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ABSTRACT

Smoke from the 2018 Camp Fire in Northern California blanketed a large part of the region for

two weeks, creating poor air quality in the “unhealthy” range for millions of people. The NOAA

Global System Laboratory’s HRRR-Smokemodel was operating experimentally in real time during

the Camp Fire. Here, output from the HRRR-Smoke model is compared to surface observations

of PM2.5 from the AirNow and Purple Air sensors, in addition to meteorological and satellite

observation data. The HRRR-Smoke model grid at 3-km resolution simulated successfully the

evolution of the plume at low levels (down-valley winds) and upper levels (east winds) during the

initial phase of the fire (8-9 November 2018). During the second week (15-16 November), HRRR-

Smoke was able to capture the intensification of PM2.5 pollution due to a high pressure system and

subsidence that trapped smoke close to the surface; however, HRRR-Smoke underpredicted PM2.5

levels in the latter half of the event due to likely underestimates of the fire radiative power derived

from satellite observations. The intensity of the Camp Fire smoke event and the resulting pollution

during the stagnation episodes make it an excellent test case for HRRR-Smoke in predicting PM2.5

levels, which were so high from this single fire event that the usual anthropogenic pollution sources

became insignificant. The analysis of this pollution episode can also help to improve air quality

forecasts in the future. The HRRR-Smoke model was implemented operationally at NOAA/NCEP

in December 2020, now providing essential support for smoke forecasting as the impact of US

wildfires continues to increase in scope and magnitude.
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Capsule summary. NOAA’s HRRR-Smoke model captured the intense smoke pollution and its44

spatial distribution from the 2018 Camp Fire in Northern California when smoke blanketed the45

region for two weeks.46

1. Introduction47

Major wildfire events have increasingly intersected with urban communities in recent years.48

Apart from wildfires crossing the wildland-urban interface, wildfire smoke can affect communities49

hundreds of miles away. The Camp Fire, which started on 8 November 2018 near Paradise, CA, is50

a prime example of an event which had inordinate effects on regional air quality and visibility. The51

Camp Fire destroyed almost 19,000 structures, killed 88 people (California’s deadliest fire to date),52

and displaced over 50,000 people from their homes (Ban et al. 2020; Palinkas 2020). In addition,53

millions of people in Northern California were exposed to poor air quality for many days, with54

potential health impacts including increased mortality and other health complications (Palinkas55

2020; Balmes 2020; Holm et al. 2021; Reid et al. 2016; Wettstein et al. 2018; Liu et al. 2017).56

Similarly, multi-week air quality impacts were seen during the 2020 fire season due to numerous57

large wildfires throughout theWestern United States (CBS San Francisco 2020; TheMercury News58

2020).59

Air quality forecast guidance is typically produced by the Environmental Protection Agency and60

local offices, such as the California Air Resources Board (CARB) or the Bay Area Air Quality61

Management District (BAAQMD), and disseminated through the airnow.gov website. During62

the Camp Fire, this website was inundated with traffic, rendered unavailable (Knobel 2018), and63

was only able to report coarse spatial patterns in the estimated air quality index (AQI) based on64

sparsely distributed air quality sensors. The smoke from the Camp Fire reached the San Francisco65

Bay Area, with a population of about 8 million people, within hours of fire ignition. The smoke66
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persisted for about 2 weeks, in many places intensifying during the middle of this period due to a67

high pressure system with subsidence and shallow mixing layer heights. On 10 November 201868

(the third day of the Camp Fire), PM2.5 levels reached “unhealthy” levels (151-200 AQI) for the69

whole Bay Area. On 16-18 November, Bay Area air quality worsened further and was reported to70

be among the worst in the world, with the air quality index (AQI) reaching higher than 250 in San71

Francisco, prompting widespread school closures (Coren 2018).72

High-resolution smoke forecasts are needed to provide reliable spatial and temporal information73

during extreme wildfire events. NOAA has been running the High-Resolution Rapid Refresh74

(HRRR) model at 3 km grid spacing to provide hourly convection-permitting weather forecasts75

over the entire continental US (Benjamin et al. 2016). Since its operational implementation in76

2014, the HRRR has become an essential tool for weather forecasters. It is widely used for77

predicting hazardous weather in applications ranging from severe thunderstorms and heavy rainfall78

to low cloud ceilings and reduced visibility (see e.g. Benjamin et al. 2021). In 2016, a single79

smoke tracer (primary PM2.5, based on Grell et al. (2011)), a plume rise parameterization (Freitas80

et al. 2007, 2010), and satellite fire radiative power processing (Ahmadov et al. 2017) were81

implemented in an experimental version of the HRRR model, referred to as the HRRR-Smoke82

model. During the Camp Fire event, HRRR-Smoke was operated in real-time demonstration mode83

by the NOAA Global Systems Laboratory (GSL) with graphical forecast output available online84

(https://rapidrefresh.noaa.gov/hrrr/HRRRsmoke/). The HRRR-Smoke model became85

fully operational at NOAA/NCEP in December 2020.86

Here we examine the ability of the HRRR-Smoke model to capture the smoke plumes generated87

by the 2018 Camp Fire to produce PM2.5 forecasts for affected communities. The HRRR-Smoke88

model has recently been evaluated in a model intercomparison study for the 2019 Williams Flats89

fire (Ye et al. 2021). For the present study, the model has been re-run for the Camp Fire case using90
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a more recent version of the code (HRRRv4, implemented operationally in December 2020) to91

better evaluate its forecasting abilities for such an exceptional air quality event. Model outputs are92

compared to data from the AirNow and Purple Air community air quality sensors, meteorological93

station data, and to satellite observations.94

This paper presents the first in-depth analysis of the ability of the HRRR-Smoke coupled weather-95

smoke model to provide smoke forecasting at 3 km resolution, which is a major milestone for a96

model with a domain of this size (covering the continental US). The coupled modeling framework97

and hourly refresh cycle make HRRR-Smoke a powerful tool for forecasting such extreme smoke98

pollution events. The Camp Fire is an excellent case study due to the relatively clean background99

air (no other major wildfires in the western US) and the very high concentrations of smoke, which100

persisted over the region for an extended time period. The Camp Fire occurred during November,101

also making this a unique smoke event compared to summertime, when multiple wildfires typically102

affect air quality across urban areas in the Western US. Combined with a dense network of sensors103

(AirNow and Purple Air), this study of the 2018 Camp Fire also provides an opportunity to104

envision a more accurate forecast system that could ultimately be combined with real-time data to105

give communities better predictions during smoke events.106

The National Weather Service report from the Camp Fire recommended “a consistent source of107

smoke transport model guidance (e.g. HRRR-Smoke)” to provide reliable forecasts and messaging108

(National Weather Service Western Region Headquarters 2020). This model guidance will be109

especially useful as the frequency of wildfire events near urban areas increases due to climate110

change (such as the fire incidents in theWestern US in 2019, 2020, and 2021) and also for managing111

prescribed burns designed to prevent catastrophic wildfires (Miller et al. 2020). Improved forecasts,112

combined with dense networks of community-installed air quality sensors, will enable government113

agencies to give better guidance about smoke exposure to help protect disadvantaged communities114
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and at-risk individuals and to help better plan hospital emergency room demand. Predictions115

with increased spatial resolution will also provide more accurate guidance about limiting outdoor116

activities. In addition, weather prediction models can be improved by including smoke impacts117

on solar radiation reaching the surface; HRRR-Smoke has this capability, but most other weather118

prediction models do not, which can lead to large forecast errors during intense smoke events119

(NESDIS 2021).120

This paper begins with a description of the smoke plume evolution during the first few days of121

the Camp Fire event with comparisons to air quality monitors (Section 2), followed by comparison122

with meteorological observations (Section 3). The paper concludes with a comparison to satellite123

observations, including a discussion of model errors and future areas of research related to satellite124

fire detection algorithms (Section 4).125

2. Spatial evolution of winds and smoke126

Figure 1 shows the dramatic spread of wildfire smoke from the Camp Fire across Northern127

California, with snapshots of HRRR-Smoke PM2.5 concentrations overlaid with wind vectors.128

Images are shown at three hourly intervals for 3-12 hours after the time the fire was initialized in129

the model, at the surface and aloft. Details of the HRRR-Smoke model configuration are provided130

in the Appendix. Near the ground, the east winds over the Sierras moved smoke into the Central131

Valleywhere downvalleywinds pushed the smoke southward toward the BayArea. Aloft, the strong132

NNE winds drove the smoke across the Central Valley to the coastal mountain range. Continued133

NNW winds along the Central Valley created a V-shape in the near-surface smoke plume, as seen134

in Fig. 1.135

The smoke prediction from HRRR-Smoke is dependent on the ingested satellite fire detections.136

The Camp Fire began around 1430 UTC 8 November 2018 (6:30am local time) National Weather137
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Service Western Region Headquarters (2020). The MODIS instrument onboard the Terra satellite138

detected the fire about 4 hours later at 1810 UTC (10:10am local time). The HRRR-Smoke model139

therefore lags the observations by several hours on the day of the fire ignition, but is nevertheless able140

to capture the relative timing of the smoke arrival at different locations. Ingesting the geostationary141

satellite FRP data into the model could help to mitigate this detection delay issue in the future142

(O’Neill and Raffuse 2021), as described further in Section 4. As wildfires can start any time or143

evolve rapidly, it is important to ingest the satellite detections into the smoke forecast models with144

the shortest delay possible. Because new HRRR forecasts start every hour by assimilating the latest145

meteorological observations, this framework also allows ingesting the “latest” FRP detections into146

the model.147

Fig. 2 shows a snapshot of surface winds and smoke concentrations from HRRR-Smoke com-148

pared to surface PM2.5 measurements from both AirNow and Purple Air sensors. There is good149

qualitative agreement between HRRR-Smoke and the collection of PM2.5 sensors. The Purple150

Air community-based sensors provide more spatially detailed PM2.5 data with significantly less151

expensive sensors. These sensors have been validated in a few studies, e.g. Gupta et al. (2018)152

who found that while the sensors are not as accurate as the quality-controlled AirNow sensors, they153

do capture trends and spatial variability. The Purple Air sensors used for comparison to HRRR-154

Smoke were filtered by removing indoor sensors and sensors with missing data as described in the155

Appendix.156

A more detailed comparison with surface observations for selected sensors (locations shown in157

Figure 3) illustrates the ability of HRRR-Smoke to capture the smoke plume spread. Fig. 4 shows158

several time series of PM2.5 concentrations at various distances along the main direction of the159

smoke plume: Sacramento (south of Paradise), East Bay (further west), and South Bay (further160

south). The PurpleAir sensors recorded 2-3 hr shifts in the arrival of the smoke plume at each161
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subsequent location, and these time shifts are well captured by the HRRR-Smoke model, albeit162

delayed by about 4 hours due to late initiation of the fire in the model. Comparisons between163

selected individual high-quality AQS sensors and HRRR-Smoke output in Fig. 5 show similar164

agreement between the model and the AQS observations. The shifted arrival times of the smoke165

plume are seen again here. The delay in the modeled smoke arrival time is also visible above in166

the contour plots of surface PM2.5 concentration from HRRR-Smoke with Purple Air and AirNow167

sensors in Fig. 2, and in Supplemental Material Fig. S1 for 3-24 hours after the fire initialization168

in the model, where the sensors generally show higher values (brighter colors) in the earlier hours169

of the simulation, compared to HRRR-Smoke.170

Further intensification of the smoke event during the second week illustrates the complex inter-171

action of meteorology and emissions and points to the need for improved models and observations172

which can capture these details. Figure 6 shows a time series of PM2.5 concentration from EPA173

monitoring sites in Pleasanton and Oakland over the entire two-week duration of the smoke event174

in the Bay Area, 8-21 November 2018. This plot is shown with a linear concentration axis to175

highlight two things: first, that after some initial improvement on days 3-6, there is a distinct176

worsening of air quality during days 7-9 of the event (14-16 November 2018), and second, that177

the HRRR-Smoke model in general underpredicts concentrations, likely due to significant under-178

estimations in the FRP data (see Section 4). It appears that the reduction in smoke during the179

intermediate period from 11-14 November 2018 occurred because winds shifted to weak southerly,180

which pushed the smoke plume to the north. When winds shifted again to the NNW, the plume181

brought new smoke toward the Bay Area, which when combined with subsidence and a very stable182

capping inversion, led to very high near-surface concentrations of PM2.5. This worsening of air183

quality prompted widespread school closures in the Bay Area with the highest ever recorded AQI184

values of 256 observed in Oakland and 271 in San Francisco on 16 November 2018. (SFGATE185
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2018). HRRR-Smoke captures the sharp increase in PM2.5 values at the start of this intensification186

period, though again with some delay, but greatly underpredicts smoke values for the duration of187

the Camp Fire smoke event.188

3. Comparison to meteorological observations189

To further explain the observed behavior of the smoke plume in observations and in the model,190

we examine the meteorological conditions driving the smoke event, including surface observations191

and vertical profiles. The Camp Fire event was characterized by an east-west surface pressure192

gradient causing very strong downslope winds combined with very dry conditions (very low193

relative humidity, 10% during the day and in the teens at night). Wind speeds were 12-14 m/s, and194

a 23 m/s (52 mph) gust was recorded at the Jarbo Gap site near Paradise, CA early that morning195

(National Weather Service Western Region Headquarters 2020). A detailed analysis of synoptic196

flow conditions is found in Brewer and Clements (2020).197

Time series and vertical sounding comparisons of surface temperatures, wind speed and direction,198

confirm that HRRR-Smoke matched observations quite well. Fig. 7 shows the vertical sounding199

upwind at Reno, NV indicating stable conditions at night (1200 UTC = 4:00am local time) with200

a capping inversion near mountain crest height, winds from the East, and a very dry boundary201

layer, leading to the downslope windstorm which fueled the Camp Fire on the lee side of the ridge202

(Brewer and Clements 2020). During the day (0000 UTC = 4:00pm local time) a mixed layer203

develops with stable conditions aloft and low moisture persisting. Profiles of smoke concentration204

(mass density) are negligibly small in Reno, located upwind of the fire (only wildfire sources of205

PM2.5 are included in HRRR-Smoke). In the Oakland soundings in Fig. 7, we see a set of layered206

stable regions near the ground at night and a mixed layer during the day, with winds largely from207

the Northeast. The boundary layer is quite dry, with the model overpredicting specific humidity.208
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The smoke concentration increases to over 50 `g/m3 at the surface on 1200 UTC 9 November (not209

shown). By 15-16 November, with very weak winds and very stable conditions near the ground210

even during the daytime, smoke concentrations in Oakland are 50 `g/m3 at the surface and have211

increased to more than 100 `g/m3 at about 1 kmASL (Figure 8). These comparisons, in addition to212

the corresponding 0000 UTC comparisons shown in the supplemental Figures S2-S3, demonstrate213

the relatively good agreement between HRRR and the observed profiles.214

Figure 9 shows time series for the first few days of the Camp Fire of wind speed, direction,215

and temperature at Reno and at two stations near Paradise, namely, Jarbo Gap on the slope, and216

Openshaw in the valley, shown in Fig. 3. Again themodel shows good agreement with observations,217

capturing the NE wind direction (∼45◦) during 06-12 UTC and later the increasing wind speeds218

at Reno upwind of the Sierras. Time series at Jarbo Gap, near the location of the fire, show219

the dramatic increase in winds on the downslope side of the Sierras, of 12-14 m/s from 0600 to220

1200 UTC 8 November coming from the NE. At the Openshaw station, located south of Chico in221

the Central Valley, winds were down valley from the NNW with periodic interruptions of NNE222

downslope flows from the Sierra Nevada range. Further analysis and quantification of model errors223

compared to observations are included in the Appendix.224

4. Satellite observations: model comparisons and detection challenges225

The meteorological variables are captured very well by HRRR-Smoke at 3 km resolution over226

the complex terrain of the Western US, as seen by the foregoing discussion and further analysis227

included in the Appendix. The evolution of the smoke concentration is also well represented228

by HRRR-Smoke, considering the complexity of the domain and the uncertainties regarding the229

fire detection and forecasting the fire emissions and spread. Figure 10 shows comparisons of the230

vertically integrated smoke and VIIRS satellite images captured in the afternoon on selected dates231
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(a video is included in the Supplemental Material). Qualitative agreement is best at the beginning232

of the time period, and the images show remarkable similarities in the smoke plume structures,233

including the initial high-altitude spread of the plume on 8 November, the V-shaped structure234

on 9 November, the thick smoke concentrated near Paradise on 12 November, and the stagnant235

smoke that settles over the Central Valley and the Bay Area around 15 November. By 12 and 15236

November, as seen earlier in Figure 5, the agreement of the HRRR-Smoke PM2.5 concentrations237

with observations has decreased, with themodel showing a significantly lower PM2.5 concentration238

spread over California.239

HRRR-Smoke represents wildfires by surface fluxes prescribed by satellite detection of fire240

radiative power (FRP) (Ahmadov et al. 2017). A plume rise model also plays a vital role in241

injecting smoke directly into the free troposphere (Freitas et al. 2007, 2010). Figure 11 shows time242

series of the FRP data ingested from polar orbiting satellites during the Camp Fire event, showing243

the dramatic decrease in FRP after 8 November. The FRP is retrieved for pixels flagged as fire in244

the VIIRS I-band and 1-km MODIS fire products (Li et al. 2018). The daily sequence of daytime245

Suomi NPP images shows a good delineation of the fire front of the Camp Fire event between246

8-12 November (see Supplemental Material, Figure S4). On 13 November, however, no daytime247

detections were reported by the algorithm due to persistent (though not totally opaque) cloud cover.248

NOAA-20 and Terra/Aqua FRP data (not shown) follow similar patterns. (For MODIS imagery,249

visit NASAEOSDISWorldview athttps://worldview.earthdata.nasa.gov/). Because the250

fire intensities are usually high during daytime, such omissions of the satellite FRP data entirely251

during the daytime leads to very low biomass burning flux estimates ingested into the model. The252

HRRR-Smoke model cycles smoke between subsequent forecasts, therefore the following forecast253

cycles are also impacted by the daytime FRP omission on November 13. From 14-20 November,254

daytime detections were reported again by the algorithm, but with the omission of some areas of255
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active burning. Nighttime detections (not shown) provided more complete spatial coverage of the256

areas of active burning throughout the entire time period of 8-20 November analyzed. The loss of257

detection of active burning during the daytime in this instance is likely the result of an increase in258

near-infrared reflectance from heavy smoke, which can trigger various internal non-fire tests within259

the detection algorithm which exclude the pixel from further consideration as possibly containing260

a fire. In contrast, very windy conditions tend to push thick smoke away from the path of radiance261

between the fire and the satellite sensor and hence allow for a more unobstructed observation of262

the fire; this increases the likelihood of detection and FRP retrieval. Such windy conditions were263

observed in particular on 8-9 and 12 November, with relative drops in FRP recorded in between264

(see Figure 11).265

5. Conclusions and future work266

With wildfires now creating large-scale smoke events which regularly affect large populations267

in the Western US, the need for a robust wildfire smoke prediction model like HRRR-Smoke268

is clear. The 2018 Camp Fire event allowed detailed comparison of PM2.5 from the wildfire269

smoke with AirNow and Purple Air observations to validate HRRR-Smoke because of the very270

low background PM2.5 levels during that time period. HRRR-Smoke captured the meteorology271

very well and hence captured the qualitative spatial structure of the smoke (Fig. 10) over Northern272

California, particularly during the first few days of the Camp Fire event. The HRRR-Smoke model273

also includes smoke feedback on meteorology, which helped to capture the stagnation event during274

the second week of the event. Comparisons to new dense surface station networks from PurpleAir275

and AirNow allowed spatial patterns in smoke evolution to be verified.276

One of the limitations of the HRRR-Smoke model is its reliance on relatively infrequent and277

possibly degraded observations of fire radiative power derived from satellite observations. The278
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satellite FRP was underpredicted during the second half of the smoke event. The VIIRS data at279

375 m resolution is the highest resolution instrument for satellite fire detection, thus with respect280

to sensitivity and spatial fidelity VIIRS imagery will often be the source of choice for FRP data.281

However, at present only data from polar orbiting satellites are employed in the model, reducing282

sampling frequency to a few daytime and a few nighttime observations. Inclusion of data from the283

geostationaryGOES-Rplatformswill significantly improve temporal coverage (O’Neill andRaffuse284

2021). Another approach to account for FRP errors would be to use source inversion modeling285

based on the dense surface station networks, to automatically adjust the smoke emissions from the286

fires (see e.g. Li et al. 2020). Additionally, data assimilation can be used to compensate for errors in287

the source terms. For instance, assimilating the surface PM2.5 measurements in conjunction with288

the satellite aerosol optical depth data into the smoke forecasting models can improve the accuracy289

of the smoke forecasts in the future (Saide et al. 2014). Emerging comparisons with ceilometer290

data will also allow better evaluation of the vertical structure of wildfire smoke plumes (Huff et al.291

2021).292

HRRR-Smoke is becoming an essential tool for providing real-time operational support for293

weather and air quality forecasters. Because the model includes radiation feedback from the smoke294

which affects surface temperatures, it is able to capture smoke-induced events like the “orange295

skies” seen in California lightning complex fires of August 2020 (NESDIS 2021). HRRR-Smoke296

currently restarts hourly, which allows it to ingest new satellite detection data at a very high297

frequency compared to other air quality models. Further validation and improvement of the model298

are needed to enable more accurate prediction of wildfire or prescribed burn smoke events for299

community health and safety. Ultimately, modeling and sensor networks can be combined to300

provide robust nowcasts and forecasts for poor air quality events due to wildfire smoke.301
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APPENDIX313

Model314

The HRRR is an hourly data assimilation and weather forecast forecast system. Some details of315

the HRRR configuration differ between what was running in real-time in 2016 vs. what was run316

retrospectively (in forecast mode) for this study. The retrospective simulations used for this study317

carried out hybrid ensemble 3DVar data assimilation for meteorology (Hu et al. 2017) based on318

the community Gridpoint Statistical Interpolation (GSI, Kleist et al. 2009). Background error319

covariances are a blend of ensemble covariances from the 80-member Global Data Assimilation320

System (GDAS) ensemble and static covariances (Wang 2010). Many conventional observations321

are assimilated hourly in a manner analogous to the 13 km Rapid Refresh (RAP) system (Benjamin322

et al. 2016). However, in the HRRR, the background for the data assimilation comes from a 1 h323
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“pre-forecast" in which 15-min radar reflectivity observations are assimilated. The“pre-forecast"324

is initialized from a downscaled RAP 0-h analysis; boundary conditions for both the “pre-forecast"325

and full forecast come from the RAP. The model component of the HRRR is based on WRF-326

ARW (Powers et al. 2017), with advanced physics parameterizations (Benjamin et al. 2016).327

For the retrospective analysis done here, HRRR was rerun at 6-hr forecast intervals to conserve328

computational resources. Frequent restarts are important to capture the onset of the fire, where329

MODIS Terra detected it at 1810 UTC 8 November (10:10am local time), and HRRR ingested it.330

The retrospective forecast was done using VIIRS I-band (375 m resolution) as input as opposed to331

M-band (750 m resolution) which was used in the real-time modeling.332

Figure A1 shows time series of model 10-m wind bias and RMSE compared to all METAR333

surface stations in the Northwest continental US during the entire duration of the Camp Fire.334

Absolute bias values are generally below 0.5 m/s, and RMSE generally stays below 3 m/s except335

during 14-16 November when the peak errors of 3.3 m/s occur during the daytime for the 12-h and336

18-h forecasts; the timing of these peak errors corresponds to the passage of upper-level shortwave337

troughs across British Columbia. The 6-h forecast performs considerably better throughout the338

entire period, both in terms of bias and RMSE, illustrating the benefit of frequent data assimilation.339

Similar statistics (not shown) are found in comparisons to upper air observations (radiosondes).340

These statistics, combined with detailed comparisons at specific locations (as seen in Figures 7-9)341

confirm that the meteorological representation from HRRR-Smoke was overall in good agreement342

with surface and upper air observations.343

A final additional comparison of model output and observations is offered in Fig. A2, which344

compares ceilometer observations with vertical profiles of PM2.5 from HRRR-Smoke. We can345

see elevated layers of smoke that sometimes correspond with ceilometer cloud levels. Raw346

ceilometer data (which were unavailable for this study) may be able to provide greater granularity347
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in characterizing elevated smoke layers in the future (National Research Council 2009; Huff et al.348

2021).349

Sensors350

The PurpleAir network consists of low-cost PM2.5 sensors, predominantlymarketed formonitoring351

local air quality near homes or work places. The low cost of the sensors has increased their rate352

of adoption and created a relatively dense real-time air quality sensor network in and around the353

populated areas of California. Direct comparisons with groups of PurpleAir sensors in the Bay354

Area were made in three areas of interest with adequate density of PurpleAir sensors: East Bay,355

South Bay, and Sacramento. High sensor densities in these three areas increase the robustness of356

the comparison with the HRRR-Smoke model.357

Publicly maintained low-cost air sensors are subject to more errors than the AQS sensors main-358

tained by air quality agencies. Common issues with the low-cost sensors include data gaps,359

extremely high or low values, and some loss of accuracy in high relative humidity and high coarse360

particle concentration conditions (Stavroulas et al. 2020). To minimize any such errors, focusing361

on areas with dense sensor networks ensured that individual sensors could be compared to the ag-362

gregate network to remove outliers. Further, any sensors with gaps in data over the time period of363

interest were removed. Finally, the two separate channels on the PurpleAir sensors were compared364

to determine if the sensor had any technical issues causing internal discrepancies.365

Using these constraints to filter the Purple Air data, the average HRRR-Smoke data could be366

compared to the average Purple Air data from sensors within each area (Figure 4). While AQS367

sensors provide more reliable information, the density of the AQS network was not high enough to368

generate a fair comparison between city AQS sensors and the average HRRR value. As a result, we369

opted instead to compare individual AirNow sensors with their closest gridded HRRR data point370

(Figures 5 and 6).371
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Fig. 1. Snapshot of surface smoke (left, a,c,e,g) and 1829 m AGL smoke (right, b,d,f,h) concentrations

(PM2.5 `g/m3 contours on log scale) and wind vectors (cyan) from HRRR-Smoke every 3 hours from 2100 UTC

8 November to 0900 UTC 9 Nov 2018.
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Fig. 2. Comparison of surface smoke concentrations (PM2.5 `g/m3) from HRRR-Smoke (contours) with

Purple Air (squares) and AQS (circles) stations at 1800 UTC 9 November. Surface wind vectors (cyan) also

shown. Additional snapshots and a video are available in the Supplemental Material.
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Fig. 3. RAWS, Sounding, AQS, and PurpleAir data sampling locations used in this study. The Camp Fire was

located near Paradise, CA, marked by the red circle.
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Fig. 4. Time series of PM2.5 concentrations (`g/m3) from HRRR-Smoke at Sacramento, East Bay, and South

Bay locations compared to averaged Purple Air sensors (dashed lines) during the initial phase of the Camp Fire

event (8-12 November 2018). Solid lines are the mean over the selected area and the shaded region shows min

and max) and averaged Purple Air sensors (dashed lines) during the initial phase of the Camp Fire event (8-12

November 2018).
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Fig. 5. Time series of PM2.5 concentrations (`g/m3) from HRRR-Smoke and AQS stations in a) Sacramento,

b) East Bay, c) South Bay. Individual AQS sensors (dashed lines) and the nearest HRRR-Smoke grid point for

each of the sensors (solid lines) are plotted.
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Fig. 6. Time series of observed PM2.5 concentrations (`g/m3) at AQS stations in a) Pleasanton and b)

Oakland, California compared to output from HRRR-Smoke from 8-21 November 2018. Blue shading indicates

the range of values from the HRRR-Smoke model in the selected area surrounding the AQS sensor. Note the

linear axis for concentration.
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Fig. 7. Vertical profiles of potential temperature, wind speed, wind direction, specific humidity, and mass

density (PM2.5 concentration) observed at a) Reno and b) Oakland at 1200 UTC 8 November 2018 compared to

HRRR-Smoke model output. Note the different axis limits.
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Fig. 8. As in Figure 7 but at 1200 UTC 15 November 2018. Note the different axis limits.
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Fig. 9. Time series of wind speed (a,b,c), wind direction (d,e,f), and temperature (g,h,i) surface station data at

Jarbo Gap (a,d,g), Openshaw (b,e,h), Reno (c,f,i) compared to HRRR output at nearest grid point.
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Fig. 10. HRRR-Smoke vertically integrated smoke (left) compared to Suomi NPP visible images (right). a,b)

8 November, c,d) 9 November, e,f) 12 November, g,h) 15 November 2018. HRRR-Smoke output is shown at

2000 UTC, which roughly matches the satellite crossover times, except for the first HRRR-Smoke image which

is shown at 0000 UTC 9 November to account for the delay in fire ignition in the model.

583

584

585

586

35



Fig. 11. Time series of the instantaneous fire radiative power for the Camp fire, detected by the two VIIRS

and two MODIS instruments, spatially aggregated for the entire Camp Fire area.
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Fig. A1. Bias and RMSE plots for 10-m wind speed from 9-22 November 2018 comparing HRRR-Smoke

output with all METAR surface stations in the northwest continental US.
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Fig. A2. Time-height contours of HRRR-Smoke PM2.5 concentration overlaid with the first cloud level from

Oakland airport METAR ceilometer data (dots).
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5 Satellite images and fire radiative power - time se-
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Figure 1: Comparison of surface smoke concentrations (PM2.5 µg/m3) from HRRR-Smoke
(contours) with Purple Air (squares) and AQS (circles) stations every 3 hours from 2100
UTC 8 November to 1800 UTC 9 November.
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Figure 2: Vertical profiles of potential temperature, wind speed, wind direction, specific
humidity, and mass density (PM2.5 concentration) observed in a) Reno and b) Oakland at
0000 UTC 9 November 2018 compared to HRRR-Smoke model output. Note the different
axis limits.
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Figure 3: As in Figure S2 but at 0000 UTC 16 November 2018. Note the different axis
limits.
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Figure 4: Daytime composite Suomi NPP VIIRS I-band Fire Radiative Power data over a
VIIRS true color image around the Camp Fire complex in November 2018. Images from JS-
TAR Mapper https://www.star.nesdis.noaa.gov/jpss/mapper/, where NOAA-20 data
as well as nighttime data are also available.
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