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ABSTRACT 18 

Wildfires pose increasing risks to human health and properties in North America. Due to 19 

large uncertainties in fire emission, transport, and chemical transformation, it remains 20 

challenging to accurately predict air quality during wildfire events, hindering our collective 21 

capability to issue effective early warnings to protect public health and welfare. Here we 22 

present a new real-time Hazardous Air Quality Ensemble System (HAQES) by leveraging 23 

various wildfire smoke forecasts from three U.S. federal agencies (NOAA, NASA, and Navy). 24 

Compared to individual models, the HAQES ensemble forecast significantly enhances forecast 25 

accuracy. To further enhance forecasting performance, a weighted ensemble forecast approach 26 

was introduced and tested. Compared to the unweighted ensemble mean, the weighted 27 

ensemble reduced fractional bias by 34% in the major fire regions, false alarm rate by 72%, 28 

and increased hit rate by 17%. Finally, we improved the weighted ensemble using quantile 29 

regression and weighted regression methods to enhance the forecast of extreme air quality 30 

events. The advanced weighted ensemble increased the PM2.5 exceedance hit rate by 55% 31 

compared to the ensemble mean. Our findings provide insights into the development of 32 

advanced ensemble forecast methods for wildfire air quality, offering a practical way to 33 

enhance decision-making support to protect public health. 34 

SIGNIFICANCE STATEMENT 35 

Wildfires are a growing threat to health and safety in North America. Accurately 36 

predicting air quality during these events is crucial but challenging. In response, we've 37 

developed the real-time Hazardous Air Quality Ensemble System (HAQES), by combining 38 

forecasts from three U.S. federal agencies (NOAA, NASA, and Navy). HAQES significantly 39 

improves accuracy compared to individual models. Moreover, we further improve the 40 

wildfire air quality forecast by introducing the weighted ensemble method. The weighted 41 

ensemble reduced bias by 34% and false alarms by 72%, while increasing hit rates by 55%. 42 

HAQES advances our ability to protect public health during wildfire events. 43 

CAPSULE (BAMS ONLY) 44 

We built a real-time multi-model Hazardous Air Quality Ensemble System leveraging 45 

operational/research forecasts from U.S. federal agencies and developed weighted ensemble 46 

methods to enhance wildfire air quality forecasts.  47 

  48 
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1. Introduction 49 

Wildfires are a significant contributor to atmospheric aerosols and trace gases, causing 50 

hazardous air quality and adverse health effects. Research has established links between 51 

wildfire smoke exposure and all-cause mortality, as well as respiratory health issues (Cascio, 52 

2018). The global average mortality attributable to landscape fire smoke exposure was 53 

estimated to be 339,000 deaths annually (Johnston et al., 2012).  54 

Air quality forecast during wildfire events is crucial for public health management and 55 

emergency response, including early warnings, but it remains a challenging task due to 56 

uncertainties in fire emissions (Pan et al., 2020), plume rise calculations (Ye et al., 2021; Li 57 

et al., 2023), and other model inputs/processes (Delle Monache and Stull, 2003).  58 

Ensemble forecasting techniques have been increasingly used to improve the 59 

predictability of extreme air quality episodes. Sessions et al. (2015) and Xian et al. (2019) 60 

developed and evaluated the International Cooperative for Aerosol Prediction (ICAP) multi-61 

model ensemble (MME), a global operational aerosol multi-model ensemble for the aerosol 62 

optical depth (AOD) forecast. Li et al. (2020) used an ensemble forecast to predict surface 63 

PM2.5 during the 2018 California Camp Fire event using the National Oceanic and 64 

Atmospheric Administration (NOAA) Hybrid Single-Particle Lagrangian Integrated 65 

Trajectory (HYSPLIT) dispersion model with different emissions, plume heights, and model 66 

setups. Makkaroon et al. (2023) successfully demonstrated a multi-model ensemble forecast 67 

system that effectively simulated the 2020 western US "Gigafire", with the ensemble mean 68 

outperforming individual models. These studies highlight the potential of ensemble 69 

forecasting to improve the predictability of wildfire air quality. 70 

While multi-model ensemble often outperforms single-model forecasts, some challenges 71 

remain. Ensemble forecasting does not work best all the time. For instance, insufficient 72 

diversity among models in the multi-model ensemble can limit the ability of the ensemble to 73 

capture the full uncertainties and variability tied to different inputs and assumptions. 74 

Moreover, if individual models in the ensemble are biased, the ensemble itself may exhibit 75 

systematic bias. 76 

This study presents a new Hazardous Air Quality Ensemble System (HAQES) over the 77 

Contiguous United States (CONUS) by leveraging real-time forecasts from three U.S. federal 78 

agencies (NOAA, NASA, and Navy). We applied a weighted ensemble forecast approach to 79 
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enhance skill and further improved it by incorporating quantile regression, weighted 80 

regression methods to enhance extreme air quality forecasts, and ridge regression to address 81 

overfitting concerns. We also introduced a combination of random walk and categoric 82 

metrics to assess the performance of the ensemble and individual models against AirNow 83 

observations for the year 2022.   84 

2. Materials and Methods 85 

a. Fires in 2022 86 

This paper focuses on the year 2022 when wildfires across the U.S. burned 3,066,377 87 

hectares, as reported by the National Interagency Fire Center. Figure 1 displays the annual 88 

and monthly total fire radiative energy (FRE) from Global Biomass Burning Emissions 89 

Product (GBBEPx; Zhang et al., 2019), which is highly correlated with fire emissions, across 90 

the 10 U.S. Environmental Protection Agency (EPA) regions for 2022. In the eastern U.S., 91 

biomass-burning emissions were concentrated in the southeastern states (Region 4). Although 92 

the Southeast fires affected a large area, the total FRE was not as high as that of the western 93 

wildfires. Region 4's peak fire period was in March, releasing 6,281 TJ of fire energy in one 94 

month. In the central U.S., fire emissions were primarily located in Regions 6 and 7. Central 95 

U.S. fires peaked in spring (April-May), releasing 41,634 TJ of fire energy within two 96 

months. In the western U.S., fires were primarily located in Regions 9 and 10, with the peak 97 

fire period occurring in the summer, especially in September, when 22,804 TJ of fire energy 98 

was released in one month. Overall, the strongest fire energy occurred in September (33,631 99 

TJ), followed by May (30,330 TJ). 100 
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 101 

Fig. 1. The annual (a) and monthly (c) total fire radiative energy across the 10 U.S. EPA 102 

regions (b) for 2022. 103 

b. Description of Ensemble Members 104 

The air quality forecast ensemble in this study was developed using both regional and 105 

global chemical transport models, including the NOAA High-Resolution Rapid Refresh-106 

Smoke (HRRR-Smoke), Global Ensemble Forecast System Aerosols (GEFS-Aerosols), 107 

National Air Quality Forecasting Capability (NAQFC), the NASA Goddard Earth Observing 108 

System (GEOS), and the Naval Research Laboratory (NRL) Navy Aerosol Analysis and 109 

Prediction System (NAAPS). These models range from simple smoke tracer models to full air 110 

quality models with gas/aerosol chemistry, from high-resolution regional to coarse resolution. 111 

The ensemble exploits the strengths of these widely different models to improve forecasting 112 

accuracy. These models encompass a wide range of emission datasets and plume rise 113 

schemes. The study utilizes the 12-36 hour surface PM2.5 forecasts initialized at 12 UTC 114 

(forecast hour: 00-23 UTC the next day) for all five models. Each model is briefly described 115 

below.  116 
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1) HRRR-SMOKE 117 

HRRR-Smoke (Ahmadov, et al., 2017; Dowell et al., 2022) is an operational real-time 118 

three-dimensional coupled weather-smoke forecast model operating at a 3 km spatial 119 

resolution over the Continental United States (CONUS) domain, maintained by NOAA 120 

National Centers for Environmental Prediction (NCEP). The HRRR Data-Assimilation 121 

System provides initial conditions and a background ensemble for meteorological data 122 

assimilation. HRRR-Smoke ingests the satellite fire radiative power data (FRP) from the 123 

Suomi-NPP, NOAA-20, and MODIS Terra/Aqua satellites to estimate wildfire smoke 124 

emissions. Since HRRR-Smoke is designed to forecast PM2.5 where smoke is a dominant 125 

pollution source, it does not include any non-fire emissions (e.g., anthropogenic emissions) 126 

and gas/aerosol chemistry.  127 

2) GEFS-AEROSOL 128 

GEFS-Aerosols (Zhang et al., 2022) is a global atmospheric composition model 129 

developed by the NCEP in collaboration with the NOAA Global Systems Laboratory, 130 

Chemical Sciences Laboratory, and Air Resources Laboratory. It integrates Finite Volume 131 

Cubed Sphere (FV3)-based Global Forecast System (GFS) version 15 meteorology and 132 

WRF-Chem's atmospheric aerosol chemistry. The Aerosol module is based on the NASA 133 

Goddard Chemistry Aerosol Radiation and Transport model (GOCART) (Chin et al., 2002) 134 

with both fire emission and anthropogenic emission. The biomass-burning emission is from 135 

GBBEPx. Smoke plume rise is calculated using a one-dimension time-dependent cloud 136 

module from the HRRR-Smoke model (Freitas et al., 2007). This study utilized the GEFS-137 

Aerosols global PM2.5 forecasts at 0.25° × 0.25° resolution. 138 

3) NAQFC 139 

NOAA's operational NAQFC uses CMAQ version 5.3.1 driven by NOAA's latest 140 

operational FV3-GFSv16 meteorology at the horizontal spatial resolution of 12 km with 35 141 

vertical layers (Campbell et al., 2022). The chemical gaseous boundary conditions are based 142 

on static, global GEOS-Chem simulations, while aerosol boundary conditions are 143 

dynamically updated from NOAA’s operational GEFS-Aerosols model. NAQFC employs 144 

GBBEPx for biomass-burning emissions. The model uses the Briggs (1969) plume rise 145 

algorithm to compute wildfire smoke plumes. It also includes anthropogenic emissions and 146 

biogenic emissions.  147 
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4) GEOS 148 

The GEOS (Gelaro et al., 2017) system was developed by NASA’s Global Modeling and 149 

Assimilation Office. This study used the GEOS Forward Processing system (GEOS-FP, 150 

version 5.27.1), which generates analyses, assimilation products, and ten-day forecasts in 151 

near-real time. GEOS-FP is built around the GEOS Atmospheric General Circulation Model, 152 

the GEOS atmospheric data assimilation system (hybrid–4DEnVar ADAS), and aerosol 153 

assimilation (Randles et al., 2017). Aerosols are an integral component of the model physics 154 

and are simulated with the Goddard Chemistry, Aerosol, Radiation, and Transport model 155 

(GOCART; Chin et al., 2002). Fire emissions come from the Quick Fire Emissions Dataset 156 

(QFED; Darmenov and da Silva, 2015) and leverage low-latency MODIS fire locations and 157 

FRP (Collection 6) data. Emissions from fires are distributed in the Planetary Boundary 158 

Layer (PBL). The model also includes anthropogenic and biogenic emissions. 159 

5) NAAPS 160 

NAAPS (Lynch et al., 2016) is developed at NRL Marine Meteorology Division and 161 

provides an operational forecast of 3D atmospheric anthropogenic fine and biogenic fine 162 

aerosols, biomass burning smoke, dust, and sea salt concentrations on a spatial resolution of 163 

0.333° × 0.333°. The current NAAPS is driven by global meteorological fields from the Navy 164 

Global Environmental Model (NAVGEM; Hogan et al., 2014). NAAPS uses a biomass 165 

burning source from the Fire Locating and Modeling of Burning Emissions (FLAMBE) 166 

inventory, which is based on near-real-time MODIS fire hotspot data (Reid et al., 2009). The 167 

wildfire smoke at emission is distributed uniformly through the bottom 4 layers within the 168 

PBL. The NAAPS analysis is constrained by the assimilation of MODIS AOD (Zhang et al., 169 

2008; Hyer et al., 2011). 170 

c. Description of Observations 171 

The hourly ground PM2.5 observations from the U.S. EPA AirNow network for the year 172 

2022 are used to evaluate the surface air pollution predictions in this study. The real-time 173 

AirNow measurements are collected by the state, local, or tribal environmental agencies 174 

using federal references or equivalent monitoring methods approved by the EPA. It contains 175 

air quality data for more than 500 cities across the U.S., as well as for Canada and Mexico. 176 

d. Ensemble design 177 
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In this study, we examined five techniques for creating ensembles categorized into two 178 

groups: unweighted and weighted ensemble approaches. Unweighted ensemble employed 179 

multi-model average (MMA) to merge predictions from multiple models into one 180 

consolidated forecast, while weighted ensemble assigned different weights () to member 181 

models (Mj): 182 

�̂� =∑𝛽𝑗𝑀𝑗 + 𝛽0 

𝑆

𝑗=1

                                                              (1) 183 

where S represents the total number of models which is 5 in this study. To determine the 184 

weights, the data for the year 2022 are grouped into training and testing sets. Since wildfires 185 

can last for weeks, to ensure the independence of the training and testing data, we did not 186 

select the training data randomly. Instead, we used the first 9 months of data as the training 187 

set and the final 3 months as the testing set. Due to computational limitations (space and 188 

time), we were only able to analyze one year of data, which may lead to variability in the 189 

calculated weights for each model. However, the purpose of this paper is to introduce and test 190 

various weighted ensemble approaches for air quality forecasting. Longer training and testing 191 

periods are required before implementing a weighted ensemble in operational forecasting, to 192 

thoroughly investigate its performance and determine the optimal weights for each model. 193 

We experimented with four regression methods to determine these weights: Multi-linear 194 

Regression (MLR), Ridge Regression (RR), Quantile Regression (QR), and Weighted 195 

Regression (WR). 196 

1) MULTI-LINEAR REGRESSION (MLR)  197 

MMR calculates the weights for each model by minimizing the error between the 198 

observation (O) and the weighted multimodel prediction: 199 

β̂MRL = 𝑎𝑟𝑔𝑚𝑖𝑛
β
(∑(𝑂𝑖 − β0 −∑β𝑗

𝑆

𝑗=1

𝑀𝑖𝑗)

2
𝑁

𝑖=1

)                               (2) 200 

where N is the total number of observations. 201 

2) RIDGE REGRESSION (RR) 202 

The ridge regression (Hoerl and Kennard, 1970) is a technique used to reduce overfitting 203 

issues in MLR, which is a common problem in statistical modeling and machine learning. RR 204 
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adds a penalty term to the cost function that constrains the size of the weights. The penalty 205 

term is proportional to the square of the weights, so the larger the weights, the larger the 206 

penalty: 207 

β̂RR = argmin
β
(∑(Oi − β0 −∑βj

S

j=1

Mij)

2
N

i=1

+ λ∑βj
2

S

j=1

)                          (3) 208 

where λ is the ridge parameter. The first 20 days in each month are used to train the data 209 

using Eq (A10), and the last 10 days are used to find the best λ. Ridge regression can produce 210 

a more robust and stable model, especially when the number of predictors is large, and the 211 

predictors are nearly collinear, which occurs often in multi-model forecasting. It has been 212 

found to be useful in climate ensemble studies (DelSole et al., 2007).  213 

3) QUANTILE REGRESSION (QR) 214 

MLR and RR estimate the conditional mean of the forecast and tend to favor the mean 215 

state, which is suitable for general cases, but not for extreme events. To address this, we 216 

employ QR to enhance extreme air quality ensemble forecasting (Koenker and Bassett, 217 

1978). QR is an approach like traditional linear regression but with quantile-dependent 218 

regression coefficients: 219 

�̂�𝑄𝑅 =∑𝛽𝑗,𝑞𝑀𝑗 + 𝛽0,𝑞

𝑆

𝑗=1

                                                               (4) 220 

where q represents the quantile ranging from 0 to 1. In this paper, we use q=0.9 to give more 221 

credit to the top 10% of events (use the 90th percentile of data to determine the beta 222 

coefficients). The quantile regression coefficients are estimated by minimizing the sum of 223 

asymmetrically weighted absolute deviations: 224 

β̂QR = argmin
β
( ∑ q |Oi − β0,q −∑βj,qMi,j

S

j=1

|

j:M≥Mq

225 

+ ∑ (1 − q) |Oi − β0,q −∑βj,qMi,j

S

j=1

|

j:M<Mq

)                                                           (5) 226 

4) WEIGHTED REGRESSION (WR) 227 
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WR is another statistical method addressing the issue of extreme events. WR assigns 228 

different weights to data points. The weights are used to give more importance to certain data 229 

points that are more important to the analysis: 230 

�̂�𝑊𝑅 =𝑎𝑟𝑔 min
𝛽
(∑𝑊𝑖 (𝑂𝑖 − 𝛽0 −∑𝛽𝑗𝑀𝑖,𝑗

𝑆

𝑗=1

)

2
𝑁

𝑖=1

)                                         (6) 231 

To increase the impact of extreme events in the regression analysis, we assign a weight of 232 

10 to cases with daily PM2.5 concentration higher than 20 g/m3 (80% of the total 233 

observations), and a weight of 1 to other points, which gives more importance to polluted 234 

days: 235 

𝑊𝑖 = {
10, 𝑖𝑓 𝑂𝑖 > 20 𝜇𝑔/𝑚2  
       1,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          

                                              (7) 236 

e. Evaluation method 237 

1) RANDOM WALK 238 

We employ the DelSole and Tippett (2016) random walk method to evaluate the 239 

performance of both ensemble and individual models. When comparing forecasts A and B for 240 

N times, a positive step is taken if A outperforms B, and a negative step if otherwise. Let K 241 

represent the number of times that forecast A outperforms forecast B. The net distance (d; 242 

forecast score) traveled by the random walk is: 243 

𝑑𝑁 = 𝐾 − (𝑁 − 𝐾) = 2𝐾 − 𝑁                                                      (8) 244 

Fractional bias (FB, Appendix A) is used to determine the more skillful forecast for each 245 

event. A significance test (K, Appendix B) is conducted to show if A is significantly better 246 

(K> K) or worse (K<N- K) than B.  247 

2) CATEGORICAL METRICS 248 

Standard metrics like fractional bias have limitations in evaluating the model performance 249 

of extreme events, such as wildfires. To address this, categorical metrics can be used to 250 

measure the model’s ability to predict US EPA National Ambient Air Quality Standards 251 

(NAAQS) 24-hour PM2.5 exceedance events (>35 μg/m3; U.S. EPA, 2020). Here, we used 252 

three categorical metrics (0-100%) described by Kang et al. (2007):  253 
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(1) Area hit rate (aH) - indicates match between forecasted and observed poor air quality 254 

exceedances. Higher aH implies a more reliable model. 255 

(2) Area false alarm rate (aFAR) - measures incorrect predictions of poor air quality. 256 

Lower aFAR implies a more reliable model. 257 

(3) Weighted success index (WSI) - considers hits, false alarms, and missed exceedance 258 

forecasts. A higher WSI suggests a more reliable model. 259 

The equations for these metrics are shown in Appendix C. 260 

3. Results 261 

This section begins with evaluating the performance of the unweighted multi-model 262 

average (MMA) ensemble compared to each individual model (referred to as model-1 263 

through 5; note we intentionally rearranged the order of these models here from their 264 

sequence in section 2b). Secondly, we compare the performance of the unweighted MMA 265 

ensemble with that from different weighted ensemble methods.  266 

a. Comparison of MMA with individual models 267 

The annual mean surface PM2.5 concentration (Fig. 2) predicted by models 1 to 5 and the 268 

MMA are compared to the AirNow observations. The results from different models varied 269 

substantially, highlighting the significant uncertainty in wildfire air quality forecasts. Models 270 

1, 2, and 4 overestimate PM2.5 in the Southeast and Northwest, where models 3 and 5 271 

underestimate it. The ensemble mean balanced these overestimations and underestimations 272 

and is closer to the observations. 273 
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 274 

 275 

Fig. 2. Annual mean surface PM2.5 concentration (contour) predicted by models 1 to 5 and 276 

MMA and observed by the AirNow network (colored circles) for the year of 2022. 277 

We compared the MMA with each individual model using the random walk method for 278 

major fire regions (EPA region 4, 6, 7, 9, and 10; Fig. 3), where negative values and 279 

tendencies indicate that the MMA is superior to the individual model, and vice versa. In 280 

regions 4 and 10, the consistent downward trend of the random walk scores implies that 281 

MMA consistently outperforms individual models. In regions 6, 7, and 9, the scores are 282 

mostly negative with some transient positive scores in early 2022 as well as some positive 283 
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tendency at the end of the year, indicating that MMA performs better than each model most 284 

of the time. The MMA improves air quality forecasting because it balances the model bias of 285 

the five individual models (Fig. S1). Overall, the MMA outperforms individual models, 286 

demonstrating that ensemble forecasts can effectively reduce forecast uncertainty.  287 

 288 

Fig. 3. Compare MMA to individual models using the random walk method for major fire 289 

regions.  290 

To evaluate the forecasting ability of extreme events by individual models and MMA, we 291 

calculated the area hit rate, area false alarm rate, and weighted success index for the year 292 

2022 (Table 1). The MMA obtains the highest WSI, third highest hit rate, and the second 293 

lowest false alarm rate. Model 4 excels in hit rate but has the highest false alarms. Model 3 294 

has the lowest false alarm rate, but also the lowest hit rate. Overall, the MMA ensemble 295 

works better than the individual models in extreme events air quality forecast, consistent with 296 

prior research (Li et al., 2020; Makkaroon et al., 2023). 297 

 298 
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 Model-1 Model-2 Model-3 Model-4 Model-5 MMA 

aH 26.98 41.12 14.68 48.12 12.42 37.44 

aFAR 83.29 79.70 29.77 93.10 84.17 77.09 

WSI 13.06 20.10 16.47 6.98 13.82 20.68 

Table 1. The area hit rate (aH), area false alarm rate (aFAR), and weighted success index 299 

(WSI) for Models 1 to 5 and the ensemble multi-model average (MMA) for the year 2022. 300 

The best results are highlighted in bold, while the worst results are underlined. 301 

3.2 Weighted ensemble 302 

MMA improved air quality forecasting, but there is still room for improvement. 303 

Therefore, we explored various weighted ensemble approaches to further enhance forecasting 304 

performance. The first weighted ensemble approach we tested is Multilinear Regression 305 

(MLR). Compared to the unweighted ensemble mean (MMA), MLR reduces the fractional 306 

bias by 34%, increases the hit rate by 17%, significantly reduces the false alarm rate by 72%, 307 

and increases the WSI by 5% (Table 2) and is closer to the observations (Fig. 4). These 308 

results demonstrate that the weighted ensemble outperforms the unweighted ensemble. 309 

 M-1 M-2 M-3 M-4 M-5 MMA MLR RR QR WR 

FB 0.60 0.49 1.87 0.88 0.50 0.50 0.33 0.34 0.41 0.35 

aH 42.09 76.87 8.52 65.22 61.04 56.00 65.39 61.04 86.96 69.91 

aFAR 57.24 31.25 0 51.64 32.21 29.11 8.14 6.17 32.89 14.80 

WSI 5.09 17.03 1.18 12.04 18.52 19.16 20.15 16.92 25.49 22.50 

Table 2. The Fractional bias (FB), aH, aFAR, and WSI for the different models (Model-1 310 

to Model-5, M1-M5) and ensemble (MMA) forecasts for the October to December 2022 311 

testing period (bold represents the best results). 312 
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 313 

Fig. 4. Scatter plots between predicted and observed PM2.5 for MMA (green), MLR 314 

(magenta), and RR (black) for five fire-prone EPA regions. The solid black line represents 315 

the 1:1 ratio line for the observations and forecasts, while the dashed black lines represent the 316 

1:2 and 2:1 ratio lines. 317 

The performance of RR is generally comparable to that of MLR (Fig. 4). RR has a 318 

slightly lower hit rate, lower false alarm rate, and lower weighted success index (Table 2) 319 

compared to MLR. Employing RR to mitigate the overfitting concern of MLR doesn't 320 

notably enhance model performance. This could be attributed to the modest number of 321 

models, so the data is not too noisy. Previous studies found that RR can produce a more 322 
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robust and stable model when the number of predictors is large and the data is noisy (DelSole 323 

et al., 2007; Pena and van den Dool, 2008). 324 

MMA, MLR, and RR all tend to underestimate the PM2.5 exceedance events (Fig. 4), 325 

particularly in the Western Coast with high wildfire emissions (R9 and 10). Therefore, we 326 

applied quantile regression (QR) to enhance predictions of extreme cases. QR enables the 327 

ensemble model to predict more polluted events than MLR and MMA (Table 2). QR has a 328 

much higher hit rate, which is about 55% higher than the MMA and 33% higher than the 329 

MLR.  However, sometimes QR overestimates the pollution level when the actual pollution 330 

level is not high. Its false alarm rate reaches 32.89%. QR has the highest WSI among all 331 

models, including individual models and ensemble forecasts. The fractional bias of QR is 332 

higher than that of MLR and RR but still 18% lower than that of MMA. 333 

Another approach to improve the ensemble forecast's ability to predict extreme cases is 334 

weighted regression (WR). WR improved the forecast for PM2.5 exceedance by increasing 335 

the area hit rate by 7% compared to MLR and 25% compared to MMA, respectively. 336 

Although its hit rate is lower than QR, its false alarm rate is 55% lower than QR, offering a 337 

balanced enhancement. WR’s WSI is the second highest which surpasses MMA and all 338 

individual models.  339 

4. Conclusions 340 

In this study, we built a new real-time Hazardous Air Quality Ensemble System (HAQES) 341 

by leveraging operational and research fire wildfire smoke forecasts from U.S. federal 342 

agencies: GEOS from NASA, NAAPS from NRL, and GEFS-Aerosol, HRRR-Smoke, and 343 

NAQFC from NOAA. HAQES significantly enhances forecast accuracy compared to single 344 

model forecasts, reducing model bias and increasing the weighted success index for PM2.5 345 

exceedances. 346 

To further enhance forecasting performance, we introduced a weighted ensemble forecast 347 

using multilinear regression (MLR). Compared to the unweighted ensemble mean, the MLR 348 

reduced model bias by 34%, false alarm rate by 72%, and increased hit rate by 17%. We also 349 

used ridge regression (RR) to reduce the overfitting issue of MLR; however, the RR results are 350 

close to MLR, indicating that the overfitting was not significant in our ensemble system.  351 

Finally, we improved the weighted ensemble using quantile regression and weighted 352 

regression to enhance the forecasting capability during extreme air quality events. The 353 
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advanced weighted ensemble increased the hit rate by 55% for PM2.5 exceedance compared to 354 

that by the ensemble mean. Our findings provide insights into the development of advanced 355 

ensemble forecast methods for wildfire air quality, which offers a practical way to enhance 356 

decision-making support through leveraging existing forecasting efforts across federal 357 

agencies. 358 
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https://portal.nccs.nasa.gov/datashare/gmao/geos-fp/forecast; HRRR: 370 

https://nomads.ncep.noaa.gov/pub/data/nccf/com/hrrr/prod; NAQFC: 371 

https://airquality.weather.gov; NAAPS: https://usgodae.org/pub/outgoing/fnmoc/models; 372 

HAQES: http://air.csiss.gmu.edu/haqes; AirNow data can be downloaded here: 373 

https://files.airnowtech.org/?prefix=airnow/2022/.    374 

 375 

APPENDIX 376 

Appendix A: Fractional Bias 377 

Below is the definition of fractional bias: 378 

𝐹𝐵𝑖 = 2 ×
|𝑂𝑖 −𝑀𝑖|

𝑂𝑖 +𝑀𝑖
                                                               (𝐴1) 379 

where O is the AirNow observation, and M is the model forecast. 380 

Appendix B: Significance Test (K) for Random Walk 381 

https://ftp.ncep.noaa.gov/data/nccf/com/gens/prod
https://portal.nccs.nasa.gov/datashare/gmao/geos-fp/forecast
https://nomads.ncep.noaa.gov/pub/data/nccf/com/hrrr/prod
https://airquality.weather.gov/
https://usgodae.org/pub/outgoing/fnmoc/models
http://air.csiss.gmu.edu/haqes
https://files.airnowtech.org/?prefix=airnow/2022/
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Kα can be approximated as:  382 

𝐾𝛼 = ⌈
𝑁

2
− 𝑧𝛼

2
√
𝑁

4
−
1

2
⌉                                                      (𝐴2) 383 

where zα is the value for which a standardized Gaussian is exceeded with probability 384 

α=5%, and ⌈x⌉ denotes ceiling function that maps x to the smallest integer greater of equal to 385 

x.  386 

Appendix C: Categorical Metrics 387 

The area false alarm rate (aFAR) and area hit rate (aH) were calculated based on paired 388 

observed (O) and predicted (M) PM2.5 exceedances by considering three possible scenarios: a 389 

forecasted exceedance that is not observed (a); a forecasted exceedance that is observed (b); 390 

and an observed exceedance that is not forecasted (c). The aH and aFAR values are 391 

determined by matching observed and forecasted exceedances within a designated area 392 

surrounding the observation locations. In the present study, we used an area of 0.5° × 0.5° 393 

centered at each AirNow monitor location.  394 

𝑎𝐹𝐴𝑅 = (
𝐴𝑎

𝐴𝑎 + 𝐴𝑏
) × 100%                                                     (𝐴3) 395 

𝑎𝐻 = (
𝐴𝑏

𝐴𝑏 + 𝐴𝑐
) × 100%                                                      (𝐴4) 396 

where Aa is the number of forecast area exceedances that were not observed (false 397 

alarms); Ab is the number of cases where an observed exceedance corresponds to a forecast 398 

exceedance within the designated area of 0.5° × 0.5° centered at the monitor location; Ac is 399 

the number of observed exceedances that are not forecast within the designated area centered 400 

at the monitor location. The aFAR (A3) refers to the percentage of false alarms if a forecasted 401 

exceedance is not observed within the designated area. The area hit rate aH (A4) refers to the 402 

percentage of hits if a forecasted exceedance is observed within the designated area. The 403 

aFAR and aH both range from 0-100%. If a model performs well, the misses (Ac) will be 404 

low, and the hits (Ab) will be high, resulting in high aH. In contrast, if a model performs 405 

poorly, the false positives (Aa) will be high and the hits (Ab) will be low, resulting in high 406 

aFAR. 407 

The weighted success index (WSI) gives credit for observation (O) or prediction (M) that 408 

are close to the threshold (T).  409 
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𝑊𝑆𝐼 =
𝑏 + ∑ 𝐼𝑃𝑛

1

𝑎 + 𝑏 + 𝑐
× 100%                                                      (𝐴5) 410 

𝐼𝑃 =

{
 
 

 
 𝑀 − 𝑓𝑂

𝑀 − 𝑓𝑇
𝑖𝑓 𝑂 < 𝑇 < 𝑀 < 𝑓𝑂

𝑂 − 𝑓𝑀

𝑂 − 𝑓𝑇
𝑖𝑓 𝑀 < 𝑇 < 𝑂 < 𝑓𝑀

                                        (𝐴6) 411 

Note the choice of f is empirical and is based on rules of thumb (Hanna 2006). Analysis 412 

of PM2.5 results for 2022 has shown that about 80% of the difference between observation 413 

and prediction is within a factor of 2; thus, in this study, f is set to 2. 414 
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