



#### 1 Article

# Comparing CMAQ Forecasts with a Neural Network Forecast Model for PM2.5 in New York

4 Samuel D. Lightstone<sup>1,\*</sup>, Fred Moshary <sup>1</sup> and Barry Gross <sup>1</sup>

- 5 <sup>1</sup> City College of New York
- 6 \* Correspondence: slights01@citymail.cuny.edu

7 Academic Editor: name

8 Received: date; Accepted: date; Published: date

9 Abstract: Human health is strongly affected by the concentration of fine particulate matter (PM2.5). 10 The need to forecast unhealthy conditions has driven the development of Chemical Transport 11 Models such as CMAQ. These models attempt to simulate the complex dynamics of chemical 12 transport by combined meteorology, emission inventories (EI's), and gas/particle chemistry and 13 dynamics. Ultimately, the goal is to establish useful forecasts that could provide vulnerable 14 members of the population with warnings. In the simplest utilization, any forecast should focus on 15 next day pollution levels, and should be provided by the end of the business day (5PM local). This 16 paper explores the potential of different approaches in providing these forecasts. First, we assess 17 the potential of CMAQ forecasts at the single grid cell level (12km), and show that significant 18 variability not encountered in the field measurements occurs. This observation motivates the 19 exploration of other data driven approaches, in particular, a neural network (NN) approach. This 20 approach makes use of meteorology and PM2.5 observations as model predictors. We find that this 21 approach generally results in a more accurate prediction of future pollution levels at the 12km 22 spatial resolution scale of CMAQ. Furthermore, we find that the NN is able to adjust to the sharp 23 transitions encountered in pollution transported events, such as smoke plumes from forest fires, 24 more accurately than CMAQ.

# Keywords: Air quality model; Air Quality System (AQS); Community Multi-Scale Air Quality (CMAQ) model; Fine particulate matter (PM2.5); Aerosol optical depth (AOD)

28 1. Introduction

Fine particulate matter air pollution (PM<sub>2.5</sub>) is an important issue of public health, particularly for the elderly and young children. The study by *Pope et al.* suggests that exposure to high levels of PM<sub>2.5</sub> is an important risk factor for cardiopulmonary and lung cancer mortality [1-2]. Furthermore, increased risk of asthma, heart attack and heart failure have been linked to exposure to high PM<sub>2.5</sub> concentrations [3].

PM<sub>2.5</sub> levels are dynamic and can fluctuate dramatically over different time scales. In addition to local emission sources, pollution events can be the result of aerosol plume transport and intrusion into the lower troposphere. When there is a potential high pollution event, the local air quality agencies must alert the public, and advise the population on proper safety measures, as well as direct the reduction of emission producing activities. Therefore, accurately measuring and predicting fine particulate levels is crucial for public safety.

40 The U.S. Environmental Protection Agency (EPA) established the National Ambient Air Quality 41 Standards (NAAQS), which regulate levels of pollutants such as fine particulate matter. The New 42 York State Department of Environment Conservation (NYSDEC) operates ground stations for 43 monitoring PM<sub>2.5</sub> and speciation throughout NY State [4]. However, surface sampling is expensive 44 and existing networks are limited and sparse. This results in data gaps that can affect the ability to 45 forecast PM<sub>2.5</sub> over a 24-hour period. The EPA developed the Models-3 Community Multi-scale Air

Quality system (CMAQ), to provide 24-48 hour air quality forecasts. CMAQ provides an investigative
 tool to explore proper emission control strategies. CMAQ has been the standard for modeling air

48 pollution for nearly two decades because of its ability to independently model different pollutants

49 while describing the atmosphere using "first-principles" [5].

50 In their studies, McKeen et al and Yu et al evaluate the accuracy of CMAQ forecasts [6-7]. To do 51 so, they use the CMAQ 1200UTC (Version 4.4) forecast model. They observe the midnight-to-52 midnight local time forecast and compare the hourly and daily average forecasts to the ground 53 monitoring stations. McKeen et al [6] observed minimal diurnal variations of PM25 at urban and 54 suburban monitor locations, with a consistent decrease of PM values between 0100 and 0600 local 55 time. However, the CMAQ model showed significant diurnal variations, leading McKeen et al to 56 conclude that aerosol loss during the late night and early morning hours has little effect on PM2.5 57 concentrations, while the CMAQ model does not account for this. Therefore, in addition to testing 58 the hourly CMAQ forecast for a 24-hour period, we focus on the daytime window for two reasons: 59 1) to assess the accuracy of CMAQ when aerosols do not play a reduced roll in forecasting, 2) the 60 forecast should predict the air quality during the time of maximum human exposure.

While *these studies* make a distinction between rural and urban locations, they take the average results for all rural and urban locations respectively; thereby, their assessment of the CMAQ model was as at a regional scale, rather than a localized one. In addition to regional emissions, these studies also considered extreme pollution events such as the wildfires in western Canada and Alaska, which occurred during the observation period for the studies by *Yu et al* and *McKeen et al*. The results of this assessment concluded that due to insufficient representation of transport pollution associated with the burning of biomass, CMAQ significantly under predicted the PM<sub>2.5</sub> values for these events.

In the study by *Huang et al* [8], the bias corrected CMAQ forecast was assessed for both the 0600 and 1200 UTC release times. The study revealed a general improvement of forecasting skill for the CMAQ model. However, it was observed that the bias correction was limited in predicting extreme events, such as wildfires, and new predictors must be included in the bias correction to predict these events. In this study, CMAQ was assessed as a regional forecasting tool, taking 551 sites, and evaluating the average results in six sub-regions.

74 In our present assessment of the current operational CMAQ forecast model (Version 4.6), we 75 differ from the regional studies above in the following ways: Firstly, in addition to the 1200UTC 76 forecast, we evaluated the 0600UTC forecast for the same period to determine if release time affects 77 the CMAQ forecast. Second, we focused on specific locations, both rural and urban, to assess the 78 potential of CMAQ as a localized forecasting tool. In addition, we revisited the forecast potential of 79 CMAQ for high pollution events, to determine if these events are generally caused by transport, or 80 by local emissions. Finally, we tailor the forecast comparisons to focus on the potential of providing 81 next day forecasts using data prior to 5PM of the previous day, since this is an operational 82 requirement for the state environmental agencies.

83 In focusing on both rural and urban areas in New York State, previous studies have shown 84 anomalies in PM2.5 from CMAQ forecasts. For example, in [9], using CMAQ (Version 4.5) with various 85 planetary boundary layer (PBL) parameterizations, PM2.5 forecasts during the summer pre-dawn and 86 post-sunset periods were often highly overestimated in New York City (NYC). Further analysis of 87 these cases demonstrated that the most significant error was the retrieval of the PBL height, which 88 was often compressed by the CMAQ model, and did not properly take into account the Urban Heat 89 Island mechanisms that expand the PBL layer [10]. This study showed the importance of PBL height 90 dynamics and meteorological factors that motivated the choice of meteorological forecast inputs used 91 during the NN development.

92 The objective of this paper is to determine the best method to forecast PM<sub>2.5</sub> by direct comparison 93 with CMAQ output products. In particular, using the CMAQ forecast model, as a baseline, we 94 explore the performance of a NN based data driven approach with suitable meteorological and prior 95 PM<sub>2.5</sub> input factors.

#### 97 1.2 Paper Structure

98 Our present paper is organized in the following manner: In section 2, we analyze CMAQ as the 99 baseline forecaster. We briefly describe the CMAQ model and the forecast schedules that are 100 publically available, as well as the relevant ground stations we use for comparison. We then describe 101 and perform a number of statistical tests using both the direct, as well as the bias compensated, 102 CMAQ outputs. In this section, we show the large dispersion in using the direct results without bias 103 correction.

104 In section 3, we present our NN data driven strategy. This includes a description of all the 105 relevant input factors used, including a combination of present and predicted meteorology, as well 106 as diurnal trends of prior PM2.5 levels. We present our first statistical results for the comparisons 107 between CMAQ and the NN for a variety of experiments in order to highlight the conditions in which 108 the NN results are generally an improvement. Then we explore the forecast performance for high 109 pollution multiday transport events, which result in the highest surface PM2.5 levels during the 110 observed time period. In this comparison, analyzed by combining a sequence of next-day forecasts 111 together, we find that the neural network seems to follow the trends in PM2.5 more accurately than 112 the CMAQ model.

113 In section 4, we summarize our results and describe potential improvements.

#### 114 2. CMAQ Local and Regional Assessment

115 2.1. Datasets

#### 116 2.1.1. Models

The CMAQ V4.6 (CB05 gas-phase chemistry) with 12km horizontal resolution was used for this paper. The CMAQ product for meteorology predictions used is the North American Model Nonhydrostatic Multi-scale Model (NAM-NMMB). This version was made available starting February 2016. The CMAQ data used for this paper is from February 1, 2016 until October 31, 2016. The station names and locations are listed in table A2. The data can be accessed from reference 11, and the model description can be found in references 12 and 13.

123 The CMAQ model used has a few different configurations: release times of 0600 UTC and 1200 124 UTC, and each release time has a standard forecast as well as a bias corrected forecast. The analog 125 ensemble method is used for bias corrections. The idea is to look at similar weather patterns for the 126 forecast period, and statistically correct the numerical PM2.5 forecast based on historical errors. The 127 analog ensemble method is described in detail in Huang, et al [8]. For each release time, CMAQ 128 provides a 48-hour forecast. The release time of 0600 UTC and 1200 UTC (2AM and 8AM EDT) does 129 not give the public enough time to react to the forecast on the same day as the release. Consequently, 130 for the 0600 UTC release time, the forecast hours 22 – 45 were used, and for the release time of 1200 131 UTC the forecast hours of 16 – 39 were used. This allowed us to construct a complete 24-hour diurnal

132 period for the forecast time window, which facilitated comparison with the field station data.

133 2.1.2. Ground-based Observations

134 PM2.5 ground data is collected from the EPA's AirNow, which collects NYSDEC monitoring 135 station measurements in real time. The station data used for the forecast experiments in this article 136 are from the New York State stations listed in table A1, from January 1, 2011 until December 31, 2016. 137 To assess the accuracy of CMAQ model forecasts, matching the model to the ground monitoring 138 station is necessary. To do this, we use the ground NYSDEC stations that lay within the CMAQ grid 139 cell only. Ground stations that are not found in a CMAQ grid cell were not used for comparison; 140 therefore, no spatial interpolation was done on the model results while mapping the model or 141 meteorological data to the AirNow ground stations. This matching method is widely used for 142 comparing the CMAQ model to ground monitoring stations [6,7,14]. The locational data-points are

- depicted in Figure A1, the NYSDEC station information can be found in appendix A1, and CMAQgrid cell information can be found in appendix A2.
- 145 2.2. *Methods*
- 146 2.2.1. Assessing Accuracy of CMAQ Forecasting Models

147 The forecasting skill of the different models were evaluated by computing the R<sup>2</sup> and the root 148 mean square (RMSE) values from a regression analysis comparing the model to the AirNow 149 observations. High R<sup>2</sup> values and low RMSE values indicated a good match between the prediction 150 and the observations. Finally, to directly assess potential biases in the regression assessment, residual 151 plots (see Figure 7a) are provided to show significant concentration bias.

152 2.3. Results

165

153 2.3.1. Effects of Bias and Release Time

Figure 1 shows the regression plots for the hourly CMAQ model output compared to the ground station data for the City College of New York (CCNY Station) to illustrate the general behavior of the CMAQ model, and how the forecast is affected by different forecast release times, and by the bias corrections applied. The results of the R<sup>2</sup> analysis for all ground stations can be found in the supplementary materials.

All forecasts from the CMAQ model over CCNY have a positive correlation to the ground data.The effect on the forecast for different release times, if any, is minimal.

As seen in the Figures 1(a) and 1(c), the standard model generally overestimates the ground. While the bias correction improves the over-prediction, the results are more dispersed. This can be verified from the fact that the bias correction decreases the root mean square error (RMSE), but it also

164 decreases the R<sup>2</sup> value for both release times.





Figure 1. CMAQ regression analysis. (a) Standard, 06Z release time; (b) Bias Corrected, 06Z
 release time; (c) Standard, 12Z release time; (d) Bias Corrected, 12Z release time

168 In Figure 1 we assess the overall skill for a 24-hr CMAQ forecast. In Figure 2, we determine if 169 the CMAQ model could be improved by simply moving the forecast release time to a later point in 170 the day, thereby including the most up-to-date inputs in the model. To do this, we make a direct 171 comparison between CMAQ forecasts with different release times. In Figure 2, the R<sup>2</sup> value is 172 computed for each hour of the day. The release time of 0600 UTC, with forecast hours of 22 - 45, is 173 compared to the 1200 UTC release time, with forecast hours 16 – 39, to determine if the lower number 174 of forecast hours yields more accurate predictions. It is clear from Figure 2 that the later release time 175 does not lead to a significant improvement in the accuracy of the forecast, and this is true for both 176 urban and non-urban test sites





177 Figure 2. Comparing the effect of different release times for CMAQ by plotting the R<sup>2</sup> value as a
178 function of time of day. (a) CCNY; (b) Rochester; (c) Albany; (d) Brookside Terrace

179 It can be seen from this analysis that the CMAQ model performs best for midday hours, which

180 is reasonable, since this is the period when convective mixing is most dominant. As discussed in 181 reference [9], PBL modeling is very complex during the predawn / post-sunset period and errors in

182 the PBL height clearly are a significant concern for further model development.

183 2.3.2. Differences Between Urban and Non-Urban Locations

To get a better understanding of the spatial performance of the model, a multi-year time-series of daily averaged PM<sub>2.5</sub> observations from ground monitoring is used to compare the relationship between PM<sub>2.5</sub> values in New York City to the rest of New York State. Figure 3(a) is the regression analysis for this time period, and shows how the PM<sub>2.5</sub> values for NYC are strongly correlated to non-NYC areas, R<sup>2</sup>~0.6. This indicates that while PM<sub>2.5</sub> values in NYC are generally higher than the rest of the state, the PM<sub>2.5</sub> level in NYC are still correlated to the levels in the rest of the state.

190 The same analysis comparing NYC to the rest of NYS was done with CMAQ forecast values as 191 seen in Figure 3(b). In this case, the correlation between NYC and NYS is not so strong, R2 ~0.2. From 192 this analysis alone, we can only speculate the reason for a low correlation between CMAQ forecasts 193 for NYC and the rest of NYS is due to strong spatial differences in the National Emission Inventory 194 (NEI) entries. However, the strong correlation in ground observations between NYC and NYS shows 195 that while urban source emission may be a significant cause for somewhat higher levels of PM2.5, 196 there is still a strong correlation between NYC and NYS, and an accurate forecasting model must take 197 this into account.



199Figure 3. Regression analysis comparing PM2.5 levels between NYC and the rest of NYS (non-200NYC sites). (a); Multi-year day-averaged PM2.5 analysis from NYSDEC ground observations; (b)201CMAQ model comparison between NYC and NYS.

The limitations of CMAQ forecasting on a local pixel level indicate that other approaches should
 be explored. In particular, we explore the potential of data-driven models for localized forecasting in
 the next section.

#### 205 3. Data Driven (Neural Network) Development.

- 206 3.1. Datasets
- 207 3.1.1. Ground-based observations

PM<sub>2.5</sub> data collected from NYSDEC ground-monitoring stations is used for inputs in the neural
 network. These are the same ground stations listed above, in section 2.1.2.

210 3.1.2. Models

211 The meteorological data was collected from the National Centers for Environmental Prediction 212 (NCEP) North American Regional Reanalysis (NARR). NARR has high-resolution reanalysis of the 213 North American region, 0.3 degrees (32km) at the lowest latitude, including assimilated precipitation. 214 The NARR makes available 8-times-daily and monthly means respectively. The data collected for this 215 paper is the 8-times-daily means for the duration January 1, 2011 until December 31, 2016. Figure A1 216 shows the proximity of the meteorological data and the CMAQ model outputs to the ground stations. 217 The NN network was created and tested using historical data. In this paper, meteorology 218 "forecast" data refers to NARR data that was observed the day of the PM2.5 forecast. "Observed" or 219 "measured" meteorology refers to NARR data that was observed before the forecast release time.

220 3.2. *Methods* 

221 3.2.1. Development of the Neural Network

As stated above, the accurate prediction of PM<sub>2.5</sub> values is crucial for air quality agencies, so that they could alert the public of the severity and duration of a high pollution event. Therefore, it is

imperative that the forecast predictions are released to the public the day before the event. For this

227 3.2.1.1 Input Selection Scenarios

The NN input includes the following NARR meteorological data: surface air temperature, surface pressure, planetary boundary layer height (PBLH), relative humidity, and horizontal wind (10m). To account for the seasonal variations, the month is also used as an input in the neural network. The PM input variables for the NN are the PM<sub>2.5</sub> measurements averaged over a three-hour frequency to match the meteorological dataset. The NN output is the next day PM<sub>2.5</sub> values.

- In order to optimize the performance of the neural network, preliminary tests were done to determine the optimum utilization of the meteorological input variables. These test were done to determine if the "forecast" or the "observed" meteorology, or a combination of the two, should be used as input variables.
- The forecast time window is midnight-to-midnight EDT for the forecast day, while the time window with the observed data is midnight to 5PM EDT the day the forecast is released.

For the PBLH, the forecast value is always used as the input. One NN design employed only the forecast meteorological values as inputs. The second design utilized a combination of the forecast and the observed data, by subtracting the eight observation datasets from the eight forecast datasets. This first NN architecture uses the meteorological values as predictors, while the second design uses metrological trends as predictors. We note that this comparison does not affect the number of inputs used, allowing for a direct comparison of information content.

In scenario 1, where only the MET forecasts are used, we use the following inputs, where *i* represents the indices for time windows for the observation day, and *j* represents the indices for time windows for the forecast day (from the NARR forecasts), the NN inputs design is:

248

- In scenario 2, where the differential between the observation day and forecast day of the MET variables are used, the architecture for the NN inputs is:
- 250 v 251

 $PM_{25}(i)$ i = 1:5time window (i) =  $(i - 1) \times 3 : i \times 3$ (Field measurements) 3  $MET_{forecast}(j)$ j = 1:8time window  $(j) = (j-1) \times 3$ (NARR Forecasts)  $MET_{observed}(i)$ i = 1:8: j × 3 (NARR Observations) time window (i) =  $(i-1) \times 3 : i \times 3$ 3 PBLH(j)*time window*  $(j) = (j-1) \times 3 : j \times$  (NARR Forecasts) i = 1:83

252

To show the robustness of the NN, the data used for training the neural networks came from 254 2011-2015 alone, while the network was tested with data from 2016. In both scenarios, the targets for 255 the NN were taken to be the complete set of PM<sub>2.5</sub> over all time windows of the forecast day:

256

Targets: 
$$PM_{2.5}(j)$$
  $j = 1:8$  time window  $(j) = (j - 1) \times 3: j \times$  (Field measurements)  
3

257 3.2.1.2 Neural Network Training Approach

In developing a NN PM<sub>2.5</sub> forecast for all of New York State (NYS), we needed to take into account the very different emission sources, and to a lesser extent the meteorological conditions, between New York City (NYC) and the other sites in NYS. We found that the best solution is to design two different neural networks. The first is trained only over NYC sites, while the second is trained for the rest of NYS. It is important to note that we do not try to build a unique NN for every station, since this is not a useful approach for local agencies. PM and Meteorological data from 2011-2015, were used for training.

For NYC, since the stations are very close to each other, the NN was trained with spatial mean values of the ground PM monitors and NARR meteorological datasets. For NYS, all the PM and meteorological data from each site outside of NYC were used. Some site-specific information was implicitly included by using the surface pressure as inputs, which provides some indicator of surface elevation.

The neural network was developed using the MATLAB Neural Network Toolbox [14]. The Levenberg-Marquardt network was deployed using 10 hidden nodes. The break down for the NN input data is: 70% training, 15% validation, and 15% testing. Because the sample set of training, validation, and testing is divided randomly over the entire dataset, accuracy of the NN was determined by testing each network over 2016 data only, a time window that was not included in training. Once the NN function was created, the 2016 meteorological and PM data was passed through the network, and the outputs were stored with the date-time and station location as indices.

277 3.2.1.3 Neural Network Scenario Results

278 Figure 4(a) shows the performance of the NN using the forecast metrological data as inputs, 279 while figure 4(b) shows the performance of the NN using the difference between the forecast and the 280 current days measurements. The NN utilizing the difference configuration is clearly better, with a 281 higher R<sup>2</sup> value, 0.44 compared to 0.36, and a lower root-mean-square value, 3.09 compared to 4.59. 282 In addition, there are substantially less anomalous high PM2.5 forecasts. Since this improvement was 283 seen in all test cases, we only used scenario 2, (differential meteorology) NN configuration. From 284 these results, we see that meteorological trends are better indicators of PM2.5 than meteorology alone. 285 This appears to us to be a reasonable result since the meteorology trend better isolates particular 286 mesoscale conditions, which is known to be a significant factor in boundary layer dynamics. 287



#### 292 3.3. Results

#### 293 3.3.1. Neural Network and CMAQ Comparison

The R<sup>2</sup> value for CMAQ and the NN, both compared to AirNow observations, is computed for each forecast model and for each location. As a representative example of the overall performance, the R<sup>2</sup> value for NYC, represented by CCNY, is compared to NYS, represented by Brookside Terrace, a non-NYC, non-urban station, and these results are displayed in Figure 5. The individual results for each location can be found in the supplementary materials.



Figure 5. Regression analysis is computed for the comparison between AirNow observations and the various prediction models. The R<sup>2</sup> value for each model is plotted in the figure above to compare CMAQ to the NN. The CMAQ model includes the different release times as well as bias compensated vs. uncompensated runs. In addition, different time and spatial averaging of CMAQ is considered at each location. (a) Brookside Terrace, representative of non-NYC; (b) CCNY, representative of NYC.

From Figure 5 above, it can be seen that the most accurate forecast model is the neural network for both NYS and NYC over any of the CMAQ forecasts studied. Regarding CMAQ, we note better performance for NYC than for non-urban areas. This is in contrast to the neural network, where there is very little variation in the results for locations that are urban versus non-urban, indicating that locational inputs in the model, such as the surface pressure, improves forecasting skill.

In addition, for all cases, it can be seen that taking the time average improves the CMAQ results. Furthermore, the spatial averaging over NYS (with 1-hour time sampling) shows more improvement in most NYC cases and some non-NYC cases as well. These results indicate the possibility that the best use for CMAQ forecasting is on a regional level. This is supported from the 12km grid cell resolution for CMAQ, a cell size typical for regional analysis.

We note again that the different release times for CMAQ has almost no effect on the forecast accuracy. In Figure 6, we compared the diurnal performance of the NN to the CMAQ model. The most apparent result is the dramatic improvement of the NN during the night and morning hours, where the CMAQ model has the most difficulty. This is clearly due to the machine learning approach where the time differences, the inputs, and forecast periods have a dramatic effect on output

320 performance.

- 321 This also explains the general downward trend, where performance tails off in the late afternoon
- 322 and becomes closer to the CMAQ performance. This can be expected, because larger time delays
- 323 should lead to more dispersion between the outputs and input PM levels.



# Figure 6. Comparing the effect of different release times for the NN in comparison to CMAQ by plotting the R<sup>2</sup> value as a function of time of day

Figure 7 below shows the residual results for CMAQ in comparison to the neural network. For CMAQ, as noted above, there seems to exist a non-random bias pattern, where CMAQ generally over predicts for low and high PM values, and under predicts for medium values. This pattern seems to indicate that the CMAQ model may not capture all of the underlying variability factors. On the other hand, for the neural network, the behavior of the residuals is clearly stochastic in nature.

331



(a)

(b)

Figure 7. Residual analysis. The standard deviation of PM<sub>2.5</sub> from the AirNow ground
 monitoring sites was calculated to be 4μg/m<sup>3</sup>, therefore, +/-4μg/m<sup>3</sup> was used for the error bounds (a)
 CMAQ; (b) Neural Network

We find that an optimized NN approach generally results in a more accurate prediction of future pollution levels, as compared to CMAQ, for a single grid cell (resolution 12km).

#### 337 3.3.1. Heavy Pollution Transport Events

Because the neural network is data-driven, the network performs better when the most up-todate inputs are used. This explains the degradation of performance with time, as seen in Figure 6. In the current design of the neural network, we only used five PM<sub>2.5</sub> inputs, instead of maximum possible in a 24-hour period, eight. In the training of the NN, there were very few extreme event cases, PM<sub>2.5</sub>>µg/m<sup>3</sup>. The lack of suitable training statistics for these events causes the NN approach to have difficultly in adjusting to the sharp contrast with the onset of the event.

344 Therefore, a second neural network was trained with the same design as the neural network 345 illustrated above; however, this neural network produces a 24-hour forecast at 5PM for the time 346 period, 5PM - 5PM (instead of a next day 24-hour midnight-to-midnight forecast). This neural 347 network uses all eight PM measurements, because there is no lag time between the release time and 348 the first forecast hour. This neural network, referred to as NN Continuous, was not used in the 349 statistical analysis for the different forecast models (because the 24-hour forecast period is different 350 than the forecast analysis above), but is being explored in the extreme event cases. The reason for 351 developing this continuous neural network is to determine if the continuous nature of the network 352 produces better results in extreme pollution events.

353 To explore the behavior of the different models under high pollution transport conditions, the 354 forecasts coinciding with the wildfires of Fort McMurray in Alberta, Canada were analyzed. The 355 wildfire started on May 1, 2016, and was declared under control on July 5, 2016. Although the wildfire 356 lasted for over two months, evidence of increased PM2.5 surface levels in NYC resulting from the 357 wildfire were detected on May 9, and on May 25. On these dates, instances of aloft plume intrusions 358 and the mixing down into the planetary-boundary layer were observed by a ceilometer and a Raman-359 Mie lidar [16]. In Figure 8, we plot the CMAQ and NN model forecasts, focusing on the transport 360 intrusions into NYC on May 25.

The first thing to notice in Figure 8(a), is the oscillations in the CMAQ model, and to notice how these oscillations smooth out in 8(b) and 8(c), where the three-hour time average and the New York State spatial average are tested respectively. It is logical that for heavy transport cases, domain averaging helps decrease oscillations; however, we still see significant underestimation of the event. This is the first case where we analyze the behavior of the continuous neural network. Looking at Figures 8(c) and 8(d), it is clear that the continuous neural network is able to respond to the trend of the high pollution event faster, and more accurately, then the standard neural network.







Figure 8. NYC surface PM25 levels affected from the wildfires of Alberta Canada 2016. The plots
focus on the aloft plumes mixing down into the PBL on May 25. The plots show different models vs.
AirNow observation (a) CMAQ Biased hourly, NN continuous; (b) CMAQ Biased 3-hour average,
NN continuous; (c) CMAQ Biased state average, NN continuous; (d) CMAQ Biased state average,
standard Neural Network

#### 374 4. Conclusions

In this paper, we first made a baseline assessment of the V4.6 CMAQ forecasts, and found significant dispersion as well as a tendency for the model to over estimate the ground truth field measurements. Even in the bias corrected case, the residuals error in the model was found to have significant bias patterns, indicating that there are predictors not included in the model that could significantly improve the results.

These results motivated the development of data driven approaches such as a NN. In developing a data driven NN next day forecast model, we found a general improvement of performance when using prior PM<sub>2.5</sub> inputs together with the difference between present and next day meteorological parameter forecasts. This "differential NN" approach performed significantly better than if we used only the future forecast variables, indicating that meteorological pattern trends are important indicators.

386 Using this NN architecture, we then made extensive regression based comparisons between 387 CMAQ next day forecast models and regionally trained NN next day forecasts for the NYS and NYC 388 regions. In general, we found that the NN results are a significant improvement over the CMAQ 389 forecasts in all cases. These comparisons were made to be consistent with state agencies where 390 forecasts should be available by 5PM. In addition, we also made a diurnal comparison, which 391 illustrated that; the NN approach had superior forecasting skills during the early part of the day but 392 degraded smoothly as the forecast time increased. By mid-day, the differences between the two 393 approaches was much closer

To improve the CMAQ forecasts, we found limited improvement when spatial averaging is extended beyond the single pixel 12km resolution to all of New York State. Even in this case, the NN results were generally more accurate.

Finally, we focused on forecast performance for transported high pollution events such as Canadian wildfires. In these cases, we found that the CMAQ forecasts had large temporal fluctuations, which could hide most of the event. In this case, significant improvement was obtained when using state averaged bias corrected outputs; however, in general, the smoothed results underestimate the local PM<sub>2.5</sub> measurements.

In this application, we found the neural network approach provides a reasonably smooth
 forecast, although the transition from a clean state to a polluted state is very poor. Nevertheless, the
 standard NN performed better than CMAQ in this scenario. Further improved results for the NN

405 were obtained in the transition period when the forecast time of the NN was reduced (NN 406 continuous), making the transition from training to testing continuous.

#### 407 4.1 Future Work

408 While the continuous NN does adjust quickly to the sharp contrast in transport events, this 409 design limits the scope of the forecast period. Clearly, local data alone is not ideal for this application. 410 Non-local data that can identify high pollution events and assesses their potential mixing with our 411 region is needed. As a preliminary analysis, we explored the use of a combination of HYSPLIT Air 412 Parcel Trajectories with GOES satellite Aerosol Optical Depth (AOD) retrievals to improve the NN. 413 In particular, we analyzed the use of these tools to quantify the relative AOD levels for all air parcels 414 that reach our target area. We found that by properly counting the trajectories weighted by the AOD, 415 a good correlation was seen between the relative AOD and the PM2.5 levels. Therefore, we believe 416 that using the relative AOD metric as an additional input factor can make improvements in the NN 417 approach. When GOES-R AOD retrievals, with high data latency and multispectral inversion 418 capabilities [17-18], become available, we plan to incorporate these AOD metrics as predictors in the 419 NN.

420 Supplementary Materials: The following are available online at www.mdpi.com/link, Figure S1: Regression421 Analysis

422 Acknowledgments: The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the

423 provision of the HYSPLIT transport and dispersion model used in this publication. We further gratefully 424 acknowledge Mr. Jeff McOueen for providing the V4.6 CMAO forecasts. Finally, S. Lightstone would like to

acknowledge Mr. Jeff McQueen for providing the V4.6 CMAQ forecasts. Finally, S. Lightstone would like to
 acknowledge partial support of this project through a NYSERDA EMEP Fellowship award.

#### 426 Author Contributions:

427 Mr. Samuel Lightstone was responsible for the NN experiments and the CMAQ assessment; Mr. Lightstone also428 wrote the paper. Dr. Barry Gross was responsible for design of the different experiments as well as conceiving

- the use of the GOES AOD and HYSPLIT trajectories to estimate transported AOD as a predictor of PM<sub>2.5</sub>. Dr.
- 430 Fred Moshary provided significant critical assessment and suggestions of all results
- 431 **Conflicts of Interest:** The authors declare no conflict of interest.
- 432

## 433 Appendix A: Datasets

### 434

#### Table A1. NYSDEC Station Information

| NYSDEC ID | Station Name              | Latitude | Longitude | Land Type |
|-----------|---------------------------|----------|-----------|-----------|
| 360010005 | Albany County Health Dept | 42.6423  | -73.7546  | Urban     |
| 360050112 | IS 74                     | 40.8155  | -73.8855  | Suburban  |
| 360291014 | Brookside Terrace         | 42.9211  | -78.7653  | Suburban  |
| 360551007 | Rochester 2               | 43.1462  | -77.5482  | Urban     |
| 360610135 | CCNY                      | 40.8198  | -73.9483  | Urban     |
| 360810120 | Maspeth Library           | 40.7270  | -73.8931  | Suburban  |
| 360850055 | Freshkills West           | 40.5802  | -74.1983  | Suburban  |
| 360870005 | Rockland County           | 41.1821  | -74.0282  | Rural     |
| 361030009 | Holtsville                | 40.8280  | -73.0575  | Suburban  |
| 361192004 | White Plains              | 41.0519  | -73.7637  | Suburban  |

### 435

#### Table A2. CMAQ Grid Cell Information

| Name             | Abbreviation | Latitude | Longitude | Land Type |
|------------------|--------------|----------|-----------|-----------|
| Amherst          | AMHT         | 42.99    | -78.77    | Suburban  |
| CCNY             | CCNY         | 40.82    | -73.95    | Urban     |
| Holtsville       | HOLT         | 40.83    | -73.06    | Suburban  |
| IS 52            | IS52         | 40.82    | -73.90    | Suburban  |
| Loudonville      | LOUD         | 42.68    | -73.76    | Urban     |
| Queens College 2 | QC2          | 40.74    | -73.82    | Suburban  |
| Rochester Pri 2  | RCH2         | 43.15    | -77.55    | Urban     |
| Rockland County  | RCKL         | 41.18    | -74.03    | Rural     |
| S. Wagner HS     | WGHS         | 40.60    | -74.13    | Urban     |
| White Plains     | WHPL         | 41.05    | -73.76    | Suburban  |



437 438

**Figure A1.** This map shows the proximity of the ground NYSDEC stations to the NARR meteorological data, and the CMAQ forecast data.

#### 439 References

- Pope III, C. Arden, and Douglas W. Dockery. "Health effects of fine particulate air pollution: lines that connect." *Journal of the air & waste management association* 56.6 (2006): 709-742.
- 442 2. Pope III, C. Arden, et al. "Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution." *Jama* 287.9 (2002): 1132-1141.
- Weber, Stephanie A., et al. "Assessing the impact of fine particulate matter (PM 2.5) on respiratorycardiovascular chronic diseases in the New York City Metropolitan area using Hierarchical Bayesian Model
  estimates." *Environmental Research* 151 (2016): 399-409.
- 447 4. Rattigan, Oliver V., et al. "Multi-year hourly PM 2.5 carbon measurements in New York: diurnal, day of
  448 week and seasonal patterns." *Atmospheric Environment* 44.16 (2010): 2043-2053.
- 449 5. Byun, Daewon, and Kenneth L. Schere. "Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling
  451 system." *Applied Mechanics Reviews* 59.2 (2006): 51-77.
- 452 6. McKeen, S., et al. "Evaluation of several PM2. 5 forecast models using data collected during the
   453 ICARTT/NEAQS 2004 field study." *Journal of Geophysical Research: Atmospheres* 112.D10 (2007).
- Yu, Shaocai, et al. "Evaluation of real time PM2. 5 forecasts and process analysis for PM2. 5 formation
  over the eastern United States using the Eta CMAQ forecast model during the 2004 ICARTT
  study." *Journal of Geophysical Research: Atmospheres* 113.D6 (2008).
- 457 8. Huang, Jianping, et al. "Improving NOAA NAQFC PM2. 5 Predictions with a Bias Correction
  458 Approach." *Weather and Forecasting* 32.2 (2017): 407-421.

- 459 9. Doraiswamy, Prakash, et al. "A retrospective comparison of model-based forecasted PM2.5 concentrations
  460 with measurements." *Journal of the Air & Waste Management Association* 60.11 (2010): 1293-1308.
- 461 10. Gan, Chuen-Meei, et al. "Application of active optical sensors to probe the vertical structure of the urban boundary layer and assess anomalies in air quality model PM 2.5 forecasts." *Atmospheric environment* 45.37 (2011): 6613-6621.
- 464 11. <u>http://www.emc.ncep.noaa.gov/mmb/ag/sv/grib/</u>
- 465 12. <u>http://www.emc.ncep.noaa.gov/mmb/aq/AQChangelog.html</u>
- 466 13. Lee, Pius, et al. "NAQFC developmental forecast guidance for fine particulate matter (PM2. 5)." *Weather and* 467 *Forecasting* 32.1 (2017): 343-360.
- 468 14. McKeen, S., et al. "An evaluation of real time air quality forecasts and their urban emissions over eastern
  469 Texas during the summer of 2006 Second Texas Air Quality Study field study." *Journal of Geophysical*470 *Research: Atmospheres* 114.D7 (2009).
- 471 15. MATLAB and Neural Network Toolbox Release 2016a, The MathWorks, Inc., Natick, Massachusetts,
  472 United States
- 473 16. Wu, Yonghua, et al. "Wildfire Smoke Transport and Impact on Air Quality Observed by a Multi474 Wavelength Elastic-Raman Lidar and Ceilometer in New York City," to be published in the Proceedings of
  475 the 28<sup>th</sup> International Laser Radar Conference, Bucharest, Romania, June 2017.
- 476 17. Anderson, William, et al. "The Geostationary Operational Satellite R Series SpaceWire Based Data System."
  477 (2016).
- 478 18. Lebair, William, et al. "Post launch calibration and testing of the Advanced Baseline Imager on the GOES479 R satellite." (2016).



© 2017 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<u>http://creativecommons.org/licenses/by/4.0/</u>)