQ model (Byun and Schere 2006) to provide pre-
dictions of spatially and temporally varying concentra-
tions of gaseous and aerosol air pollutants for the United
States. Currently, the NAQFC provides twice-daily 48-h
forecasts at 0600 and 1200 UTC for the CONUS,
Alaska, and Hawaii.

As illustrated in Fig. 1, NMMB provides hourly me-
teorological inputs to drive CMAQ. The NMMB pro-
vides 84-h operational weather forecast guidance for
the United States at a horizontal resolution of 12km.
The EPA’s CMAQ V4.6 with the Carbon Bond-2005
(CBO05) gas-phase chemical mechanism and aerosol
module version 4 (AERO-IV) has been modified to
provide updated NAQFC operational ozone and ex-
perimental PM, 5 predictions since January 2015. The
NAQFC produces ozone and PM, s predictions for
the CONUS, Alaska, and Hawaii domains at 12-km
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FIG. 1. Flowchart of the NAQFC in the United States.

horizontal grid spacing. The Prdgen and PREMAQ
(preprocessor of CMAQ) customized interface pro-
cessors handle horizontal map projection trans-
formation from the NMMB B grid to the CMAQ C grid
and vertical level coupling from the NMMB’s hybrid
sigma-pressure layers (i.e., sigma layers in the bottom
and pressure layers in the top) to the CMAQ’s sigma
layers, respectively (Otte et al. 2005). The PREMAQ
processor has been modified from the Meteorology—
Chemistry Interface Processor (MCIP) of the CMAQ
modeling system (Otte and Pleim 2010) by adding sev-
eral new features. In particular, PREMAQ recalculates
several important meteorological input fields such as the
planetary boundary layer (PBL) height, eddy diffusivity,
and cloud parameters from the NMMB outputs. It
also computes deposition velocity, photolysis rate, and
emission rates for CMAQ.

The NOAA Environmental Modeling System (NEMS)
Global Forecast System (GFS) Aerosol Component
(NGAC) provides dynamic lateral boundary conditions
of dust-related aerosol species to the CMAQ runs. The
simulations from the Goddard Earth Observing Sys-
tem (GEOS) with the Chemistry Component (GEOS/
Chem) modeling system are used to generate lateral
boundary conditions of gas-phase and other aerosol-
phase chemical species to the CMAQ.

The emission inputs for NAQFC are processed in two
different ways, depending on the nature of the emission
sources and their sensitivity to meteorology (Pan et al.
2014; Tong et al. 2015). Anthropogenic sources in-
cluding area, mobile, and point sources are obtained
from North American environmental agencies. The U.S.
emission sources are based on a mixture of the EPA
National Emission Inventories (NEI) for 2005 and 2011.
Most sectors in NEI 2011 are used in this study except
for mobile sources and a few area sources (e.g., ocean-
going ship emissions) that are associated with high
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uncertainties or require inline emission modeling capa-
bility, which is not used in this version of CMAQ. An-
thropogenic sources for the Canadian part of the domain
are based on the 2006 Emission Inventories compiled by
Environment Canada, and sources for the Mexican part
of the domain come from the 2012 Mexico National
Emissions Inventories. These inventory data are pro-
cessed using the Sparse Matrix Operator Kernel Emis-
sions (SMOKE) modeling system (Houyoux et al. 2000)
to represent monthly, weekly, diurnal, and holiday/
nonholiday variations that are specific for each year.
Both wind-blown dust and wildfire emissions are in-
cluded in the 2015 operational NAQFC system to ac-
count for their contributions to PM, s predictions (Lee
et al. 2017). For the wildfire smoke emissions, fire points
and smoke plume locations are identified by the NOAA/
National Environmental Satellite, Data, and In-
formation Service (NESDIS) Hazard Mapping System
(HMS) from satellite retrievals and human analysis
(Ruminski et al. 2006). The HMS fire smoke products
are processed by the U.S. Forest Service BlueSky
framework modeling system (O’Neill et al. 2009; Larkin
et al. 2009) to produce near-real-time wildfire smoke
emissions for the CMAQ.

This study is focused on the NAQFC CONUS do-
main, which covers the CONUS, as well as parts of
southern Canada and northern Mexico. There are 35
o vertical levels that extend from the surface to 100 hPa,
with the first 14 layers within the lowest 2km of the at-
mosphere. The first layer of CMAQ is defined at the
height of 39 m above ground level (AGL). The photol-
ysis rate of organic nitrate (NTR) is increased by 10-fold
within the CBO5 gas-phase chemical mechanism to ac-
celerate NTR removal (Saylor and Stein 2012; Canty
et al. 2015). The modification typically shortens the
predicted life of NTR in CMAQ from about 1 week to
approximately 1 day (Pan et al. 2014). This reduces the
overprediction of surface O; and has a minor impact on
PM, 5 prediction. A minimum PBL height of 50m is
employed to avoid excessive suppression of vertical
diffusive mixing. More details about modifications to
CMAQ and updates to emission inventories were given
by Lee et al. (2017).

b. Analog ensemble bias correction

The analog ensemble approach, originally developed
for improving numerical weather predictions, is in-
tegrated into the NAQFC system for PM; s forecast bias
correction. The analog ensemble method is based on the
assumption that, if the climate is relatively stable, model
forecast errors in past similar weather scenarios (or an-
alogs) can be used to statistically correct current nu-
merical forecasts (Hamill and Whitaker 2006). The key
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to this approach is in determining a suitable metric for
identifying analogs from the historical dataset. The
metric used here follows Delle Monache et al. (2011):
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where F; is the forecast at the future time #; A, is an
analog forecast at the past time ¢'; N, is the number of
variables that are used for the analog search (N, =4 in
this study); w; and oy, represent the weight and standard
deviation of the ith variable, respectively; 7 is half of the
time window over which the metric is computed (= 1h
in this study); and A, ; and F;,,; represent the analog
and forecast for the ith variable at time ¢ + jand ¢ + j,
respectively. Following the study of Djalalova et al.
(2015), PM, 5, 2-m temperature, 10-m wind speed, and
10-m wind direction with the same weight are used in the
calculation of the metric with Eq. (1).

Analog ensemble bias correction is accomplished
through a multiple-step process. First, the NAM model’s
meteorological variables (e.g., temperature, wind speed/
direction) and the CMAQ model’s air quality variables
(i.e., PM,5) are interpolated to the AirNow observa-
tional sites to form the set of analog predictors. Second,
analog members are identified from past forecast time
series based on the metric calculated with Eq. (1) and,
then, are ranked according to their similarity with the
current forecast. Third, forecast biases are computed
between the analog ensemble mean at the AirNow ob-
servational sites and then spread to the entire CMAQ
grids. The spreading technique is based on an eight-pass
Barnes-type iterative objective analysis scheme, which is
described in detail by Djalalova et al. (2015). The last
step is to correct the future CMAQ raw forecasts with
the historical analogs’ forecast biases across the entire
CMAQ grid.

It is noted that the length of the training period and
the number of analog ensemble members are the two
factors with substantial impacts on the bias correction
results. This study evaluates the practical training period
and the number of analog ensemble members for the
bias-corrected NAQFC PMj, 5 prediction.

c¢. Evaluation protocol

The NCEP Verification System (NVS) was originally
developed for evaluating numerical weather prediction
(NWP) model performance and modified for evaluation
of the NAQFC operational predictions of surface ozone
and experimental predictions of surface PM, 5. The NVS
comprises four parts: editbufr, prepfits, gridobs, and the
Forecasting Verification System (FVS) (see Fig. 2).
Among these parts, editbufr reads and retains the
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FIG. 2. Flowchart of the NCEP Grib2obs Verification System used
for NAQFC performance evaluation.

observations from prepbufr files that contain point
observations and quality control information, prepfit
interpolates model forecast data to the AirNow ob-
servational sites, and grid2obs generates a series of
Verification Statistics Data Base (VSDB) files, which
include partial sums for the calculation of various
statistics.

The FVS is used to compute traditional statistics in-
cluding root-mean-square error (RMSE), bias, and
correlation coefficients, and forecast skill scores like
critical success index (CSI), hit rate, probability of de-
tection (POD), and false alarm rate (FAR). The forecast
skill scores are defined as follow (Wilks 1995, 260-265):

a
Sl=Fore @

a

hit rate = ——
1t rate a-‘rb, (3)
POD=—2" and 4)

a+c
FAR=_" (5)

a+b’

where a denotes the number of occurrences when both
the forecast and the observed are above a given
threshold (i.e., both are “‘yes”), b represents the number
of occurrences when the forecast is above but the ob-
served below the given threshold (i.e., forecast is “yes”
but observed is “no’’), ¢ denotes the number of occur-
rences of the forecast being below but the observed
above the given threshold (i.e., forecast is “no” but
observed is “‘yes”), and d denotes occurrences where
both the forecast and observed values are below the
given threshold (i.e., both are “no”’). In this study, the
AirNow hourly mean surface PM, 5 observational data
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FIG. 3. Monthly mean forecast biases of the NAQFC in different subregions over the CONUS
from January 2009 through September 2015.

at 551 sites are used to evaluate the NAQFC perfor-
mance on PM, s predictions. The evaluated forecast
parameters include hourly mean, 24-h average, and daily
maximum 1-h average PM, s values. Eight thresholds
are employed in the calculations of skill scores for PM, s.
They include 5, 10, 12, 15, 20, 25, 30, and 35 ugm °.

3. Evaluation of the NAQFC PM, 5 predictions

The NAQFC monthly mean PM, 5 forecast biases for
six different subregions of the CONUS domain from
January 2009 to September 2015 are shown in Fig. 3. The
48-h forecasts at the 0600 and 1200 UTC cycles each day
are included in the calculation. The subregions include the
Pacific Coast, the Rocky Mountains, the Lower Middle,
the Upper Middle, the Southeast, and the Northeast. The
subregions are indicated by different colors in the map
included in Fig. 3. Substantial seasonal forecast biases
persisted over the past several years. The PM, 5 results
were overpredicted in late autumn (e.g., November) and
winter (i.e., December—February) but underpredicted in
summer (i.e., June-August). The monthly mean forecast
biases ranged from about —9 ugm ™ in summer to about
10 ugm ™~ in winter.

There are multiple likely reasons for the NAQFC
PM, 5 underpredictions in summer. The major plausible
reasons causing underpredictions of PM, s include 1) the
underestimate of primary PM, 5 emissions, 2) outdated
mobile emission inventories, 3) incorrect representation
of secondary organic aerosols (SOAs), 4) constant

climatological lateral boundary profiles except for dust-
related aerosol species, 5) uncertainty of meteorological
inputs related to meteorology—chemistry coupling (e.g.,
overpredicting the planetary boundary layer height
and eddy diffusivity), 6) exclusion of transboundary-
transported wildfire/smokes from Canada or Mexico,
and 7) the outdated BlueSky fire emission processing
system and the wildfire emissions not being used prop-
erly in the CMAQ.

The reasons causing the forecast biases vary from one
region to another. Our analyses indicate that SOAs were
not well simulated over the southeast United States
(Carlton et al. 2010); organic carbon (OC) and ele-
mentary carbon (EC) were underestimated over the
western United States; ammonium was underestimated
over the Rocky Mountains, the Lower Middle, and the
Upper Middle; and that wildfire/smoke emissions were
still underestimated over the Northwest regions by the
NAQFC during summer. The dust-storm-related emis-
sions were not treated appropriately in the NAQFC
over the Southwest region, such as in Arizona and Ne-
vada, during spring. Furthermore, the fugitive dust
emissions were significantly overestimated during win-
ter. Contributions from source groups and regions to the
ambient levels of primary and secondary PM, 5 can be
evaluated further through model analysis tools such as
the source apportionment method (Kwok et al. 2013).

In the current version of NAQFC, only NGAC-
predicted dust-related species are used to generate the
dynamically varying lateral boundary conditions for the
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FIG. 4. Overlaid plots of day 1 maximum 1-h average PM, 5 (ug m ) over the northwestern United States on 22
Aug 2015 for the 0600 UTC cycle run; shown are base runs (left) without and (right) with bias correction (back-
ground colors, forecasts; dotted points, AirNow observations).

NAQFC. Transboundary transport of wildfire and
smoke from Canada or biomass burning from Mexico
are not included. This could be another important rea-
son causing the PM,s underpredictions during the
wildfire/smoke active season. The full aerosols predicted
by the recently upgraded NGAC including wildfire
smoke and dust will be used to generate lateral bound-
ary conditions for the NAQFC predictions during the
future implementation.

Uncertainty of meteorological inputs (e.g., PBL
height) is another important factor in the winter over-
predictions. We note that positive forecast biases in the
winter months had in general decreased over the past
several years. For example, the forecast bias decreased
from about 10.0ugm > in January 2009 to around
5.0 ugm ™ in January 2015. The improvement of PM, s
predictions in winter was related to advancements of the
meteorological model (i.e., NMMB) and better esti-
mates of anthropogenic emissions that were made over
the past several years. The major changes and im-
provements of NMMB were described by Janji¢ and
Gall (2012). Further details about emissions updates
were given by Lee et al. (2017) and Tong et al. (2015).

It is noted that the underpredictions were worse in
summer 2015 than in the preceding years. Several fac-
tors were responsible for this larger forecast bias. The

first possible factor was that more and larger wildfires
occurred over the CONUS, especially in the north-
western United States and Canada in 2015 (see the
total burned areas online: https://www.nifc.gov/fireInfo/
fireInfo_stats_totalFires.html). The fire emissions were
still largely underestimated in the NAQFC although the
BlueSky fire emission modeling system with near-real-
time satellite-based fire information was implemented in
2015. An extreme example is shown in Fig. 4. The ob-
served PM, s in eastern Washington was larger than
250 ugm > (indicated by a dark purple circle) whereas
the predicted PM, 5 was less than 35 ug m~>. In addition,
contributions of wildfire smoke from outside the CMAQ
domain were not considered.

The wildfire emissions used in the NAQFC were
provided by the U.S. Forest Service BlueSky fire emis-
sions modeling system (Larkin et al. 2009). The BlueSky
operational system used the previous day’s NOAA/
NESDIS HMS fire information such as fire locations and
durations for the emission calculation during the
0600 UTC cycle run. The second factor could be related
to the incomplete inclusion of fire emission sources. For
instance, prescribed biomass burning such as debris
clearing and agricultural fire emissions were removed
from the emission inventories to avoid double counting
with the implementation of dynamically projecting these
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FIG. 5. Domain-averaged forecast bias diurnal variation of
NAQFC over the CONUS during January and July 2015 (solid line,
January; dashed line, July).

emissions using the HMS-BlueSky algorithm. More-
over, several other factors may cause uncertainties in
the emissions results, which include the plume rise
calculation algorithm, meteorological inputs, and the
detection of wildfire smoke under cloudy conditions.
The primary goal of this study is to evaluate whether
bias correction approaches can improve CMAQ PM; 5
predictions given the uncertainties in the emissions
and meteorology.

Another feature worth noting is that the NAQFC
forecast biases showed different diurnal variation pat-
terns between winter and summer. Figure 5 indicates the
average diurnal forecast biases over the CONUS for the
1200 UTC cycle CMAQ runs in January and July 2015.
In January the monthly mean forecast bias ranged from
1.3 to 3.5ugm * with the maximum forecast bias at
forecast hour 14, or 0200 UTC [i.e., 2100 eastern stan-
dard time (EST)]. The maximum overpredictions during
the nighttime were usually linked with underpredictions
of the PBL heights or the setting of typical minimum
PBL heights in the simulations. On the other hand, the
NAQFC showed negative PM, 5 forecast biases from
approximately —5.5 to —2.5 ugm > during July 2015.
The worst forecast bias occurred during the daytime
(i.e., the forecast hour 8, or 2000 UTC, or 1500 EST).
Underestimation of wildfire smoke emissions could be
one of the main reasons causing the underpredictions.
However, such underpredictions during the nighttime
could be compensated for by other factors such as me-
teorological inputs. Thus, further investigations are
needed in the future to identify the specific factors, in-
cluding emissions, chemistry, and meteorological inputs,
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TABLE 1. Summary of the NAQFC parallel run and three cases of
analog ensemble bias correction. Base case represents the CMAQ raw
forecast. BCSE6M denotes the bias correction case using five en-
semble members and a 6-month training period; BCSE12M and
BCI10E12M represent the bias correction cases with 12-month training
periods and with 5 and 10 ensemble members, respectively.

No. of analog Length of training

Expt ensemble members period (months)
Base case None None
BCSE6M 5 6
BC5E12M 5 12
BC10E12M 10 12

and to quantify their relative contributions to the
forecast biases.

4. Testing of analog ensemble bias correction with
different configurations

The length of the training period and the number of
analog ensemble members are the two variable param-
eters for the analog ensemble bias correction approach
(Djalalova et al. 2015). As summarized in Table 1, three
sensitivity experiments were conducted to assess the
impact of the training period length and the number of
analog ensemble members on bias correction perfor-
mance, and to identify a practical configuration for real-
time operational applications.

Different bias correction configurations were evalu-
ated for each of the following four months: July, August,
September, and November in 2015. These months were
chosen to evaluate the analog ensemble bias correction
approach under different air quality scenarios. Among
them, July was the month in which PM, 5 was signifi-
cantly underestimated. August was the month during
which wildfires were very active, especially in the
northwestern United States. September was the transi-
tion period when the NAQFC PM, 5 predictions began
to show positive biases. Finally, November was the
month during which the NAQFC started to show sig-
nificant PM, 5 overprediction, especially over the east-
ern United States (EUS), which comprises the Lower
Middle, Upper Middle, Southeast, and Northeast
(shown in Fig. 3).

a. PM; s forecast guidance and bias correction in July
2015

Comparisons of PM,; s among CMAQ raw and bias-
corrected forecast guidance for different analog en-
semble bias correction configurations over the western
United States (WUS, consisting of the Pacific Coast and
Rocky Mountain regions; Fig. 3) and EUS during July
2015 are shown in Fig. 6. Both WUS and EUS are
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FIG. 6. Comparisons among bias-corrected, raw forecast, and observed PM, s results for (a) time series of the 24th
forecast hour during the 1200 UTC cycle run over the WUS, (b) hourly time series over the EUS, (c) mean diurnal
variation over the WUS, (d) mean diurnal variation over the EUS, (e) hit rates for daily maximum 1-h PM, 5
concentration over the WUS, and (f) hit rates for daily maximum 1-h PM, 5 concentration over the EUS during July
2015 (BCSE6M, bias corrected with five members and a 6-month training period; BCSE12M, bias corrected with
five members and a 12-month training period; BC10E12M, bias corrected with 10 members and a 12-month training

period; Fest, forecast; and Obs, observation).

verified separately as a result of the large discrepancy in
PM, 5 emission sources. Here, the PM, 5 was substantially
underpredicted by the NAQFC over both regions, but more
strongly over the WUS. A large spike in PM, 5 was observed
over both EUS and WUS on 5 July due to Independence
Day fireworks. The hourly averaged PM, 5 rose sharply to
approximately 47 ugm ™~ over the EUS and approximately
35ugm > over the WUS during the evening of 4 July and
returned to the normal levels late in the day on 5 July. The
NAQFC guidance failed to predict the event because the

firework emissions were not included in the current emis-
sion inventory. The approach was not able to capture the
event even though July data from the previous year were
included in the analog search. This is because the ensem-
ble members were dominated by analogs from other days
instead of 4 July. As illustrated in Eq. (1), the metric cal-
culation relied on three meteorological factors (i.e., 2-m
temperature, and 10-m wind direction and wind speed),
but the meteorological conditions on 4 and 5 July in the
previous year may not be similar to those in 2015.
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among the three bias correction scenarios and the base case over the EUS and WUS during August 2015, where C, is the correlation

coefficient.
CMAQPARA BC5E6M BC5E12M BCI10E12M

\WASN EUS WUuUS EUS WUS EUS WwusS EUS
C, 0.43 0.36 0.49 0.48 0.47 0.47 0.47 0.47
Bias —7.14 0.42 -2.63 0.31 -1.31 0.33 -34 0.37
RMSE 16.46 5.98 14.58 5.07 14.67 5.01 14.87 5.01
CSI 0.20 0.24 0.49 0.28 0.56 0.31 0.42 0.23
Hit rate 0.27 0.74 0.28 0.75 0.31 0.76 0.29 0.75
POD 0.21 0.23 0.58 0.33 0.69 0.38 0.48 0.27
FAR 0.00 0.04 0.06 0.02 0.07 0.02 0.03 0.01

Overestimates of PM, s were seen in the bias-
corrected guidance for several days following 5 July.
The magnitude of the overestimate was reduced when
using a larger number of analog ensemble members,
but the duration of the overprediction was longer with
an increasing number of analog ensemble members
(see Figs. 6a,b). Most likely 5 July was selected as
one of the analog ensemble members in the following
several days and the magnitude of the overprediction
was reduced when more analog ensemble members
were used or when a longer training dataset was
available.

Monthly mean diurnal variations of PM, 5 over the
WUS and EUS in July 2015 are presented in Figs. 6¢
and 6d, respectively. The raw NAQFC guidance failed
to simulate PM, 5 diurnal variation patterns in terms of
the magnitude and temporal phase for both subregions.
The worst underpredictions by raw forecasts were
found during the daytime, whereas the fewest under-
predictions appeared at night. All configurations of
the bias correction forecast guidance show excellent
agreement with observations for both magnitude
and phase.

Comparison of hit rates among three scenarios and
the base case at different thresholds are presented in
Figs. 6.e and 6f. A large increase of hit rate appeared at
thresholds below 20.0 ugm > over the WUS whereas a
relatively small increase occurred at the thresholds be-
low 15 ugm* over the EUS. Quantitative comparisons
of hit rate and other statistical evaluation parameters
among the base case and the three bias correction ex-
periments are shown in Table 2. All of the three bias
correction experiments show larger improvements over
the WUS than over the EUS. This is because the model
raw prediction biases over the WUS are significantly
larger than those over the EUS during wildfire/smoke
events. FAR is small and shows less change while both
the hit rate and POD are improved. In addition, it is
noticed that the reduction in the RMSE is much less
than that of the forecast biases.

Opverall, the monthly mean diurnal variations and
forecast skill scores for the threshold of 15.0 ugm > and
lower are improved substantially (see Figs. 6e,f). How-
ever, it is still a challenge for extreme events like the
4 July fireworks case and for the thresholds around
35.0 ugm > or above in July.

b. PM; s forecast guidance and bias correction in
August 2015

August was an active time for wildfires across the
WUS and PM, 5 air quality model predictions can be
challenging given the uncertainties in wildfire smoke
emissions. Several wildfire events were observed over
the northwestern United States, with the largest events
occurring on 22-25 August. The observed hourly aver-
aged PM,s results reached up to approximately
40 ugm > over the WUS on 24 August (Fig. 7a). How-
ever, the NAQFC raw PM, 5 predictions were around
8 ug m~> or less over the WUS. The PM, s values in-
creased to about 16 ugm > with bias correction using
five members and longer training periods (i.e., 6 or
12 month), but did not reach the observed PM, 5 levels.

Three causes for the underpredictions of PM, s-
associated wildfires by the analog ensemble bias cor-
rection approach are discussed. First, the variables (i.e.,
PM,; 5, 2-m temperature, and 10-m wind speed and wind
direction) used to determine the analogs may not rep-
resent the most important indicators for wildfire epi-
sodes while some important fire-related indicators may
not be included in the analog search. For example, high
concentrations of OC are usually associated with bio-
mass burning, and the ammonium sulfate [(NH,4),SO4]
mainly comes from anthropogenic sources (Hand et al.
2011). Thus, the ratio of OC to ammonium sulfate is a
good indicator for distinguishing wildfire sources of
PM, 5 from anthropogenic emissions. However, this
parameter was not included in the analog search. An-
other important factor is that more and larger wildfires
occurred over the CONUS, as discussed above. If the
training period is very different from the period for
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FI1G. 7. As in Fig. 6, but during August 2015.

which analogs are searched, it becomes more chal-
lenging to find good matches. Finally, when a fire first
erupted and affected the measured PM; s at an AirNow
observation site, there may be no historical forecasts
for that site that include fire-associated forecast biases,
and therefore none of the selected analogs were used to
correct the model for the presence of fire, indicating a
need of a longer training period for analog searches or
for the use of other indicators. Thus, in Fig. 7a it was
only after 26 August, when the high fire-related PM, 5
was present for nearly a week, that the bias correction
scheme finally was able to accurately increase the
forecast PM, 5 to match the observed values.

In contrast, the NAQFC predictions showed much
larger variability than the observations over the EUS in

August (Fig. 7d). Here, underpredictions and over-
predictions were observed during daytime and nighttime,
respectively. In contrast to the WUS, the influence of
wildfire smoke was much smaller in the EUS during this
period. The analog ensemble bias correction approach
did not capture some of the day-to-day variability as well
as the raw forecast guidance did over the EUS (Fig. 7b).
The forecast skill quantified by hit rates was clearly
increased over the WUS (Fig. 7¢). Among the results,
the BC5E12M scenario (solid red, with five ensemble
members and a 12-month training period) showed the
best performance over the WUS. However, both the
NAQEFC forecast guidance and the bias correction ap-
proach require further study for the predictions during
wildfire-smoke-driven PM, 5 events.
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FIG. 8. As in Fig. 6, but during September 2015.

¢. PM; s forecast guidance and bias correction in
September 2015

For September, a typical transition month, the
NAQFC predictions showed opposite patterns of be-
havior for the WUS and EUS (Fig. 8). The PM, s was
underpredicted by the NAQFC predictions across the
WUS, but overpredicted over the EUS. The BCSE12M
runs (red lines) showed excellent agreement with the
observed hourly variations (Figs. 8a,b) over the WUS,
although a wildfire event on 13-14 September was still
underpredicted by both the raw and bias-corrected
forecasts. Overcorrections by the bias correction ex-
periments were seen in the hourly time series during the

first week of September (see Fig. 8a), especially for the
case of BC10E12M (using 10 members; green line). This
was because the BC10E12M case had the most members
and therefore was likely choosing more recent fire days
for its analogs that were not ideal matches.

All bias correction experiments showed a substantial
increase in the hit rate for thresholds below 15 ugm > in
the WUS (Fig. 8e) and moderate change for thresholds
above 15ugm > in the EUS (Fig. 8f). The configura-
tions with 5 members (i.e., BCSE6M and BC5E12M)
showed higher hit rates than the configurations with 10
analog ensemble members. The readers are reminded
that the performance of the configurations with 10 an-
alog ensemble members could be improved further if the
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training period were to be extended (to, say, 2~3 yr) but
this is a considerable burden when creating real-time
operational forecasts since CPU time is limited, and
forecast models are generally updated on at least an
annual basis. Little change in CSI skill score was seen
when the daily 1-h maximum PM,s was lower than
15ugm 7, but the bias-corrected CSI was lower than
that of the model raw forecast for thresholds of
15ugm > and above, especially for the configuration
with 10 ensemble members and a 1-yr training period
(figure not shown). A slight degradation in CSI was
found over the EUS (not shown). This was because the
PODs decreased for the higher-threshold events after
the bias correction was applied. Similar to July and
August, significant reductions in the bias were seen over
both the EUS and WUS in September but this was not
the case for RMSE.

d. PM; s forecast guidance and bias correction in
November 2015

Wildfires episodes were less frequent in November.
As a result, the NAQFC predictions showed better
agreement with the observations over the WUS (see
Fig. 9a). Asseen in Figs. 9c and 9d, the diurnal variations
improved substantially with bias correction in the EUS,
but had only a slight impact in the WUS, where it most
notably helped correct the hourly timing of the mini-
mum and maximum PM, 5 values.

A large increase in the hit rate was seen for all the
thresholds over the WUS and for thresholds above
12.0ugm > over the EUS. Over the EUS there was a
small degradation in the bias-corrected CSI values for
larger CSI thresholds of 12 ugm > and above (Table 3).
Overall, the performance of bias correction in Novem-
ber was similar to that in July and September. There-
fore, the combination of PM, s, temperature, and wind
speed and wind direction was adequate to identify an-
alogs for bias correction except for infrequent, but im-
portant, high-PM, s events such as wildfires.

5. Discussion and future direction

Substantial improvement in the skill of PM, s pre-
dictions is demonstrated with the analog ensemble bias
correction approach. However, this method has limita-
tions for handling extremely high concentration events
such as the Independence Day fireworks, wildfires, and
wind-blown dust episodes. The rarer the event, the
longer the training dataset needs to be to find good an-
alogs, or more effective methods are needed to de-
termine analogs. Currently, PM, s is combined with
three meteorological variables (i.e., 2-m temperature,
and 10-m wind speed and wind direction) for identifying
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appropriate analog ensemble members; however, other
parameters could be considered (e.g., model-predicted
organic carbon to determine wildfire-smoke-influenced
episodes). Moreover, as Junk et al. (2015) have shown,
optimal weighting of the analog predictors (computed
independently for every location and possibly forecast
lead time) may help improve considerably the analog
ensemble performance for PM; 5 predictions. The latter
is left to future investigations.

The ratio of OC to ammonium sulfate can also be a
potential indicator for distinguishing wildfire emissions
from anthropogenic emissions. Inclusion of such a pa-
rameter in the analog metric calculation could be helpful
for determining analog members used in the PM, 5 bias
correction algorithm. In addition, inclusion of fire im-
pacts on weather forecasts could provide more reason-
able meteorological fields for finding the best analogs
from the historical data.

For wind-blown dust events, soil moisture and surface
friction velocity are critical parameters for calculating
dust emissions. Inclusion of those dust-sensitive pa-
rameters may allow analog ensemble bias correction
approaches to better correct raw forecasts for dust
events.

The Independence Day firework event is a human
activity and PM, 5 concentrations do not have a strong
dependence on weather conditions. The analog en-
semble approach does not help unless the Fourth of
July weather from the previous year happens to be
similar to the current forecast. Inclusion of firework
emissions into the emission inventory would improve
PM,; 5 predictions on 4 July. An alternative would be to
force the analog scheme to only use the previous (one
or more) 4 July cases as analogs, or delete 4 July from
the training data (in which case the forecast will have a
low bias on 4 July).

Results also show that day-to-day or week-to-week
variabilities are reduced in some instances after ap-
plying the analog ensemble bias correction approach.
The problem becomes more evident when the number
of analog ensemble members is increased and the
training period is short. This is to be expected when
using an ensemble mean approach as a bias correction.
By definition, the ensemble mean reduces the vari-
ability of the ensemble members given its smoother
estimate. Thus, more tests on appropriate ensemble
member numbers and longer training periods (e.g.,
2-3yr) are needed for reinstating the day-to-day or
week-to-week variabilities of the bias-corrected
predictions.

Computational time is critical for real-time opera-
tional forecasts. The analog ensemble approach is
demonstrated as the first step for improving real-time
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FIG. 9. As in Fig. 6, but during November 2015.

PM, 5 predictions. According to the study of Djalalova
etal. (2015), bias correction with a Kalman filter applied
to the analog time series shows better performance
compared to the analog ensemble bias correction

TABLE 3. As in Table 2, but for November 2015.
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approach. However, the KFAN algorithm requires
more computational resources than does the analog
ensemble when the length of the training period and the
number of analog ensemble members are increased.

CMAQPARA BCSE6M BC5E12M BC10E12M

AVASN) EUS WwuUS EUS WwuUS EUS WUS EUS
C, 0.35 0.40 0.51 0.44 0.51 0.43 0.50 0.43
Bias —0.81 2.98 —0.78 0.49 —0.76 0.47 —0.75 0.48
RMSE 8.76 7.55 7.02 4.89 7.33 4.85 7.24 4.86
CSI 0.38 0.23 0.41 0.27 0.41 0.29 0.39 0.27
Hit rate 0.73 0.76 0.77 0.83 0.77 0.83 0.77 0.83
POD 0.43 0.31 0.47 0.33 0.48 0.37 0.45 0.33
FAR 0.11 0.24 0.01 0.01 0.01 0.01 0.01 0.01
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KFAN will be tested for real-time forecast applications
when a parallelized version of this code becomes
available.

6. Summary and conclusions

In this study, a summary of the performance of the
NOAA National Air Quality Forecast Capability
(NAQFC) PM, 5 predictions with and without bias
correction is presented. A persistent seasonal bias is
noted over the past several years. Various efforts have
been made at NOAA to improve the NAQFC pre-
dictions of surface PM, s, resulting in improved winter
PM, s predictions. However, underprediction in sum-
mer has not improved and was even worse in 2015 than
previous years. Out-of-date emission inventories could
be one of the major reasons, in addition to intense
wildfire activity during the summer of 2015.

To address these identified biases, an analog ensemble
bias correction is integrated into the NOAA NAQFC.
Tests of the analog ensemble approach with different
configurations have been completed to assess the impact
of training period length and number of analog members
on the analog ensemble bias correction’s performance
during July, August, September, and November 2015.
Results show that the diurnal variation patterns are im-
proved greatly with all the configurations. The sensitivity
run BCSE12M (using five analog ensemble members
and a 12-month training period) provides the best per-
formance overall. This configuration has been selected for
the analog ensemble bias correction approach for the 2016
NAQPFC operational implementation at NOAA/NCEP.

This study also highlights the limitation of the analog en-
semble bias correction approach on improving PM, 5 pre-
dictions during infrequent, but extremely high concentration,
PM, 5 episodes, such as the Fourth of July Independence
Day fireworks and wildfire events. A more robust way of
identifying analogs is critical to improving the analog en-
semble bias correction approach. For example, including the
ratio of organic carbon to ammonium sulfate might improve
the search for good analogs during wildfire emission-type
events. Soil moisture and surface friction velocity could be
included for identifying better analogs for dust-storm cases.
Overall, this study highlights the strengths and weaknesses
of the analog ensemble approach, and provides direction
for our next steps as well as future research.
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