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Planned products/outputs 
 
The proposed project will result in the following three main products: 
 

1. Machine-learned operators for gas-phase chemistry and aerosol processes based on 
multiple reference models, implemented and validated in the CMAQ chemical transport 
model (CTM). 

2. Ensembles of the above machine-learned mechanisms implemented in CMAQ to allow 
probabilistic air quality forecasts. 

3. Demonstrations of TEMPO satellite data assimilation using the above CMAQ ensemble 
models. 

 
(We could use a different CTM base for implementation, such as UFS-Chem or MUSICA, if 
preferred by NOAA.) 
 
Planned impacts/benefits/outcomes 
 
The proposed project will initially result in demonstrations in CMAQ of machine-learned gas-
phase chemical mechanisms which are orders-of-magnitude faster than the reference 
mechanisms with a factor of ~10 fewer state variables, resulting in an expected initial ~2–5× 
speed-up of the overall CMAQ model, with similar surrogate models for aerosol processes 
subsequently developed and implemented to yield further speedups. These fast, simple individual 
models will allow ensemble simulations to generate probabilistic forecasts in CMAQ, and these 
ensemble simulations will in turn allow data assimilation through ensemble Kalman filtering and 
inversion. Together, these advancements will result in a substantial advancement in NOAA air 
quality forecasting capabilities. 
 
Planned methodology and timelines 
 
Project activities will be organized into three Thrusts, each leading to one of the Products above. 

Thrust 1. In preliminary work we have developed a method for the data-driven generation 
reduced-order chemical mechanisms which combines a linear autoencoder for “lumping” 
the chemical species with a novel method we term SIMADy (Sparse Identification of 



Mass Action Dynamics) which identifies chemical reactions between the encoded 
chemical species to reproduce the dynamics found in the training data. Our method is 
unique among similar approaches in that it offers provable guarantees of numerical 
stability and scalar positivity. We have successfully used this method to emulate MCM 
(the Master Chemical Mechanism) and the GEOS-Chem chemical mechanism, and have 
implemented it online in GEOS-Chem. In this thrust we will also apply this method to 
CRACMM, implement the resulting mechanisms in CMAQ, and extensively evaluate the 
result. We will implement a similar process for emulating aerosol operators including 
ISORROPIA, MOSAIC, CAMP, VBS, with modal and sectional size schemes. [Timeline: 
Year 1: Gas-phase chemistry surrogate implemented in CMAQ; Year 2: Aerosol models 
developed; Year 3: Aerosol models implemented in CMAQ]. 

Thrust 2. In preliminary work (https://arxiv.org/abs/2407.09757) we have demonstrated the 
generation of ensemble predictions using machine-learned chemical mechanisms. In this 
Thrust we will apply similar methods to the mechanisms developed in Thrust 1, using the 
multiple reference models as well as Stochastic Gradient Langevin Dynamics or 
bootstrapping as sources of variability among the ensemble members. We will evaluate 
the resulting ensemble predictions in CMAQ in terms of accuracy, uncertainty 
calibration, and performance-accuracy tradeoffs. [Timeline: Year 1: CMAQ ensembles 
for CONUS demonstrated at 36km resolution; Year 2: Ensembles demonstrated at 12km 
resolution; Year 3: Ensembles demonstrated at 4km resolution]. 

Thrust 3. We will leverage the ensemble simulations developed in Thrust 2 to assimilate 
NASA TEMPO satellite data using Ensemble Kalman Filter and Ensemble Kalman 
Inversion techniques, both individually and combined in a joint state-parameter 
estimation framework. [Timeline: Year 1: Data assimilation for chemical state; Year 2: 
Data assimilation for updating model parameters; Year 3: Joint state-parameter updates]. 

During the above activities we will leverage the EarthSciML geoscientific modeling framework 
(https://earthsci.dev/) for rapid prototyping and development, which is being developed by my 
research group with funding from NASA and NSF. The EarthSciML framework is currently too 
experimental for operational use but offers next-generation capabilities including equations-to-
code compilation and automatic differentiation which allow a rapid-experimentation workflow 
that we have found to substantially accelerate the development of machine-learned model 
components. After performing initial development and testing using EarthSciML, we will port 
each model component to CMAQ (or another model framework if preferred by NOAA) for 
further evaluation and eventual operational deployment. 
 
The proposed starting and ending Readiness Levels (RLs), any proposed use of NOAA 
Testbeds, HPC resources, and whether a NOAA Transition Plan has been developed for 
earlier work on this topic 
 
The machine learned chemical mechanism framework (SIMADy) described in Thrust 1 is at 
Readiness Level 6: we have demonstrated its use in the GEOS-Chem CTM. The ensemble model 
generation system described in Thrust 2 is at a Readiness Level 5: we have demonstrated its use 
in a box-model format. We expect that the data assimilation framework described in Thrust 3 will 
be at a Readiness Level of 6 before December 2: we have all the necessary parts ready and are 
currently working on producing an Ensemble Kalman Inversion demonstration using TEMPO 
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data and the EarthSciML model framework. At the end of the project, all components will be at 
least at a Readiness Level of 7: implemented in CMAQ with performance evaluated. We will 
also work with NOAA staff to achieve levels 8 and 9 with operational use in forecast products. 
No use of NOAA testbeds or HPC resources is planned, and no NOAA transition plan exists. 
 
Potential operational, commercial, or other end-user adopter(s) of the project outputs 
 
The main target user is the NOAA National Air Quality Forecast Capability (NAQFC). However, 
the capabilities we propose to develop are general, and could also be used by the NASA GEOS-
CF composition forecast as well as by the regulatory and research communities in CTMs such as 
CMAQ, GEOS-Chem, and WRF-Chem. 
 
Budget 
 
The proposed project will support three graduate student research assistants (one per Thrust), 2–4 
months of effort per year of a Research Scientist to provide software and computational support, 
and one month per year of summer salary for the PI, plus miscellaneous expenses. 
 

 Year 1 Year 2 Year 3 
Grad Student Salary          91,672       105,698   109,397  
Research Scientist          29,187         16,068     13,970  
PI Summer Salary          13,717         14,197     14,694  
Fringe          29,387         24,977     24,617  
Grad Student Tuition          58,670         67,647     70,014  
Travel / Equipment / Misc.          19,095         16,965     13,256  
Indirect Costs        107,272       104,252   103,097  
Total        349,000       349,804   349,045  

 


