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ABSTRACT 11 

Atmospheric chemistry models usually perform badly in forecasting wintertime air 12 

pollution because of their uncertainties. Generally, such uncertainties could be decreased 13 

effectively by techniques such as data assimilation (DA) and Model Output Statistics 14 

(MOS). However, the relative importance and combined effects of the two techniques 15 

have not been clarified. One-month air quality forecast with the Weather Research and 16 

Forecasting-Chemistry (WRF-Chem) model was carried out here in virtually operational 17 

manner focusing on Hebei province, China. Meanwhile, 3D variational DA (3Dvar DA) 18 

and MOS based on one-dimensional Kalman filtering were implemented separately and 19 

simultaneously to investigate their relative performance in model improvement. 20 

Comparison with observations shows that chemical forecast with MOS outperforms that 21 

with 3Dvar DA. Such superiority of MOS in improving the forecast accuracy could be 22 
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seen in all the species tested and extend to 48 h and 72 h forecast in which 3Dvar DA has 23 

almost no or negligible effect. Combined use of both techniques does not guarantee better 24 

forecast than MOS only—improvements and degradations are both small and appear 25 

rather randomly. Results probably indicate that the implementation of MOS is more 26 

suitable than 3Dvar DA in improving operational forecast ability of chemistry model. 27 

Key words: Data assimilation; model output statistics; WRF-Chem; operational forecast 28 

 29 

1. Introduction 30 

In recent years, an unexpected outbreak of severe air pollution events engulfed China 31 

during autumn and winter. These air pollution episodes arouse a deep concern and panic 32 

in the public and has since then been the top priority of local government. To efficiently 33 

control the atmospheric pollution, it’s a must to achieve accurate forecast for atmospheric 34 

chemical constituents. 35 

Since the 21
st
 century, the air quality forecast systems, such as Weather Research and 36 

Forecasting-Chemistry (WRF-Chem), have been gradually put into operation in key cities 37 

across China by many organizations and institution. However, without any additional 38 

measures, those numerical forecast systems are often incompetent for the application of 39 

air quality forecast due to the uncertainties within the parameterization schemes and input 40 

data of models (van Loon et al., 2007; Zhang et al., 2016). During the last decades, 41 

scientists have developed multiple techniques in either pre- or post-processing manners 42 

for model improvement in the operational prediction of meteorological and chemical 43 

fields. For example, data assimilation (DA)—a measure applied before the model run—is 44 
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an effective approach in improving the model forecast skill of air pollution via reducing 45 

the uncertainty of chemical initial conditions (CICs) or other parameters. For instance, 46 

Barbu et al. (2009) achieved better forecast by assimilating the measurements of SO2 and 47 

SO4 to adjust the emission and conversion rates of SO2 in model; the research of Liu et al. 48 

(2011) and Yin et al. (2016) showed improvement of aerosol analysis and forecast from 49 

assimilating the Moderate Resolution Imaging Spectroradiometer (MODIS) total aerosol 50 

optical depth (AOD) retrieval products. Different models and observation data had been 51 

tried and results showed similar conclusions (Wang et al., 2014; Zhang et al., 2015; Mizzi 52 

et al., 2016; Tang et al., 2016). Readers who are interested could refer to Bocquet et al. 53 

(2015) for more details. On the other hand, through processing the model output, the 54 

forecast error could also be corrected effectively by another approach called Model 55 

Output Statistics (MOS) (Glahn and Lowry, 1972). MOS works through statistically 56 

relating the historical model output with the corresponding observations and then 57 

applying it to the model forecasts. This approach has been widely used in the post-58 

processing of operational numerical weather prediction and most forecast biases could be 59 

corrected (Wilson and Vallee, 2003) especially for temperature (Taylor and Leslie, 2005; 60 

Libonati et al., 2008) and humidity (Anadranistakis et al., 2004).  61 

Although it has been proved that both DA and MOS are effective in improving the 62 

forecast performance, little attention, however, was paid to the comparison or the 63 

combined use of the two methods, especially concerning the atmospheric chemistry 64 

model. Two problems made it relatively hard to fairly compare the two methods using the 65 

same dataset of observation. Firstly, early (even recent) research concerning the DA in 66 

atmospheric chemistry models focused on assimilating observation of satellite-derived 67 
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products to generate analysis skillful in improving the forecasts for variables like CO 68 

(Barret et al., 2008), CO2, O3, NO2 (Inness et al., 2015; Wargan et al., 2015), CH4 (Alexe 69 

et al., 2015) and aerosols (Benedetti et al., 2009; Yumimoto et al., 2016). However, MOS 70 

works only with in-situ observations from surface stations. Secondly, unlike numerical 71 

weather prediction, MOS still remains in its infancy for the operational numerical 72 

forecast of atmospheric chemical variables. Such works, if any, were usually based on 73 

regression approaches (Denby et al., 2008; Honore et al., 2008; Struzewska et al., 2016) 74 

which are effective in improving the air quality forecast for all analyzed species but too 75 

dependent on local pollution conditions, which makes them inconvenient to be applied as 76 

widely as DA approaches.  77 

This study aims at comparing the potentials of the two approaches in improving the 78 

atmospheric chemistry forecast with WRF-Chem modeling system in the operational 79 

context. To overcome problems mentioned above, we firstly adapted a 3Dvar DA system 80 

based on Li et al. (2013) (L13 henceforth) and Jiang et al. (2013) to the assimilation of 81 

observation data from surface stations. The authors then modified a MOS scheme from 82 

Galanis and Anadranistakis (2002) (hereafter G02) which was used in adjusting the 83 

meteorological forecast, to make it able to correct the chemical output from atmospheric 84 

model. The paper is organized as follows: model, setup and experimental designs will be 85 

described in Section 2; evaluation of model improvement with the two methods are 86 

discussed in Section 3; a summary and conclusion are given in Section 4. 87 

2. Method and data 88 

2.1 Model setup 89 
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The WRF-Chem model is an online three-dimensional, Eulerian chemical transport 90 

model that considers the complex physical and chemical processes in the troposphere 91 

(Grell et al., 2005). It has been applied in various research settings, especially those 92 

concerning feedbacks of air pollution on weather and chemical data assimilation (Saide et 93 

al., 2012; Makar et al., 2015; Saide et al., 2015; Mizzi et al., 2016). In this study, WRF-94 

Chem 3.7.1 was used to simulate air quality in Hebei province, China. Two nested 95 

domain was set as Fig. 1. The outer domain covered East-Asia with a horizontal 96 

resolution of 75 km×75 km and 106×81 grids, while the inner domain covered the Hebei 97 

province with a horizontal resolution of 15 km×15 km and 76×81 grids. Model vertical 98 

resolution was defined as 24 vertical levels with 100 hpa as model top. 0.5°×0.5° data 99 

from NCEP Global Forecast System (GFS) was used to provide the meteorological initial 100 

conditions and lateral boundary meteorological conditions every 12 hours. Atmospheric 101 

gaseous chemistry and aerosol was simulated using RADM2/MADE/SORGAM 102 

(Stockwell et al., 1990; Ackermann et al., 1998; Schell et al., 2001) scheme. 103 

Anthropogenic emission inventory was provided by Multi-resolution Emission Inventory 104 

for China (MEIC) in 2012 (http://www.meicmodel.org). Detailed configuration of WRF-105 

Chem model was listed in Table 1.   106 

2.2 MOS method 107 

What MOS does is to find statistic relationship from the training samples which 108 

would be then applied on model forecast outputs. By doing so, it is expected to correct 109 

the model errors and generate forecast that fit the observation better. In this paper, one-110 

dimensional Kalman filter was chosen as the algorithm to realize the MOS process for its 111 

situation-independence and stable effects. This paper formulated the algorithm mostly 112 
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resembling G02, so detailed theory and formulations will not be introduced here except 113 

some modifications described in the next paragraph. 114 

Firstly, in this work, measurement y(t) as well as real value x(t) could be both the 115 

difference and ratio between forecast and observation while they only denoted difference 116 

in equation (1) and (2) of G02. Furthermore, hourly concentrations of 5 species from the 117 

3 day model output were split into 3×5×24 independent daily concentration series. At 118 

last, given Kalman filtering could predict only one time step ahead (one day ahead in this 119 

context), the correction could only work on 24 h forecast while leaving 24–48 h and 48120 

–72 h (48 h and 72 h hereafter) forecast uncorrected for lack of future observation. So, 121 

in order to extend the algorithm to the further, the corrected results from 24 h (48 h) 122 

forecast would be used as a low-grade proxy of observation at corresponding time to 123 

correct the 48 h (72 h) model output. Detailed steps could refer to Appendix A. 124 

2.3 Configuration of DA 125 

In this paper, 3Dvar data assimilation was implemented to optimize the CICs for the 126 

inner model domain. The data assimilation system and formulation used here is based on 127 

L13 with the following modifications. 128 

In addition to PM2.5 assimilated in L13, particulate mass with diameter between 2.5 129 

µm and 10 µm (PM2.5–PM10 hereafter) was also assimilated and the analysis increment 130 

was added to the corresponding model variables following L13. The gaseous species, 131 

including SO2, NO2 and O3, also joined the assimilation to decrease the uncertainty of 132 

their concentration in the model CICs. 133 
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For background error, The National Meteorological Center (NMC) method (Parrish, 134 

1992) was adopted here to estimate the background root mean square error (RMSE) and 135 

the three Kronecker product members of the background error correlation matrix. The 136 

NMC method utilized the difference between 12 and 24 h WRF-Chem forecasts valid at 137 

the same time of 12:00 UTC for a whole month. No cross correlation between different 138 

species was assigned for background error. 139 

Considering that all the stations were built and maintained under the same standards, 140 

no difference the measurement and representativeness error between different stations 141 

was assumed. In addition, cross correlation between different species and stations were 142 

also set to zero for the lack of information. Therefore, observation error consisted of 143 

merely 5 numbers, one for each species. The measurement error was assigned as 1.0 μ144 

g/m3, 1.0 μg/m3, 1.0 ppb, 1.0 ppb and 1.0 ppb for PM2.5, PM2.5–PM10, SO2, NO2 and 145 

O3 respectively. Representativeness error was estimated following Elbern et al. (2007) 146 

and Schwartz et al. (2012) using the formula 147 

                                                     Eq. (1) 148 

where ε0 and εr are the measurement error and representativeness error,  means a 149 

adjustable parameter that accounts for the lifetime of the species (0.5 for PM2.5, PM2.5–150 

PM10 and O3, 1 for SO2 and 2 for NO2),  is the grid spacing (here 15km) and L is the 151 

radius of influence determined according to the location of stations (here 4.0km for 152 

suburban stations assumed for all sites). If the total observation error was defined as the 153 

sum of measurement error and representativeness error, the standard deviation of 154 

observation error ends out to be 2.0 μg/m
3
, 2.0 μg/m

3
, 3.0 ppb, 4.9 ppb and 2.0 ppb for 155 
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PM2.5, PM2.5–PM10, SO2, NO2 and O3 respectively. Though the observation error was 156 

determined fairly arbitrarily and empirically here, the uncertainty relating to it should not 157 

have significant influence on the conclusion. That is because the results are usually not 158 

very sensitive to the specification of error (Geer et al., 2006) and similar analysis were 159 

obtained from our experiments with observation error increased or reduced 2–3 times. 160 

2.4 Experiment design 161 

To compare the relative importance of MOS and DA, 4 parallel experiments were 162 

designed: Sim_base, Sim_DA, Sim_MOS and Sim_DM. Sim_base worked as the base 163 

simulation without applying both DA and MOS.; Sim_DA was an experiment with only 164 

DA being employed to optimize the model CICs; Sim_MOS was the same to Sim_base 165 

except the model output had been corrected by one-dimensional Kalman filtering; in 166 

Sim_DM, both DA and MOS techniques were used. 167 

To simulate the operational forecast scenes, as Fig. 2 shows, all experiments initiated 168 

a new daily WRF-Chem forecast at 12:00 UTC between 12:00 UTC 30 November 2014 169 

and 12:00 UTC 31 December 2014. Each forecast was integrated 84 h to generate 72 170 

hours’ forecasts of each day with the earliest 12 h being discarded as the spin-up time. 171 

CICs for each initiation came from the 24 h forecasts of the previous cycle, which would 172 

be the background fields to be assimilated with valid observations for experiments with 173 

DA before initializing the WRF-Chem. The very first CICs at 12:00 UTC 30 November 174 

2014 were the spun-up over 2 days beginning from the climatological background 175 

chemical profile. For all experiments, the chemical boundary conditions (CBCs) were the 176 

default climatological chemical profile for the outer domain who supplied CBCs through 177 

interpolation for the inner domain. 178 
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 179 

 180 

2.5 Observation data 181 

Hourly concentration of SO2, NO2, PM10, O3 and PM2.5 at surface level from 207 182 

sites was provided by Ministry of Environmental Protection (MEP) of China. Data covers 183 

the whole month of December 2014 and has been subjected to routine quality control. As 184 

shown in Fig. 3, only 155 stations were randomly selected from the 207 stations to be 185 

assimilated with the 52 stations’ data left to verify the assimilation process. Furthermore, 186 

it should be noted that only the 155 sites who provide their data into the 3Dvar data 187 

assimilation will participate into the MOS process.  188 

3 Results 189 

3.1 Model evaluation 190 

Table 2 presents the mean bias (MB), relative bias (RB), RMSE and correlation 191 

coefficient (Corr) for the 24 h, 48 h and 72 h forecast of Sim_base. In general, the base 192 

model simulation could give fairly good result especially for NO2 whose bias is small and 193 

correlation is high. When it comes to particulate matter and SO2, model tends to 194 

systematically underestimate the concentration of SO2 as well as that of PM2.5 and PM10. 195 

Even so, the model well reproduces the temporal variations of particulate matter, with 196 

correlation coefficient higher than 0.47 for PM10 and 0.54 for PM2.5. For O3, the model 197 

may seem to have some problem—simulated concentrations (20–80 μg/m
3
) seriously 198 

overestimate the observed values (5–45 μg/m
3
), which leads to positive bias (about 40 199 

μg/m
3
) and lower correlation coefficient (0.44) than other species. Fortunately, when 200 
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viewed the RMSE of O3 from the aspect of MB, it is apparent that error is mainly caused 201 

by bias and therefore the model is still able to reproduce the variation of the O3. The 202 

biases mentioned above could usually be attributed to the uncertainties from emission 203 

inventory (Tang et al., 2011) and model schemes (Yerramilli et al., 2010). Though 24 h 204 

forecast performs the best for all species, 48 h and 72 h simulation are also good enough 205 

to yield fairly reliable results, which is critical to the success of MOS in the whole 72 206 

hours’ forecast. In a word, the model shows forecast skill that is enough to make itself 207 

competent for the success of DA and MOS process. 208 

3.2 Validation of MOS 209 

Fig. 4 depicts the site averaged hourly concentration simulated by Sim_MOS plotted 210 

versus ground observations. Note that, although the hourly concentration are averaged 211 

over 155 stations, the MB and RMSE attached in Fig. 4 are generated by calculating the 212 

155 stations’ own errors at the first before averaging. 213 

From Fig. 4, it could be concluded that forecast from the Sim_MOS fits the 214 

observation fairly close especially for SO2, NO2 and O3. However, when it comes to 215 

PM2.5 and PM10, the points locate within a wider space and those extremely high 216 

observations are hard for MOS to forecast. Even so, when compared with Table 2, PM2.5 217 

and PM10 together with the other 3 species could see a clear correction obtained for all 218 

the forecast time. Excluding the 48 h forecast of NO2, MOS could decrease the MB to a 219 

large extent, which means MOS is able to remove the majority of model systematic bias. 220 

Thanks to the reduction of MB, RMSE were also decreased for all the cases except the 24 221 

h forecast of SO2. What’s more, the effect on reducing the error is unlikely to get poor as 222 

the forecast time advances. That is to say, no matter for 72 h and 48 h forecast or 48 h 223 
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and 24 h forecast, the effect MOS has on the former could rival or even exceed that on 224 

the latter, e.g. the RMSE reduction of PM2.5 is even larger for 72 h than 48 h forecast. 225 

Among all the 5 species, O3 seems to benefit the most from the MOS process. That is not 226 

surprising because O3 usually follows a very regular daily variation which makes the 227 

hourly-split but daily-linked concentration series almost perfect for the assumptions of 228 

one-dimensional kalman filtering.   229 

 230 

 231 

It must be admitted that MOS degrades the forecast in few cases (48 h forecast of 232 

NO2 and 24 h forecast of SO2 as mentioned above). Those error increase usually will not 233 

concern the users and may well be accepted, in that they are extremely small and only 234 

appears at times when model outputs to be corrected are already fairly close to the 235 

observation. However, when viewed from correlation, such degradation becomes more 236 

obvious. Except NO2 and O3, the correlation all experience a decrease of about 0.1–0.2. 237 

It seems that the MOS approach tends to reduce the bias and error at the expense of 238 

correlation. 239 

3.3 Validation of DA 240 

Fig. 5 and Fig. 6 shows the RMSE and Corr change over the integration time from 241 

forecast −12 h (right after the DA) to forecast 10 h (already integrated 22 h) for 242 

experiments Sim_base and Sim_DA. RMSE and Corr are averaged over the 52 stations 243 

who have not provided their observation data into the 3Dvar DA process, so any 244 

improvement in RMSE and Corr should be attributed to the success of DA.  245 
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It could be seen from the forecast −12 h of Fig. 5 and Fig. 6 that DA lead to better 246 

initial condition for the simulation, especially for NO2, PM10, PM2.5 and O3 whose RMSE 247 

experienced large decrease at almost all the sites. For example, particulate matter such as 248 

PM10 and PM2.5 has a RMSE reduction of about 50–100 µg/m
3
, which is about half the 249 

RMSE of Sim_base. Such results are as good as those obtained by L13 and Jiang et al. 250 

(2013) who also worked on assimilating ground observation using 3Dvar. For SO2, the 251 

RMSE decrease seems not so apparent (though RMSE change is still negative when 52 252 

sites are averaged) but correlation after DA is still obviously larger than before. The 253 

marginal RMSE decrease of SO2 could be accepted considering correlation increase is 254 

rather obvious and the data representativeness of some stations is dubious (Zhang et al., 255 

2016). 256 

However, as expected, the effect of DA slowly diminishes when the integration goes 257 

on, which has also been observed in other works (Jiang et al., 2013; Li et al., 2013). After 258 

the model has been integrated over 14 hours, RMSE after DA minus that before DA 259 

(RMSE change henceforth) are still negative but their absolute values are apparently 260 

smaller when compared to the earlier. The effect of DA keeps longer for O3, PM10 and 261 

PM2.5 (RMSE change keeps negative for the 14 hours), mainly benefiting from their 262 

relatively long lifetime. For example, PM2.5 and PM10 still maintain a RMSE reduction of 263 

about 10–20 µg/m
3
, which is even better than results from L13 and Jiang et al. (2013). 264 

However, when it comes to NO2 whose lifetime is short, the two experiment shows 265 

almost no difference in RMSE after 4 hours’ integration. Because the initial improvement 266 

from DA is relatively small, the forecast of SO2 soon loses its improvement from DA and 267 

shows little RMSE change almost immediately after the run of model. For SO2 and NO2, 268 
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the RMSE change are positive in some cases, but such positive values are usually very 269 

small compared with the original RMSEs and therefore unlikely to be a problem. 270 

Conclusions from the view of Correlation are similar to that from RMSE, except the 271 

effect of DA seems more obvious and long-lasting. 272 

Overall, for most cases, DA successfully produce better chemical initial condition for 273 

the model and could help to improve the forecast skill in the following half to one day. 274 

3.4 Effect of MOS and DA 275 

Forecast error could be seen to vary with forecast hours from Fig. 7 which plots the 276 

RMSE of the 4 experiments and 5 species at different forecast hours from −12 h to 72 h. 277 

Considering the RMSE is calculated from the statistics of one month, Fig. 7 could well 278 

represent a relatively general fact of the four experiments. 279 

From comparing experiments using MOS (solid lines) and those without MOS 280 

(dotted lines), all species see large decrease in the 72 hours forecast span and such 281 

decrease is much larger than that DA could provide (solid lines are below the dotted lines 282 

a larger distance than blue lines are below the red). Take SO2 as an example, the averaged 283 

RMSE decrease of the 72 hours for Sim_MOS to Sim_base is 4.34 µg/m
3
 while Sim_DA 284 

could only provide a decrease of 0.48 µg/m
3
. What is worse, when forecast runs to its 285 

second or third day, the effect of DA would inevitably diminish (it could be seen from the 286 

overlapped red dotted and blue dotted lines after forecast 24 h) while MOS could still 287 

work during this period (solid lines do not overlap with the dotted lines even after 288 

forecast 24 h). 289 

The blue dotted lines represent simulation RMSE corrected only with MOS while red 290 

dotted lines are results processed by both MOS and DA. Overlap of the two lines could 291 
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be seen at almost all the times from all the species, which means that DA of the initial 292 

condition provides little help to the MOS effect though providing better initial condition 293 

for the model to generate better forecast. However, sometimes the two lines do not 294 

overlap and do show some differences, which is common for all the species but most 295 

obvious for NO2 and most unobvious for PM10 and PM2.5. In time when DA still could 296 

improve the forecast or say the red dotted line is below the blue dotted line, the red solid 297 

line could be either above (forecast 1 h in SO2) or below (forecast 10 h in O3) the red blue 298 

line, which means better forecast from DA may either improve or degrade the MOS 299 

effect. Because in this work, MOS correct the one day’s forecast using the correction 300 

results and forecast from previous days, it is not strange that Sim_DM and Sim_MOS 301 

show discrepancy when Sim_DA and Sim_base coincide after forecast 24 h. However, 302 

like what has been stated, such discrepancy could be either improvement or degradation.  303 

3.5 Discussion 304 

This section will give additional discussion on two facts. First, MOS could improve 305 

forecast far more than 3Dvar DA of CICs. That is reasonable because MOS could keep 306 

effective through the whole forecast period while the effect of 3Dvar via optimized initial 307 

condition usually diminishes after 24 hours of model integration. The loss of benefit from 308 

3Dvar DA is unavoidable because atmospheric chemistry is less sensitivity to chemical 309 

initial condition rather than other driving factors like meteorological conditions and 310 

emission (Henze et al., 2009; Semane et al., 2009; Tang et al., 2011). What is worse, the 311 

earliest 12 hours’ forecast, which benefits the most from 3Dvar DA, usually makes no 312 

sense in real operational forecast environment and is excluded from evaluation as spin-313 

up. In fact, when compared with Sim_base, Sim_DA could account for 43.85% O3 314 
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RMSE decrease in the first 12 hours after initialization (forecast −12 h to forecast −1 h ), 315 

well acting as a rival of Sim_MOS who contributes 55.94% O3 RMSE decrease in its first 316 

12 hours (forecast 0 h to forecast 11h). However, when discussed within the same 317 

forecast time period, say forecast 12 h to forecast 24 h, Sim_DA could produce only 318 

3.93% O3 RMSE decrease which is far less than Sim_MOS (61.26%), despite the 319 

following hours during which DA has no effect at all.  320 

The second fact to be explained is that Sim_DM does not always outperform 321 

Sim_MOS. This result is somehow against the experience that, when corrected with the 322 

same MOS algorithm, better input should lead to better or at least not worse output. 323 

However, it should be noted that the error’s temporal consistency, rather than its 324 

magnitude, decides the effects of MOS on the model outputs. When reducing the 325 

magnitude of the error of model outputs, the 3Dvar DA process may at the same time 326 

violate or increase its consitency to degrade or improve the effects of MOS from case to 327 

case. Therefore, such phenomenon is uncorrelated with the inherent or necessary nature 328 

of the model, DA as well as MOS processes and will be changed randomly whenever the 329 

three changes their setup. The assumption is supported by the evidence that things get 330 

very different when the whole experiment is replicated except the space resolution of 331 

original anthropogenic emission is changed from 0.1°×0.1° to 0.25°×0.25°. (See Fig. 8, 332 

PM2.5 and PM10 are not plotted here considering the problem was not obvious for them in 333 

Fig. 7.) For example, in Fig. 7, SO2 is predicted better by Sim_DA than Sim_base at 334 

forecast 2 h but Sim_DM is beaten by Sim_MOS. When it comes to Fig. 8, however the 335 

same comparison lead to an inverse result to see Sim_DM is better than Sim_MOS. 336 

Given the fact that experiment only covers a period of only 1 month, it is possible that the 337 
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forecast ability of Sim_MOS is slightly worse than or almost the same to Sim_DM if 338 

experiment is carried with longer time. However, results from short time experiment, 339 

which contains random just like everyday forecast, could still reveal that using MOS and 340 

DA together does not gurantee better output than MOS only, to which people should be 341 

careful.  342 

4. Conclusion 343 

A comparison between the effect of MOS and DA on improving forecast skill of 344 

atmospheric chemistry model was performed in near real operational context. Evaluation 345 

according to observations shows that both 3Dvar DA and MOS based on one kalman 346 

filtering are effective measures to decrease errors in model forecast. 347 

Forecast with solely MOS (Sim_MOS) performs better than that with solely 3Dvar 348 

DA of CICs (Sim_DA). Such superiority of MOS could also be seen in all five species 349 

and even extend to 48 h and 72 h forecast where 3Dvar DA of CICs lose its effect in 350 

forecast improvement. That is to say, the implementation of MOS rather than 3Dvar DA 351 

on CICs is more suitable for the aim of improving operational forecast ability. 352 

Considering the randomness of DA’s influence on error consistency, it is not 353 

impossible that combined use of both techniques sometimes yields worse forecast than 354 

MOS only. The potential degradation, which is expected to be mitigated by long term 355 

average, should be paid attention to but is not likely to concern the forecasters for the 356 

relatively limited difference yielded.  357 

Given the indications that the refinement of model grid is promising for additional 358 

forecast skills (Elbern et al., 2007), future work will concentrate on trying finer model 359 

grid as well as different 3Dvar observation error setup in order to improve the effect of 360 
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DA on forecast. Of particular interest are species like SO2 and NO2 which are 361 

unsatisfactorily forecasted by model with 3Dvar. Also, to see if conclusions will be 362 

different, we are going to try different DA methods, like 4Dvar and inverse modeling, 363 

which are able to adjust model parameters and emissions who work as control parameters 364 

in a successful forecast (Schmidt and Martin, 2003; Dubovik et al., 2008). Another work 365 

concerns itself with extending the experiment time to explore whether any long‐term 366 

statistic properties exists when using DA and MOS techniques together. 367 
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Table 1. Configuration of the model’s physical and chemical schemes 496 

 Scheme 

Cloud microphysics scheme WSM 5-Class 

Long-wave radiation scheme RRTM 

Short-wave radiation scheme Goddard 

Urban canopy scheme Off 

Surface layer scheme Modified MM5 Monin-Obukhov 

Land surface scheme Unified Noah 

Planetary boundary layer scheme YSU 

Cumulus parameterization scheme Grell-Devenyi 

Chemistry scheme RADM2/MADE/SORGAM 

Photolysis scheme Madronich F-TUV 

 497 

Table 2. Site averaged MB, RB, RMSE and Corr for 24 h, 48 h and 72 h forecast of 5 498 

species in Sim_base. Statistics is calculated according to hourly concentration from each 499 

of the 207 sites before being averaged. Unit is µg/m
3
 for MB and RMSE. 500 

 24 h forecast 48 h forecast 72 h forecast 

 MB RB(%) RMSE Corr MB RB(%) RMSE Corr MB RB(%) RMSE Corr 

SO2 −33.49 −35.2 73.39 0.50 −36.54 −38.4 75.42 0.48 −41.78 −43.9 77.82 0.47 

NO2 2.12 3.8 35.45 0.56 0.05 0.1 36.13 0.53 −4.47 −8.1 35.84 0.51 

PM10 −136.92 −72.3 173.60 0.52 −140.65 −74.3 177.60 0.50 −145.27 −76.7 182.68 0.47 

O3 39.99 160.8 43.47 0.44 40.08 161.2 43.61 0.44 41.34 166.2 44.75 0.43 

PM2.5 −72.10 −62.3 104.30 0.60 −74.74 −64.6 107.26 0.57 −78.64 −67.9 111.48 0.54 

 501 

502 
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 503 
Fig. 1. The nested domains of the WRF-Chem model. 504 

 505 

 506 
Fig. 2. Time setting of the model in the four experiments. 507 

 508 
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 509 
Fig. 3. The terrain height of the Hebei province with monitoring sites plotted as filled 510 

dots. Red dots means sites who participated into 3Dvar and MOS process while blue ones 511 

were only used in validation of DA effect. 512 

 513 
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 514 

Fig. 4. Hourly concentration simulated by Sim_MOS plotted versus ground station 515 

observations averaged over 155 stations. Mean bias and RMSE each forecast period are 516 

attached with unit of µg/m
3
. 517 

 518 

 519 
Fig. 5. The RMSE change over the integration time from forecast −12 h (right after the 520 

DA) to forecast 10 h (already integrated 22 hours) for the five species. All the RMSE 521 
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values have been averaged over the 52 stations who have not provided observation into 522 

DA. 523 

 524 

 525 
Fig. 6. Same as Fig. 5 except correlation coefficient is plotted instead of RMSE. 526 

 527 

 528 
Fig. 7. The RMSE of the 4 experiments and 5 species at different forecast hours from −12 529 

h to 72 h. 530 
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 531 

 532 
Fig. 8. The RMSE of 3 species at different forecast hours from −12 h to 72 h from the 533 

same 4 experiments with solely emission is perturbed. 534 

 535 

Appendix A: 536 

For convenience, the full equations of one‐dimension Kalman filtering were given 537 

below as k1~k4: 538 

4)()()()(

3)()1()(

2)]()()[()(

1)]1(~)(y)[()1(~)(~

11

1

1
11

ktPtKtPtP

ktWtPtP

ktVtPtPtK

ktxttKtxtx

LL

LL

LL

LL

−=

+−=

+=

−−+−=
−

                  Eq. (A.1) 539 

These equations will give the best estimate of a sequence of )(x t  when the system 540 

equation writes as  541 

)()1()(x twtxt +−=                                         Eq. (A. 2) 542 

and measurement equation is 543 

)()(x)( tvtty +=                                              Eq. (A. 3) 544 

To complete a single one‐ dimension kalman filtering iteration, )1( −tP and 545 

)1(~ −tx  from the previous calculation are input the equations to be updated by a newly 546 
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obtained measurement )(y t . Then the result )(tP  and ）(~tx will be saved for the next 547 

iteration.  548 

Here there sequences of O3 concentrations at 12:00 UTC from 3 days’ model output 549 

will be taken as an example to show the detailed steps of completing one iteration of 550 

MOS. It is assumed that, at the day of t (here I use t to represent “today”), the following 551 

variables had been prepared: observation sequence tiOi K2,1: =  from ground station, 552 

model 24 h forecast sequence and its correction 12,1:24 += tifi K  and 553 

tifi K2,1:
~24 = ,model 48 h forecast sequence and its correction 22,1:48 += tifi K  and 554 

12,1:
~48 += tif i K , model 72 h forecast sequence and its correction 555 

32,1:72 += tifi K and 22,1:
~72 += tif i K ( model forecast sequence could be get from 556 

interpolating the 3D field of model output to the position of site) as well as all the P  and 557 

x~ from previous iteration. What we want is to generate
24

1

~
+tf , 

48

2

~
+tf  and 

72

3

~
+tf  from all 558 

variables above. 559 

To get
24

1

~
+tf , two different approach will be applied simultaneously. In one approach, 560 

tifOix ii L,2,1:)( 24 =−=  and tifOiy ii L,2,1:)( 24 =−= in Eq. (A. 2) and (A. 561 

3), so this approach would be called difference approach hereafter. )i(v in Eq. (A. 3) was 562 

set to zero to assume no measurement error, which means V  in k2 equals zero and the 563 

estimation of W would be unnecessary here. The calculation of k1 to k2 gives the )(~tx , and 564 

)1(~~ 24
1

24
,1 ++= ++ txff tdt  if we assume )(~)1(~ txtx =+ . Subscript d means the corrected 565 

result from difference approach. In another approach called ratio approach, all the things 566 
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is the same except tifOix ii L,2,1:/)( 24 == , tifOiy ii L,2,1:/)( 24 ==  567 

and at last )1(~~ 24
1

24
r,1 +×= ++ txff tt , where subscript r means ratio approach. The final 568 

result 
24

1

~
+tf  will be chosen from 24

,1
~

dtf +  and 24
,1

~
rtf + according to the method described in the 569 

last of the appendix. 570 

With 
24

1

~
+tf  obtained, it is now possible to calculate

48

2

~
+tf . Similar to

24

1

~
+tf , we still carry 571 

the calculation in two approaches: difference and ratio approach. Now, 572 

tifOorfOix iiii L,2,1:/)( 4848 =−= and573 

1,2,1:/~~)( 48244824 +=−= tifforffiy iiii L . At this time, )i(v  could not be set 574 

to zero in Eq. (A. 3) and the evaluation of V  and W become necessary in completing the 575 

iteration. The estimation of W and V  resembles G02 in which 576 

( )
( )

2

1

0l

1

0

)1()(

)1()(
1-n

1
W ∑

∑−

=

−

=




































−−−−

−−−−−=
n

n

m

n

mtxmtx

ltxltx

Eq. 577 

(A. 4) 578 

( )
( )

2

1

0l

1

0

)1()1(

)1()1(
1-n

1
V ∑

∑−

=

−

=




































+−−+−

−+−−+−=
n

n

m

n

mtxmty
ltxlty

579 
Eq. (A. 5) 580 

The variable n in Eq. (A. 4) and Eq. (A. 5) is the number of sequence members 581 

participate into the statistics. A value from 7 to 9 is enough for n to generate fairly good 582 

MOS effect, which means history data from the past 7~9 days’ observation and model 583 

output works as the virtual training sample for MOS. After completing the calculation of 584 
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k1~k4, )1(~ +tx  will be obtained and then )2(~ +tx , 
48

,2
~

dtf + could be produced replicating 585 

the process from the paragraph above. Another ratio approach will also be done to 586 

generate
48

r,2
~
+tf and 

48

2

~
+tf  is chosen from 

48
,2

~
dtf + and

48
r,2

~
+tf  in the way like determining

24

1

~
+tf . 587 

From 
48

2

~
+tf  to obtain

72

3

~
+tf , what have to be done is almost the same as 

24

1

~
+tf to

48

2

~
+tf . 588 

Differences mainly lie at the form of some formulations, taking difference approach as 589 

example, tifOix ii L,2,1:)( 72 =−= , 2,2,1:~)( 7248 +=−= tiffiy ii L  and 590 

the estimation of V  is changed to 591 

( )
( )

2

1

0l

1

0

)2()2(

)2()2(
1-n

1
V ∑

∑−

=

−

=











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






















+−−+−

−+−−+−=
n

n

m

n

mtxmty
ltxlty

592 
 Eq. (A. 6) 593 

Fig. A.1 is a schematic diagram that shows how the algorithm described above is 594 

done step by step. 595 

The final output should be chosen from difference and ratio approach according to 596 

their reasonability. From our experience, the difference approach tends to occasionally 597 

yield unreasonably low value while the ratio approach sometimes gives result too high. 598 

Fortunately the two conditions never happen simultaneously and therefore the final 599 

output is from ratio approach when its result is not too high (lower than the yearly 600 

averaged value of the species, for example). In time when ratio approach appears too 601 

high, the difference approach take the place.  602 

 603 

 604 
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 605 

Fig. A. 1. The steps of one-dimensional kalman filtering to apply on 72 h correction. 606 

Note that circles from left to right stands for values at the same hour from a day to the 607 

next day and those in the same column are valid at the same time and day. Black circles 608 

are those exist before today’s iteration while red ones are those generated in the 609 

calculation of today. 610 

 611 
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