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Abstract 14 

Ambient fine particulate matter (PM2.5) can cause severe adverse health impacts in humans. Thus, reducing PM2.5 15 

exposure is an important public health focus. Meteorological and emissions factors, which considerably affect the 16 

PM2.5 concentrations in air, vary significantly under different climate change scenarios. However, PM2.5 17 

concentrations and their associated disease burden under future climate scenarios are not well clarified. In this work, 18 

the global PM2.5 concentrations from 2021 to 2100 were estimated by combining the U-Net convolutional neural 19 

network deep learning technique, reanalysis data, emissions data, and bias-corrected Coupled Model Intercomparison 20 

Project Phase 6 future climate scenario data. Based on the estimated PM2.5 concentrations, the future premature 21 

mortality burden associated with PM2.5 exposure was assessed using the Global Exposure Mortality Model. Ambient 22 

PM2.5 exposure is expected to be highest in the SSP3-7.0 scenario and lowest in the SSP1-2.6 scenario in the major 23 

representative regions of the world. The global mortality rate (per 100,000 exposed population) associated with PM2.5 24 

under the four different scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, ranging from 84.6 (95% CI: 59.6–25 

107.0) to 150.0 (95% CI: 106.2–185.0)) at the end of this century is expected to be lower than the baseline (the 2010s, 26 

161.1 (95% CI: 113.3–199.9)). Among all four scenarios, the sustainable development scenario (SSP1-2.6) results in 27 

the lowest PM2.5 concentrations and the lowest premature mortality burden, which indicates that this is the pathway 28 

that countries should strive for. Our work helps to advance the scientific understanding of the global geo-climatic 29 

system and provides suggestions for scientists and policymakers.  30 

Keywords: Climate change; Global; PM2.5; Mortality; Deep learning  31 
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Synopsis: Future PM2.5 pollution and its associated health burden have not been well clarified. In this study, a new 32 

set of global-scale, spatially explicit PM2.5 concentration from 2021 to 2100 with a spatial resolution of 0.1°×0.1° 33 

was estimated, and associated PM2.5 exposure and premature mortality burden was calculated. 34 

 35 
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 1 

1. Introduction 37 

Ambient particulate matter (PM2.5) poses a considerable global threat to human health. Exposure to outdoor PM2.5 38 

caused 4.14 million deaths in 2019, accounting for 62% of all global deaths attributable to air pollution estimated by 39 

the Global Burden of Disease Project.1-4 Unmitigated climate change is projected to exacerbate inevitable challenges 40 

and threats to global air quality and increase its attributable adverse health impacts.5-7 Therefore, it is necessary to 41 

understand how future climate change scenarios will influence surface PM2.5 concentrations and propose appropriate 42 

climate mitigation measures. 43 

Most studies7, 8 on PM2.5 concentration estimation under different climate scenarios have been based on the Coupled 44 

Model Intercomparison Project 5 (CMIP5) Representative Concentration Pathways scenarios. However, with the 45 

release of the CMIP6 simulation results, the Scenario Model Intercomparison Project provides new alternative 46 

scenarios that are intimately connected with societal concerns regarding climate change mitigation, adaptation, and 47 

impacts.9, 10 Some studies have estimated future air quality based on CMIP6 climate projections;11, 12 however, these 48 

studies either investigated the PM2.5 exposure in only one country or region,11-13 or the predicted periods were shorter 49 

than 50 years.14, 15 Although future global-scale PM2.5 simulations are available,12, 16 the low model spatial resolution 50 

(e.g., 1.875° × 1.25°) prevents a clear understanding of how this pollutant will evolve over the next several decades 51 

and hampers reliable estimations of how this pollutant will influence human health in the future. As yet, no 52 

comprehensive study has estimated the global mortality burden associated with ambient PM2.5 based on high-53 

resolution (e.g., 0.1° × 0.1°) and bias-corrected future climate projections that incorporate demographic and emissions 54 

data. Such a study is urgently needed to understand how the PM2.5 concentration and the associated health burden in 55 

each country will vary under different climate scenarios.  56 

In this study, we estimated PM2.5 exposure and its associated mortality burden over the 2021–2100 period under the 57 

SSP1-2.617, SSP2-4.518, SSP3-7.0,19 and SSP5-8.520 scenarios (SSP: Shared Socioeconomic Pathway). The 58 

relationships between critical meteorological variables and PM2.5 concentrations were constructed using a U-Net 59 

convolutional neural network21 based on Modern-Era Retrospective Analysis for Research and Applications, version 60 

2 (MERRA-2)22, CMIP6 global emissions data,23 and satellite-retrieved PM2.5 data.24 PM2.5 exposure and the 61 

associated premature mortality over the 2021–2100 period were estimated based on the constructed relationships 62 

between the PM2.5 concentrations, meteorological variables, and emissions, the high-resolution and bias-corrected 63 

CMIP6 future climate SSP scenario data (adjusted using the delta downscaling method), and future SSP demographic 64 
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 2 

projections. Our work endeavored to elucidate how and through what pathways PM2.5 exposure would influence the 65 

premature mortality burden in 184 countries and regions worldwide over the forthcoming 80 years, spanning the 66 

space of challenges to mitigation and adaptation to climate change, which can exhibit a more expansive and 67 

conscientious blueprint to air quality projection. 68 

2. Methods 69 

2.1. Data acquisition 70 

2.1.1. Surface PM2.5 data for training 71 

High-resolution and highly accurate global surface PM2.5 data are required to examine the relationships between 72 

PM2.5 concentrations and meteorological and emissions conditions. Therefore, global surface PM2.5 data at 0.1° × 0.1° 73 

combining AOD retrievals from the NASA MODIS, MISR, and SeaWIFS instrument, GEOS-Chem chemical 74 

transport model, and ground-based observations calibrated by geographically weighted regression were selected for 75 

the study.24 Compared with previous global surface PM2.5 concentration datasets,25-27 this set of PM2.5 values 76 

contained finer resolution data and compensated for missing or limited monthly measurements. This PM2.5 dataset 77 

was highly consistent with collocated ground-based observations from monitoring networks PM2.5 (R2 = 0.84), with 78 

a root mean square error (RMSE) of 8.4 µg m-3, and thus can accurately represent the surface PM2.5 concentrations.  79 

2.1.2. Meteorological and emissions data for model input 80 

To train the deep learning model, the following monthly average meteorological data were taken from the MERRA-81 

2 dataset:28 surface temperature, wind speed, specific humidity, planetary boundary layer height, and sea level 82 

pressure; these parameters can strongly influence the PM2.5 concentration.29 Several studies have contrasted the 83 

MERRA-2 dataset with ground-based observations and other reanalysis datasets and have shown that the MERRA-84 

2 data better represent the surface meteorological conditions.22, 30-32 For example, when compared with the ground 85 

observation data from China, the RMSE, MB (mean bias), and R value for temperature were 3.62 K, −2.14 K, and 86 

0.95, respectively.33 These three statistical metrics for humidity were 5%, 0.63%, and 0.89.34  87 

Primary PM2.5 emissions data are not available in the CMIP6 dataset, we used the emissions of five pollutants 88 

(ammonia, nitrogen oxides, organic carbon, black carbon, and sulfur dioxide) as the emissions input for the deep 89 

learning model because these pollutants can have a marked influence on surface PM2.5 concentrations.35, 36 Based on 90 

existing global emission inventory, such as PKU-FUEL, primary PM2.5 emission has high correlation with the 91 
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 3 

emissions of these five pollutants.37, 38 Covering the 1750–2100 period (historical dataset: 1750–2014, future 92 

emissions dataset: 2015–2100), the CMIP6 gridded emissions dataset has previously been used for assessing air 93 

control policies and for comparing divergent emissions scenarios.13, 39, 40 94 

The monthly MERRA-2 meteorological data and CMIP6 emissions data from 1998 to 2019 were input into the deep 95 

learning model for training and validation. Before training the deep learning model, all meteorological and emissions 96 

data were re-interpolated from their primary spatial resolutions into the same grid as the surface PM2.5 data with a 97 

resolution of 0.1° × 0.1°. The bilinear interpolation technique was applied in this work, which has been widely used 98 

to interpolate climate data into different resolutions in previous studies.41, 42  99 

2.2. U-Net convolutional neural networks 100 

Tremendous advances in computer vision have led to convolutional neural networks (CNNs) being widely used for 101 

2D data analysis.43 We built a CNN-based U-Net framework to construct relationships between PM2.5 concentrations 102 

and predictor variables.21 First proposed for medical segmentation,21 U-Net assumes that local information and global 103 

information are both essential, which is also apposite for PM2.5 prediction. Equipped with flexible global aggregation 104 

blocks, U-Net can sufficiently consider non-local influences from other grid cells to local PM2.5 concentration. In 105 

addition, multiple layers of U-Net CNNs make it possible to elucidate nonlinear relationships among critical 106 

meteorological variables, ambient pollutant emissions, and surface PM2.5 concentrations; these relationships can be 107 

too complex to be delineated through traditional regression methods.44-46  108 

All of the predictor variables (meteorological and emission data) and the PM2.5 concentrations were treated as 2D 109 

images. The detailed architecture of our U-Net model, including the number of channels for each convolution layer, 110 

the size of the convolution kernel, the activation function of the convolution layer, and the image size are provided 111 

in Figure 1. The description of the U-Net model can be found in Text S1. 112 
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 4 

 113 

Figure 1. Architecture of the U-Net model 114 

2.3. Future climate data under different Shared Socioeconomic Pathway (SSP) scenarios  115 

The well-trained model was used to predict the 2021–2100 PM2.5 concentrations using the meteorological variables 116 

from the CMIP6 future climate scenarios dataset. As shown in Table S1, historical simulations (1981–2010) and 117 

future projections (2021–2100) of global climate multiple-model ensemble results from 28 global climate models 118 

(GCMs) and four SSPs (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) were utilized. The four SSPs are classified by 119 

socioeconomic, land use, and environmental development assumptions and represent conceivable future scenarios 120 

that capture distinctive climate mitigation and adaptation challenges. SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 121 

represent low, medium, medium to high, and high radiative forcing by the end of the century, respectively.47-49 Further 122 

information and the assumptions used in the future scenarios are provided in Eyring et al. (2016)50 and Gidden et al. 123 

(2019).51 The SSPs explored in this study cover a wide range of plausible socioeconomic trends for this century.  124 

2.4. Bias correction and downscaling 125 

Before being fed into the trained U-Net model, the meteorological variables from CMIP6 were corrected and 126 

downscaled to achieve reliable climate change impact metrics. To produce high-resolution and bias-corrected future 127 

climate information, we used the delta change (DC) method, which applies a change factor (i.e., delta) derived from 128 

GCMs to historical observations.52, 53 Studies have found the DC method to be robust for downscaling climate data.54, 129 

55 Our implementation of the DC method was intended to correct the simulated climate data while providing results 130 

at high spatial resolution. The details of the DC method are described in the Text S2. 131 
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 5 

2.5. Mortality calculation 132 

The Global Exposure Mortality Model (GEMM) proposed by Burnett et al. (2018)56 was used as a hazard ratio model 133 

to estimate the premature mortality burden associated with PM2.5 exposure. GEMM has relieved some of the 134 

contentious assumptions that are stipulated by other disease-specific hazard ratio models, such as the Integrated 135 

Exposure Response Model.56 The detailed of the GEMM model are provided in the Text S3. 136 

The baseline mortality rates for different countries in 2015 obtained from the Global Health Data Exchange data 137 

catalog were used for estimating premature mortality. The gridded population projections for all SSPs during 2021–138 

2100 at a resolution of 1 km × 1 km are available from the Spatial Population Scenario database. This demographic 139 

projection dataset has been previously verified57 and has been used to project heat-related excess mortality58, 59 and 140 

to model future patterns of urbanization.60 In this work, we calculated the PM2.5-associated premature mortality in 141 

accordance with the projected population, but the baseline mortality rate was assumed to be that of 2015 owing to a 142 

lack of credible alternatives. Constant baseline mortality has been applied in other works that have projected the 143 

future environmental burdens of disease61, 62.  144 

3. Results 145 

3.1. Performance evaluation 146 

To verify that the well-trained U-Net model could generate accurate PM2.5 concentration predictions, we validated 147 

the model performance from the spatial, scatter point, and statistical matrix perspectives. CMIP6 historical emissions 148 

data are available through 2014, while the data from 2015 to 2019 were from the CMIP6 future scenario emissions 149 

dataset. In the CMIP6 future scenario emissions dataset, the different scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and 150 

SSP5-8.5) have their own emissions datasets, but the differences are very limited throughout the 2015–2019 period. 151 

Because of this, we separated the verification by (1) implementing 8-fold cross-validation to verify the performance 152 

for the estimations from 1998 to 2014 and (2) inputting the future emissions datasets (2015–2019) of the four 153 

scenarios together with other independent variables into the well-trained model to output the PM2.5 estimation for the 154 

comparison. For the 8-fold cross-validation, 15 years of data were used for training and 2 years of data were used for 155 

comparison in each fold.  156 

Figure S2 shows a spatial comparison between the satellite-retrieved PM2.5 data and the values predicted by the U-157 

Net CNN using 8-fold validation. The results show that the model gave a well-fitted in the areas with both low (≤	35	158 
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 6 

µg/m!) and high (> 35	µg/m!) PM2.5 concentration. As demonstrated in Figures S3 and S4, the error between the 159 

simulated and target PM2.5 concentrations for all grid cells was within ±	12 µg/m!. The annual relative errors specific 160 

to each country were within ±	10%.  161 

Figure 2 shows the scatter plots of the satellite-retrieved PM2.5 concentrations and the 8-fold average predicted 162 

concentrations. The strong correlation coefficient (R, 0.987) was better than that of previous studies63-65 and indicates 163 

that the model could accurately predict all of the 8-fold cross-validation data. The statistical evaluation metrics (A1–164 

A5 in the supplemental material) shown in Table 1 were further used to verify the model performance. The NMB, 165 

NME, MB, and MAGE of the average 8-fold cross-validation were −0.0073 	±	 0.0138, 0.2211 	±	 0.0274, 166 

−0.0469	±	0.0848 µg/m!, and 1.3622	±	0.1059	µg/m!, respectively. The relatively small standard deviation of error 167 

indicates that our trained model has considerable stability. From these statistical matrix perspectives, the PM2.5 168 

concentrations estimated by our proposed deep learning model were also better than those of previous studies.29, 66, 169 

67 In addition to the comparison with the satellite-retrieved PM2.5 data, we compared the annual model-predicted 170 

PM2.5 concentrations with the monitor-based observations in China, the United States, and Europe because these 171 

regions have well-established ground-based observation networks (Table S2). The R values for China, the United 172 

States, and Europe were 0.91, 0.80, and 0.81, respectively. These results show that the PM2.5 estimates from our 173 

method were also in general agreement with the ground-based observations in these regions.  174 

 175 

Figure 2. 8-fold cross-validation of the PM2.5 concentrations predicted by the U-Net convolutional neural 176 

network model. The color represents the sample density. 177 
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 7 

Table 1. 8-fold cross-validation of U-Net convolutional neural network model performance 178 

  NMB* NME* 
MB* 

(𝛍𝐠/𝐦𝟑) 
MAGE* 
(𝛍𝐠/𝐦𝟑) R 

8-fold 
average −0.0073 0.2211 −0.0469 1.3622 0.987 

Standard 
error 0.0138 0.0274 0.0848 0.1059 0.010 

*NMB: normalized mean bias; NME: normalized mean error; MB: mean bias; MAGE: mean absolute gross error 179 

As mentioned above, the CMIP6 emissions from 2015–2019 under the four SSP scenarios together with other input 180 

data were fed into the trained deep learning model to estimate the PM2.5 concentrations for these 5 years, as shown in 181 

Table S3. The NMB ranged from 0.146 to 0.157 with an average of 0.148, the NME ranged from 0.338 to 0.341 with 182 

an average of 0.339, the MB ranged from 0.824 to 0.828 µg/m!, and the MAGE ranged from 1.911 to 1.957 µg/m!. 183 

These metrics indicate the good feasibility and generalizability of our model in predicting the PM2.5 concentrations. 184 

In summary, the satisfactory performance indicated that the trained U-Net model was able to identify the relationships 185 

between PM2.5 and the influencing factors, which demonstrates that this model could be used for future PM2.5 186 

pollution estimation in the 2021–2100 period under different climate scenarios. 187 

3.2. Projection of future ambient PM2.5 concentrations 188 

The built U-Net deep learning model was used to project future PM2.5 concentrations under the SSP1-2.6, SSP2-4.5, 189 

SSP3-7.0, and SSP5-8.5 scenarios. Changes in the downscaled multi-model ensembles of critical meteorological 190 

variables are shown in Figures S5–S9. The projected PM2.5 concentrations were compared with the baseline 191 

concentration (the average PM2.5 concentration from 2010 to 2019), as shown in Figure 3. The PM2.5 decadal average 192 

concentrations for the different SSP scenarios are shown in Figures S10–S13. 193 
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 8 

 194 

Figure 3. Spatial distribution of changes in projected global PM2.5 concentrations relative to the baseline 195 

period (2010–2019) under different climate change scenarios.  196 

Based on the deep learning model estimations, the PM2.5 concentrations are projected to decrease in almost all regions 197 

in all scenarios; however, there are some notable differences among the projections. In SSP1-2.6, the projected PM2.5 198 

concentration will decrease consistently from 2030 to 2100. Among the investigated regions, the Middle East, Eastern 199 

China, and India will undergo the most significant decline in PM2.5 concentrations under this scenario. SSP2-4.5 200 

represents the middle range of plausible future pathways. In this scenario, although the furthest projection into the 201 

2090s showed a decline compared with the baseline level (that of the 2010s), this reduction was much smaller than 202 

the corresponding changes under SSP1-2.6. The projections are different for SSP3-7.0, which assumes more 203 

pessimistic development strategies, such as less investment in the environment and health care and a fast-growing 204 

population.17, 19, 68 This would lead to an apparent increase in PM2.5 concentrations in Asia and Africa before the 205 

2050s. After meeting economic development needs and implementing environmental control measures, the PM2.5 206 

concentrations would decrease to a level similar to the baseline period. In SSP5-8.5, fossil fuels are heavily relied on 207 

to achieve rapid economic growth. Thus, in the middle of the 21st century, climate change would considerably increase 208 

the PM2.5 concentrations and cause considerable damage to human health in central Africa. Nevertheless, with the 209 

Page 10 of 23

ACS Paragon Plus Environment

Environmental Science & Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 9 

rapid development of society and pollution mitigation policies, the overall PM2.5 concentrations will undergo a 210 

sharper reduction after the 2050s.  211 

3.3. Projection of future ambient PM2.5 exposure  212 

Derived from the disproportionate spatial and temporal asymmetry under four SSP scenarios, the PM2.5 exposure 213 

concentrations that coalesced with the future geographically demographic information can reveal the health 214 

intimidation to people from the future. Figures S14 and S15 show the demographic projections for the four SSPs 215 

scenarios for the world and for different regions, respectively.  216 

Figure 4 shows the projected PM2.5 exposure concentrations in several representative regions (North America, South 217 

America, Europe, Africa, the Middle East, Russia and Economies in Transition [EIT], Asia, and the rest of the world) 218 

under the various SSP scenarios. The region boundaries are shown in Figure S16. Overall, PM2.5 exposure is highest 219 

in the SSP3-7.0 scenario and lowest in the SSP1-2.6 scenario for the major representative regions of the world, 220 

although the main drivers for the projected outcomes differ.  221 

In Europe and North America, where PM2.5 concentrations will be relatively low, the population distribution is the 222 

main determinant of PM2.5 exposure. Space-weighted PM2.5 concentrations will be lower in the SSP5-8.5 scenario 223 

owing to the stronger pollution control measures than in the “middle of the road” SSP2-4.5 scenario, but the 224 

population-weighted PM2.5 concentrations in SSP5-8.5 will slightly exceed those of SSP2-4.5 and even surpass those 225 

of SSP3-7.0 after the 2060s. These trends will be caused by the higher birthrate in Europe and North America in 226 

SSP5-8.5 driven by economic optimism and international migration, leading to accelerated population growth in 227 

these two regions (Figures S15 and S17).69 This implies that a greater share of the population will be concentrated in 228 

areas with higher levels of social development and education. Therefore, compared with SSP2-4.5, the SSP5-8.5 229 

scenario will result in a higher population-weighted PM2.5 exposure in North America and Europe after the 2060s.  230 

In both Asia and Africa, PM2.5 exposure will decline steadily over time, reaching −58.2% (−47.3%) and −52.5% 231 

(−32.0%) for Asia (Africa) by the end of the century under the SSP1-2.6 and SSP5-8.5 scenarios, respectively, 232 

compared with the baseline period. However, there will be no significant decline under the SSP3-7.0 scenario, and 233 

before the 2060s, the exposure levels will be even higher than in the baseline period. Two explanations can be offered 234 

for the persistently high exposure concentrations in Asia and Africa under the SSP3-7.0 scenario. The emissions and 235 

unfavorable meteorological factors will lead to increased PM2.5 pollution under this scenario before the 2030s. 236 
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 10 

Meanwhile, population increase due to high fertility accompanied by slow urbanization in these regions will intensify 237 

the density of urban and rural settlement patterns, thereby increasing PM2.5 exposure.69  238 

We also estimated the proportion of the population that would be exposed to the previous and current Air Quality 239 

Guideline (AQG) values under future climate change scenarios. As shown in Figure S18, the trends in the population 240 

fraction exposed to the AQG values of 10 µg/m³ and 5 µg/m³ are similar for the four climate change scenarios, 241 

although there are considerable differences in the magnitude of the population fraction that would be exposed. By 242 

2100, in the SSP1-2.6 scenario, 3.5% of the world’s population will live in areas that have PM2.5 concentrations lower 243 

than 5 µg/m³, which is well above the baseline population fraction of 2.0%. Compared with the other three scenarios, 244 

SSP1-2.6 would emerge victorious with tremendous benefits to global public health. Once SSP1-2.6 is not 245 

approachable, the other scenarios are comparable in terms of the proportion of the population exposed to the two 246 

AQG values.  247 
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248 

 249 
Figure 4. Projected ambient PM2.5 exposure concentrations for 2030–2100 under different climate change 250 

scenarios.  251 

Page 13 of 23

ACS Paragon Plus Environment

Environmental Science & Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 12 

3.4. Projection of premature mortality burden 252 

The global premature mortality burden associated with future PM2.5 concentrations under the different SSP scenarios 253 

was also analyzed. Figure 5 shows the PM2.5-associated premature deaths for the baseline (2010–2019) and future 254 

(2030–2100) periods in several representative regions. The green growth and sustainable development assumptions 255 

in the SSP1-2.6 scenario would lead to a rapid reduction in air pollution emissions globally. Therefore, the number 256 

of PM2.5-associated premature deaths worldwide would start to decline in the near future (2031–2040) before the 257 

population growth turning point (2071–2080). Given the middle-road development pattern of SSP2-4.5, premature 258 

deaths in this scenario would peak at 9,023,922 (95% CI: 6,352,113–11,236,028) in the 2060s and then steadily 259 

decline to 7,393,925 (95% CI: 5,202,070–9,290,539) in the final decade of the century, which is a less rapid decline 260 

than in the SSP1-2.6 scenario. SSP3-7.0 assumes weak pollution control in which the implementation of pollution 261 

mitigation measures is delayed and less ambitious in the long term. In this scenario, premature deaths would spike 262 

dramatically in all regions except North America, Europe, and Russia and would not decrease until the end of the 263 

century. The global number of PM2.5-associated premature deaths would reach 11,148,502 (95% CI: 7,876,580–264 

13,800,471) in 2091–2100, an increase of 63% from the baseline period. In the SSP5-8.5 scenario, which emphasizes 265 

technological progress and rapid economic growth through human capital development, environmental issues 266 

become a priority health concern, and ambitious air quality goals result in pollutant levels well below current levels 267 

in the medium to long term.16, 70 Therefore, in SSP5-8.5, global premature deaths would peak at 8,508,685 (95% CI: 268 

5,980,955–10,617,435) in the 2040s and then decline to 6,257,869 (95% CI: 4,410,176–7,886,851) in the second half 269 

of the 21st century as high-performance pollution control technologies are developed. This decrease would result in 270 

a smaller premature death burden than in the baseline period. 271 
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 272 
Figure 5. PM2.5-associated premature deaths (> 25 years old) in different regions. The red bars represent the 273 

premature mortality rate, and the vertical black lines indicate the 95% empirical confidence intervals.  274 
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Because the size of the population will determine the absolute number of premature deaths, country-specific mortality 275 

rates per 100,000 people were used to describe the PM2.5-associated mortality burden. Figure S19 shows the mortality 276 

rate per 100,000 people for 184 countries or districts. Overall, countries in North America, Western Europe, and 277 

Oceania will have the lowest mortality rates. The mortality rates in Eastern European countries (e.g., Ukraine and 278 

Serbia) will be the highest, followed by some countries in Asia, such as China and India.  279 

3.5. Key factors that influence the premature mortality burden 280 

Two sensitivity studies were conducted to explore how future population distributions and PM2.5 concentrations 281 

would affect the burden of PM2.5-associated premature mortality (Table S4). In the first (SA1) and second (SA2) 282 

sensitivity experiment, the population size and the PM2.5 concentration was the same as that in 2010–2019, 283 

respectively. 284 

When considering only the future demographic projections (i.e., demographic changes and changes in total 285 

population by age), the changes in the population distribution over the coming decades (2021–2040) will exacerbate 286 

the burden of premature deaths in all four scenarios, but the magnitude of the effect differs among the scenarios. 287 

These differences are reflected in the demographic assumptions about the birthrate, mortality, and migration.71 SSP1-288 

2.6 and SSP5-8.5 both envision a development path of increased investment in education and health, thereby 289 

accelerating the demographic transition.69 Therefore, in these two scenarios, the demographic turning point in 290 

population decline will be reached earlier, in the medium term (2050s) (Fig. S13), after which the impact of 291 

demographics on the burden of premature mortality will gradually decrease.  292 

In the second sensitivity experiment, we explore the effect of the PM2.5 concentration on premature mortality 293 

assuming a constant future population distribution and size. Disease burden alleviation resulting from implementing 294 

air pollution control measures will become apparent in the near future under the SSP1-2.6 and SSP5-8.5 scenarios. 295 

SSP1-2.6 is the only scenario in which the effect of the PM2.5 concentration will be greater than the effect of 296 

population size by the end of the century. Rapidly declining emissions would successfully offset the burden of 297 

premature mortality resulting from population growth by the end of the century. Under the SSP3-7.0 scenario, the 298 

planetary boundary layer height critically influences PM2.5 dispersion, and it decreases in East Asia, South Asia, and 299 

eastern Africa (Figure S7). The decrease in the planetary boundary layer height will increase the PM2.5 concentrations 300 

and therefore exacerbate the PM2.5-associated mortality burden until the 2050s in these regions.  301 
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3.6. Implications and limitations 302 

Global climate change is a significant challenge for society, and its impact on future air pollution is a critical 303 

perspective that requires quantitative assessment. Herein, a global PM2.5 concentration dataset with a spatial 304 

resolution of 0.1° 	×	 0.1° was estimated based on SSP scenarios. The results showed that the global PM2.5 305 

concentrations and the associated PM2.5 exposure and premature mortality burden vary considerably under the four 306 

SSP scenarios. Among the scenarios, SSP1-2.6 would have the earliest inflection point for PM2.5-associated 307 

premature deaths and the lowest mortality burden. This scenario presents an ideal target pathway that governments 308 

should strive to achieve. 309 

This work has some limitations. First, satellite-retrieved PM2.5 datasets were used as training targets, but according 310 

to the results in Table S2, there were discrepancies with the observational data obtained from ground measurements. 311 

Second, future climate, emission, and population projections harbor relatively large uncertainty, even if they have 312 

been calibrated against observed patterns of changes using historical data.23, 69 Relative uncertainty generally 313 

increases over time because detailed spatial and temporal information is unavailable. Third, there are no generalizable 314 

and accurate findings that indicate how baseline mortality rates will change in the future. Therefore, in accordance 315 

with previous studies72, 73 in the projection literature, we assumed that the nonlinear relationship between PM2.5 316 

concentrations and the baseline mortality rate would also be consistent. Fourth, the PM2.5 projections derived in this 317 

study were based on several underlying assumptions. Primarily, in line with previous works,72, 73 the relationships 318 

between PM2.5 concentrations and meteorological conditions and precursor emissions explored in this study were 319 

assumed to be true for future climate and emissions scenarios. Finally, our predictions were based on the premise 320 

that the world is steadily developing, and our method cannot predict the effects of uncontrollable factors (such as war 321 

and strong earthquakes) on PM2.5 and population distributions. Despite these limitations, this work helps quantify the 322 

extent to which climate change will influence the PM2.5 concentrations worldwide. The results can contribute to the 323 

ongoing assessment of PM2.5-associated exposure and vulnerability under different climate change scenarios, and 324 

governments can use this information to design useful strategies to reduce pollution.  325 
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