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Abstract: Wind forecasting is critical in the wind power industry, yet forecasting bias often exists. 11 
In order to effectively correct the forecasting bias, this study develops a weather adapted bias 12 
correction scheme on the basis of an average bias-correction method, which considers the bias of 13 
estimated error associated with the difference in weather type within each unit of the statistical 14 
sample. This method is tested by an ensemble forecasting system based on the Weather Research & 15 
Forecasting Model (WRF). This system outputs high resolution wind speed deterministic forecast 16 
at six wind fields located on the east coast of China, using 40 members generated by initial 17 
perturbations and multi-physical schemes. The forecast system output 28-52h predictions with a 18 
temporal resolution of 15 minutes, and was evaluated against collocated anemometer towers 19 
observations. Results show that the information contained in weather types produces an 20 
improvement in forecast bias correction. 21 

Keywords: wind power; wind forecasting; statistical correction; weather classification; ensemble 22 
forecasting. 23 

 24 

1. Introduction 25 

As a kind of clean energy, wind power is receiving increasing attention and application in the 26 
world, under the recent concern about energy crisis and global warming issues [1, 2]. However, a 27 
wind field’s output power strongly depends on local real-time wind speed and is thus uncontrollable. 28 
The fluctuation of wind speed will inevitably lead to the fluctuation of the output power of the wind 29 
farm. As a result, in order to stabilize the voltage in the power grid, the portion of wind power in the 30 
regional power grid must be limited to a certain level, namely the wind power penetration limit [3]. 31 
This penetration limit severely restricts wind power’s extensive application. 32 

One solution to this problem is to provide near surface wind speed forecast with a high temporal 33 
resolution, from which the prediction of wind fields’ output power can be obtained [4]. This method 34 
has been proven effective in numerous practices [5]. However, because of imperfect models and 35 
uncertain initial conditions, bias always exists in numerical weather prediction (NWP) output [6]. In 36 
this case, a statistical correction to NWP is an effective means to reduce prediction bias without the 37 
potentially expensive cost to improve the model scheme and initial fields [7-10]. There have been a 38 
lot of work testing and improving various statistical correction methods in order to improve the 39 
forecast skill of NWPs [1]. Typical approaches include comparison and combination of different 40 
statistical models [11-14] and NWP datasets [15], and incorporating more input parameters. 41 

Generally speaking, statistical correction is to construct a statistical model between historical 42 
prediction error and single or multiple input parameters, in order to estimate the forecast error at the 43 
time to be corrected according to the values of these parameters. However, by using a single 44 
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parameter, for example, the predicted value is insufficient in limiting the range of error estimation. 45 
Therefore, improvements have been made by adding more parameters for better estimation accuracy. 46 
Previously, parameters to be added in statistical models mostly focused on day/ night flag [16], the 47 
forecast length [17] and seasonality, as these parameters are physically related to prediction bias and 48 
are able to gain along with the prediction. On the other hand, predictions of other meteorological 49 
variables besides the wind speed are often added in models. In some works, researchers have proven 50 
that the combination of wind direction and wind speed is effective in reducing the error of prediction 51 
[18, 19], temperature and pressure can also improve the performance of statistical models [20, 21]. 52 
However, in many circumstances, especially under complicated weather conditions, these 53 
parameters still cannot offer enough information for bias estimation and sometimes even worsen the 54 
forecast results, which implies that some additional or more relevant parameters are needed to 55 
provide more complete information.  56 

As a summary of the entire regional meteorological field at a certain moment [22], weather type 57 
is clearly related to the meteorological conditions and thus the wind field. This parameter not only 58 
contains information of seasons, and day and night, but it also reflects environmental conditions in 59 
both the local site and nearby area. In this way, statistical correction models can be equipped with 60 
more spatial information compared to those using merely local meteorological factors. While weather 61 
classification has been widely used in many fields, such as climate analysis [23-25], wind 62 
reconstruction [26] and weather prediction [27, 28], it has not been conventionally applied or 63 
considered in the wind energy field for forecast bias correction. 64 

In this paper, we defined a variable named weather type based on the classification of the 65 
meteorological field, and test its effect in improving long-term wind forecast skill in a business 66 
forecasting system. Compared to traditional bias correction methods, this modified scheme considers 67 
typical errors of NWP in different weather types, thus the prediction errors of sampling units can be 68 
corrected to an expected value in the same weather type as the focus period. We will show that the 69 
addition of weather types has a positive effect in long-term wind forecast, and it performed better in 70 
ensemble average prediction than non-ensemble prediction due to the higher correlation between 71 
prediction errors and weather type. 72 

The paper is organized as follows. Section 2 describes the ensemble forecasting system. Section 73 
3 presents the principle of the correction method. Section 4 shows results and the evaluation. 74 
Conclusions and some discussions are given in Section 5.  75 

2. The Ensemble Forecasting System 76 

This section may be divided by subheadings. It should provide a concise and precise description 77 
of the experimental results, their interpretation as well as the experimental conclusions that can be 78 
drawn. 79 

2.1. Numerical model 80 

This study was based on the Weather Research & Forecasting Model (WRF) [29], which has been 81 
well known and widely used in research and practical application. As a meso-scale meteorological 82 
model, WRF model is able to predict weather processes with a resolution of kilometers, and simulates 83 
sub-scale processes by parameterization. Vertically, WRF model uses eta levels to describe pressure 84 
layers depending on local surface pressure.  85 

In this research, a single grid domain was constructed with a horizontal resolution of 18 86 
kilometers. Considering the requirement of near surface prediction, the eta levels in the model were 87 
set with an increasing density near surface, with four levels located below 100 meters above the 88 
ground. The time step in the simulation was set to be 60 seconds in order to increase the stability of 89 
model.  90 

  91 
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2.2. Ensemble member production 92 

The forecasting system used the Global Forecasting System (GFS) data published by NCEP as 93 
the initial field. In subsequent processes, by adding random perturbation into the initial field and 94 
using multi-physical schemes, an ensemble containing 40 members was produced.  95 

The multi-scheme is a prediction skill that uses different physical parameters and schemes for 96 
different members in ensemble forecasting. In this research, we chose different schemes from 4 97 
physical processes, which produced 40 different combinations. The multi-scheme included 3 98 
microphysics (MP) process schemes [Lin et al. (Lin et al. 1983), WSM 3-class simple ice scheme (Hong 99 
et al. 2004), WSM 6-class scheme (Hong et al. 2006)]，4 land surface (SFC) schemes [thermal diffusion 100 
scheme (MM5), unified Noah land-surface model (Noah), RUC land-surface model (Smirnova et al. 101 
1997, 2000), Pleim-Xu scheme (Development of a Land Surface Model  Pleim & Xiu 2003)]，3 102 
cumulus (CU) schemes [Kain-Fritsch (Kain & Fritsch 1993), Betts-Miller (Betts & Miller 1986; Janjic 103 
1994), Grell-Devenyi (Grell & Devenyi 2002)]，and 2 planet boundary layer (PBL) schemes [YSU 104 
(Noh et al. 2006), MYJ (ETA; Janjic 1994)]. Table in Appendix A lists the combination of physical 105 
schemes for each ensemble member. 106 

2.3. Forecasting system design 107 

The wind farms chosen in this research are located on the east coast of China. The local 108 
observational data comes from anemometer towers in these wind farms, with a 15 minute temporal 109 
resolution, in accordance with the requirements of the State Grid Corporation of China. The height 110 
of the wind tower is 70m, which is consistent with the hub height of wind turbines. 111 

 112 

Figure 1. Location of the six wind farms used in this study, denoted by black dots. 113 

The terrain of this area is flat coastal beach. For this reason, the local wind speed has obvious 114 
diurnal variation and a fluctuation at a period of several days. Moreover, during the summer season, 115 
the local weather may be influenced by typhoons and severe convective weather systems, as well as 116 
by front systems with a typical 1-3 day time scale. Therefore the local wind speed has distinct seasonal 117 
characteristics. 118 

This research used NCEP FNL (Final) Operational Global Analysis data from 2005 to 2012 to 119 
obtain 18 typical weather types, and established a statistical correlation between forecast errors and 120 
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weather types with ensemble average forecasts from Sep. 2013 to Aug. 2014. Ensemble forecasts from 121 
Sep. 2014 to Jan. 2015 were used to test the weather adapted correction method. 122 

According to the requirement of the State Grid Corporation of China, the forecasting system 123 
needs to publish the prediction of wind speed of the second day at LST 8:00 am (Beijing, UTC+8). 124 
Considering the delay of GFS data’s publishing and receiving, and the time cost of simulation, the 125 
forecasting system chose the UTC 1200 GFS global field to be the initial field, therefore the output 126 
prediction was 28-52h ahead.  127 

Finally the system output field was the ensemble mean of the 40 members. The 70m wind speed 128 
of target wind farms were extracted from the output field to be the NWP primary deterministic 129 
product, followed by the statistical correction presented below. 130 

3. Statistical correction 131 

In numerical simulation, the bias of prediction comes from two aspects, namely the error of the 132 
initial field and the defects of numerical models. Generally speaking, the model error can be divided 133 
into systematic error and random error [30]. Comparing with random error, the systematic error can 134 
be estimated and reduced through statistical methods, by comparing with historical data. This 135 
method is called the statistical correction to numerical prediction, through which the prediction error 136 
could be reduced, and the forecasting result could be improved. In the fact that the defects of models 137 
are unavoidable, it is effective and necessary to develop statistical correction methods, which are 138 
based on historical experience, to improve model prediction skill. 139 

The statistical correction methods can be generally divided into two categories [30]. The first is 140 
posterior correction, which means to make correction to the final output after the numerical 141 
integration of the model; the second is to periodically modify the variables along the model 142 
integration. In this research, the posterior correction method was applied in the forecasting system.  143 

3.1. Weather classification system 144 

Weather classification is a methodology that summarizes several typical weather types by 145 
analyzing specific meteorological variables, and then classifies the meteorology fields into these 146 
weather types. As the background fields of local weather propagate, the weather type at larger scales 147 
is usually correlated with local weather processes [22]. Therefore weather classification can be used 148 
for identification and prediction of various weather processes, and helps to improve weather forecast 149 
skills. 150 

There are two main approaches to realize weather classification, namely classification of air mass 151 
and classification of circulation [31]. The air mass classification refers to the classification typically 152 
bases on surface variables such as pressure and temperature, which can reflect local weather 153 
conditions. On the other hand, circulation classification depends on the field of sea level pressure 154 
(SLP), geopotential height, or some other fields that can describe the atmospheric circulation on a 155 
regular NWP grid. Compared to air mass classification, the performance of circulation classification 156 
is generally superior in that it considers the influence of both large-scale circulation and local 157 
meteorological variables [32].  158 

In this research, the European Cooperation in Science and Technology Action 733 (COST733) 159 
system [33] was applied to weather classification in China. The COST733 system is originally used to 160 
achieve a general numerical method for assessing, comparing and classifying weather situations in 161 
Europe, and has good performance in previous research [34-36]. This system has also been applied 162 
to weather classification in areas outside Europe [34], because it has high operability and credibility, 163 
and contains plenty of classification schemes. 164 

The clustering algorithm used in this research is t-mode principal component analysis using 165 
oblique rotation [37]. This method can avoid the “snowball effect” in a certain extent, which means 166 
most of the sample units are classified as one same type in calculation, and few sample units in other 167 
types [38]. This algorithm thus ensures that each type has a relatively comprehensive sample size. 168 
The algorithm has been already realized in COST733 [33] (methods: PCT), and has been applied in 169 
some published researches [39]. 170 
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Considering that the aims of weather classification is to distinguish the difference between NWP 171 
errors of different weather types, the number of weather types should be large enough so that some 172 
important samples would not be ignored. On the other hand, weather type number should not be too 173 
small, in order to ensure that all the types have enough samples to keep their representative. In the 174 
test, 18 different weather types model satisfied these requirement and got applied. 175 

3.2. Combined correction method 176 

The correction method in this research was based on the average bias correction method, a low-177 
cost, widely used method in wind energy prediction. It uses 15 days before the focus day as the 178 
statistical sample, equally divides each day into four segments with 6 hours in each, and then 179 
calculates the average forecast error for each period. The forecast error for the four segments of the 180 
focus day is estimated as the average error in the corresponding historical periods. 181 

In this section, we refined the average bias correction by considering the correlation between 182 
prediction error of sample units and corresponding weather types, and attempted to reduce this error 183 
when using units with different weather types to estimate the target error.   184 

We used the FNL reanalysis data from 2005 to 2012 to build up the classification model. The FNL 185 
data is published 4 times each day with a six-hour interval. Thus it is possible to classify the target 186 
wind fields in each 6 hour period, and the statistical sample volume is large enough to support a 187 
classification of 18 weather types. In the next step, the ensemble average predictions from Sep. 2013 188 
to Aug. 2014 were classified according to the weather types produced by FNL data. The peak value 189 
of prediction error distribution of each weather type was used as the characteristic error of model 190 
prediction in this weather type.  191 

In the original correction process, the average error of each sampling unit was used as the final 192 
estimation of the target error in this period. While in the refined method, this average error was 193 
further corrected according to the difference between characteristic errors of the unit’s weather type 194 
and the target period’s weather type. Then in the accumulation, the updated errors are used to 195 
estimate the target error, in the same manner as the original method.  196 

In this way, the prediction error of a sample unit was corrected as an estimation of the forecast 197 
error of the units in the same weather type, thus the weather types of both historical units and target 198 
unit were consistent. 199 

4. Results 200 

4.1. Weather classification 201 

In order to evaluate the effect of weather classification, we chose ensemble forecast data of 6 202 
costal wind farms during the period from Sep. 2013 to Aug. 2014. We calculated the probability 203 
density function (PDF) of prediction error for each weather type. 204 

According to prediction error distributions shown in the figures above, the majority of weather 205 
types has a monomodal distribution, although a few have distributions with multiple peaks or no 206 
obvious peak. As a result, the distributions are able to reflect the impact of weather types on statistical 207 
correction, and the peak value of distribution can be set as the characteristic error.  208 
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Figure 2. Prediction error distribution of 18 weather types in each of six wind farms.  210 

To further evaluate the classification results, we calculated the average characteristic radius of 211 
each weather type cluster and the differentiation degree of the clusters. Here we defined the average 212 
characteristic radius 𝑟𝑎𝑑𝑖, the differentiation degree dis and their ratio K as follows:  213 

 𝑟𝑎𝑑𝑖 = √
1

𝑁
∑ (𝑎𝑖𝑛 − 𝑘𝑖)

2𝑁
𝑛=1   (1) 214 

 𝑑𝑖𝑠 = √
1

𝑀
∑ (𝑘𝑖 − 𝑘�̅�)

2𝑀
𝑖=1   (2) 215 

 𝐾 = 𝑑𝑖𝑠/𝑟𝑎𝑑𝑖  (3) 216 

Where for a cluster with the number i, the corresponding cluster element set is 𝑎𝑖𝑛, and the core 217 
value is 𝑘𝑖, M is total number of clusters.  218 

As 𝑟𝑎𝑑𝑖 reflects the tightness of each cluster and 𝑑𝑖𝑠 indicates the separation among different 219 
clusters, the value K can be used as an index of clustering validation. A higher K means higher 220 
concentration level of single clusters, and the larger distance between different clusters, in other 221 
words the effect of clustering is more significant [40].  222 

A control experiment was set here for the same period as ensemble forecast, which had a single 223 
member without perturbation and multi-scheme treatment. The result listed in table 1 below shows 224 
that compared to the single forecast, the ensemble average prediction has a higher correlation 225 
between forecasting error and weather types in weather classification. 226 

Table 1. Cluster index K of control prediction (K con) and ensemble forecast (K ens). 227 

Wind Field K con K ens 

001 0.28  0.45  

002 0.20  0.43  

003 0.17  0.43  

004 0.30  0.45  

005 0.29  0.56  

006 0.24  0.55  

average 0.25 0.48 

4.2. Ensemble forecast evaluation 228 

To evaluate the ensemble forecasting, the sample came from 6 wind farms on the east coastal of 229 
China, from Sep. 2014 to Jan. 2015. In this section, we examined the effect of ensemble forecast with 230 
weather adapted correction with 28-52 h lead time.  231 
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4.2.1. Deterministic forecasting  232 

When evaluating the deterministic forecasting of specific meteorological variables at a single site, 233 
root mean square error (RMSE) is one of the metrics that are commonly used. The variable reflects 234 
the overall level of prediction bias in the whole statistical sample. It can be calculated by the 235 
prediction bias 𝑒𝑖, which is the difference between forecast value 𝑣𝑖 and observation value 𝑜𝑖, with 236 
a sample size of N. 237 

 𝑟𝑚𝑠𝑒 = √
1

𝑁
∑ 𝑒𝑖

2𝑁
𝑖   (4) 238 

In discussion of ensemble prediction error, Hou et al. [41] made the following decomposition of 239 
RMSE with the reference work by Takacs [42]. 240 

 𝑟𝑚𝑠𝑒2 = 𝑚𝑛𝑏𝑖𝑎𝑠2 + 𝑠𝑑𝑒2 = 𝑚𝑛𝑏𝑖𝑎𝑠2 + 𝑠𝑑𝑏𝑖𝑎𝑠2 + 𝑑𝑖𝑠𝑝2  (5) 241 

Where: 242 

 𝑚𝑛𝑏𝑖𝑎𝑠 = 𝑒�̅�  (6) 243 

 𝑠𝑑𝑒 = 𝜎(𝑒𝑖)  (7) 244 

 𝑠𝑑𝑏𝑖𝑎𝑠 = 𝜎(𝑣𝑖) − 𝜎(𝑜𝑖)  (8) 245 

 𝑑𝑖𝑠𝑝 = √2𝜎(𝑣𝑖) ∗ 𝜎(𝑜𝑖) ∗ (1 − 𝑟(𝑣𝑖 , 𝑜𝑖))  (9) 246 

𝜎(𝑣𝑖) and 𝜎(𝑜𝑖) are standard deviations of prediction 𝑣𝑖  and observation 𝑜𝑖 , and 𝑟(𝑣𝑖 , 𝑜𝑖) is 247 
the correlation coefficient between prediction and observation. 248 

In this operation, rmse is divided into two parts: the mean bias of prediction mnbias and the 249 
standard deviation of prediction bias sde. Here the mnbias reflects a continuous overall deviation of 250 
prediction, while the sde indicates the fluctuation of forecast error around mnbias. Then sde is further 251 
decomposed into two parts: sdbias and disp. Sdbias is the difference between the standard deviation 252 
of prediction and observation, which refers to the bias of prediction with respect to the degree of 253 
wind speed fluctuation. Sdbias reflects the systematic error together with mnbias, which could be 254 
reduced by posterior statistical correction. Dispersion error disp represents the part of forecast error 255 
that is more difficult to be corrected, because this part of error comes from phase shifts instead of 256 
amplitude [42]. 257 

In this test, a control prediction with a single member (SINGLE) was compared with ensemble 258 
average prediction (ENS). The original forecasts (OF) from the two forecasting systems were 259 
corrected by either the average bias correction method (AB) or the refined weather type adapted bias 260 
correction method (WAB). All these six predictions were evaluated by daily averaged RMSE. The 261 
results are listed in Table 2. 262 

Table 2. Daily average RMSE (m/s) of six predictions, including original forecast (OF), average bias 263 
correction (AB), and weather adapted bias correction (WAB) outputs of the single member prediction 264 
(SINGLE) and the ensemble prediction (ENS). 265 

Wind  

Field 

SINGLE ENS 

OF AB WAB OF AB WAB 

001 2.68  2.29  2.21  2.71  2.09  1.86  

002 3.41  2.87  2.75  2.83  2.14  1.90  

003 3.22  2.80  2.74  2.70  2.09  1.96  

004 1.53  1.53  1.63  2.42  1.95  1.84  

005 2.94  2.56  2.45  3.01  2.35  2.17  

006 2.47  2.29  2.28  2.23  1.95  1.78  

average 2.71  2.39 2.34  2.65 2.10 1.92 
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According to the result, RMSE shows that ensemble forecast keeps a higher accuracy in both the 266 
original forecast and the corrected prediction. In addition, the average bias correction performs well 267 
in reducing the error of both ensemble forecast and single forecast, and weather adapted correction 268 
outperforms the traditional correction. Moreover, the improvement by weather type correction is 269 
more significant in ensemble prediction than in single forecast in the tested wind farms. Results of 270 
further analysis on RMSE of ensemble prediction are listed in tables followed. 271 

Setting the original ensemble forecast as the reference forecast, we further defined the ratio of 272 
change that is made by two correction methods as follows for quantitative comparison:  273 

 𝐾𝑣𝑎𝑟 = 1 −
𝑣𝑎𝑟

𝑣𝑎𝑟𝑟𝑒𝑓
  (10) 274 

In the above equation var is the evaluation index of the forecast to be tested, and 𝑣𝑎𝑟𝑟𝑒𝑓  is the 275 

index of reference forecast. 𝐾𝑣𝑎𝑟  indicates the capability of the correction method in reducing 276 
prediction error. 𝐾𝑣𝑎𝑟  is positive only when prediction error is reduced. The higher 𝐾𝑣𝑎𝑟  is, the 277 
better the correction method performs. 278 

Table 3. Mean bias (m/s) and change rate (%) of original forecast (OF), average bias correction (AB), 279 
and weather adapted bias correction (WAB) outputs from the ensemble average forecast. 280 

Wind Field OF AB 𝑲𝑨𝑩 WAB 𝑲𝑾𝑨𝑩 

001 2.40  0.68  0.72  0.64  0.73  

002 2.47  0.81  0.67  0.78  0.68  

003 2.33  0.77  0.67  0.75  0.68  

004 1.95  0.68  0.65  0.62  0.68  

005 2.57  0.85  0.67  0.80  0.69  

006 1.67  0.51  0.70  0.46  0.72  

average 2.23 0.72 0.68 0.68 0.70 

Table 4. Standard deviation bias (m/s) and change rate (%) of three outputs of ensemble average 281 
forecast. 282 

Wind Field OF AB 𝑲𝑨𝑩 WAB 𝑲𝑾𝑨𝑩 

001 0.77  0.89  -0.16  0.65  0.16  

002 0.64  0.75  -0.17  0.48  0.25  

003 0.46  0.55  -0.18  0.38  0.18  

004 0.44  0.52  -0.17  0.42  0.05  

005 0.75  0.85  -0.14  0.61  0.18  

006 0.50  0.57  -0.14  0.31  0.38  

average 0.59 0.69 -0.16 0.47 0.20 

Table 5. Dispersion error (m/s) and change rate (%) of three outputs of ensemble forecast. 283 

Wind Field OF AB 𝑲𝑨𝑩 WAB 𝑲𝑾𝑨𝑩 

001 2.13  2.34  -0.09  2.15  -0.01  

002 2.26  2.43  -0.08  2.24  0.01  

003 2.26  2.43  -0.07  2.31  -0.02  

004 2.18  2.28  -0.05  2.19  -0.01  

005 2.47  2.65  -0.07  2.51  -0.01  

006 2.22  2.32  -0.04  2.17  0.02  

average 2.25 2.41 -0.07 2.26 -0.00 
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From these three tables, we can compare two correction methods quantitatively by the K index 284 
for the three scenarios. The average bias correction makes a very huge improvement in the mean bias 285 
of prediction, but it doesn’t help improve sdbias and disp, which even have a growth. By incorporating 286 
weather classification to the correction, the growth of sdbias caused by correction has been reduced, 287 
as highlighted in Table 4, and the disp index also shows improvements. Nonetheless, little influence 288 
is seen in mnbias.  289 

4.2.2. Continuous Ranked Probability Skill (CRPS)  290 

The continuous ranked probability skill (CRPS) is widely used in evaluation of ensemble 291 
systems. Compared with MAE and RMSE which evaluate error of a deterministic forecasting, CRPS 292 
considers the performance of all ensemble members. CRPS takes a measure to the difference between 293 
cumulative distribution function (CDF) of each member in ensemble forecast and the observation, 294 
and is usually used as an assessment of overall performance of ensemble prediction systems. It is 295 
computed by the formula  296 

 𝐶𝑅𝑃𝑆 =
1

𝑁
∑ ∫ [𝐹𝑖

𝑓(𝑥) − 𝐹𝑖
𝑜(𝑥)]2𝑑𝑥

∞

−∞
𝑁
𝑖=1   (11) 297 

where N is the volume of the sample, 𝐹𝑖
𝑓(𝑥) is the CDF of the probabilistic forecast for the i-th 298 

value in the time series and 𝐹𝑖
𝑜(𝑥) is the CDF of the corresponding observation. Thus we have:  299 

 𝐹𝑖
𝑓(𝑥) = ∫ 𝜌(𝑦)𝑑𝑦

𝑥

−∞
  (12) 300 

 𝐹𝑖
𝑜(𝑥) = 𝐻(𝑥𝑖 − 𝑥𝑖

𝑎)  (13) 301 

where 302 

 𝐻(𝑥) = {
0     𝑓𝑜𝑟 𝑥 < 0
1     𝑓𝑜𝑟 𝑥 ≥ 0

  (14) 303 

is known as the Heaviside function [43, 44]. 304 
Here the CRPS of the original and corrected ensemble forecasts are given. 305 

Table 6. CRPS of original (OF), AB and WAB corrected ensemble forecasts. 306 

Wind Field OF AB WAB 

001 2.10  1.58  1.39  

002 2.20  1.62  1.44  

003 2.09  1.56  1.45  

004 1.52  1.41  1.33  

005 2.37  1.80  1.63  

006 1.71  1.43  1.30  

average 2.00 1.57 1.42 

The CRPS score (CRPSS) is further used here to compare impacts of two correction methods, 307 
which is defined as follows [44]: 308 

 𝐶𝑅𝑃𝑆𝑆 = 1 − 𝐶𝑅𝑃𝑆/𝐶𝑅𝑃𝑆𝑂𝐹  (15) 309 

The CRPS is the index of corrected prediction, and 𝐶𝑅𝑃𝑆𝑂𝐹  is the original prediction as a 310 
reference. For the six wind farms in test, the CRPSS of two correction methods are shown in Fig 3, 311 
which shows that WAB forecast has a stable and significant improvement against AB forecast (CRPSS 312 
around 7% increment). 313 
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Figure 3. CRPS score in all tested wind farms, with a comparison between average bias correction 315 
(AB) and weather adapted bias correction (WAB). 316 

4.2.3. Rank Histogram 317 

As a method to directly reflect the consistency in statistical distributions between ensemble 318 
members’ predictions and observation, rank histogram is widely used in evaluation of the reliability 319 
of ensemble prediction [45, 46]. In this method, at each snap shot, the wind speed is divided into N+1 320 
intervals by N forecast values of ensemble members, and the frequency that observation values fall 321 
in each interval is counted. In the ideal situation, the probability density distribution of ensemble 322 
members’ prediction values should be consistent with that of observations, thus the observation 323 
should fall in each interval with the same probability, which means the rank histogram would have 324 
a flat distribution [45, 46] (the black solid line in Fig 4). For the three predictions, data from all wind 325 
farms were used as the sample here. In order to directly compare the effect of correction methods, 326 
the mean values of absolute deviation (MAD) between the flat distribution and rank histograms of 327 
three different predictions are listed in Table 7 below. 328 

 329 

Figure 4. Rank histogram of ensemble forecasts, including original forecast (OF), and predictions from 330 
average bias correction (AB) and weather adapted bias correction (WAB). The black line with marks 331 
“+” is the ideal flat distribution. 332 

  333 
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Table 7. MAD values between the flat distribution and rank histograms. 334 

 OF AB WAB 

MAD 0.0212  0.0124  0.0100  

In the upper panel of Figure 4, the rank histogram of original forecast (OF) has an “L” shaped 335 
distribution, which means the dominant part of ensemble members have larger prediction values 336 
than observation. The middle panel shows that the bias of prediction is effectively reduced after AB 337 
correction, producing a “U” shaped rank histogram. Nonetheless, some observations are still beyond 338 
the upper boundary of ensemble forecasts after correction, meaning that the predictions have been 339 
excessively corrected. The lower panel shows the histogram of predictions with a WAB correction. 340 
The excessive correction is mediated, and observations that fall below the lower boundary are further 341 
reduced. This improvement can also be observed from MAD values listed in Table 7. 342 

5. Conclusion and discussion 343 

In this research, an ensemble forecast system with 40 members was presented by adding initial 344 
random perturbation and multi-scheme to the GFS global forecasting fields. The forecasting system 345 
provided deterministic 70m wind speed predictions of single wind farms with a 15 min interval. This 346 
forecast results were further improved by developing a weather adapted error correction scheme, 347 
based upon the average bias correction method. The effect of correction methods were tested by 348 
ensemble forecasts from Sep. 2014 to Jan. 2015. Observations of 70m wind speed from wind towers 349 
were used as ground truth, with the same temporal resolution as the predictions. 350 

In the evaluation of the weather classification, ensemble prediction outperformed single member 351 
forecast. This is because that compared with single member forecast, ensemble forecast comes from 352 
40 different members, and tends to have a more stable performance under different weather types. 353 
This thus leads to a higher correlation between prediction error and weather type. 354 

In the assessment of ensemble prediction, the deterministic prediction and the performance of 355 
all ensemble members were tested. The weather adapted correction outperformed conventional 356 
correction in both of the above two aspects.  357 

In the AB correction method, an idealized assumption of bias accumulation was that the 6h 358 
averaged bias of prediction changes smoothly over time, while large fluctuations often occur in the 359 
practical forecast. These fluctuations would cause a deviation of bias estimation to subsequent 360 
prediction, and lead to an inadequate or excess correction. This type of bias in the correction is one of 361 
the main factors that cause an increase in sdbias. 362 

By considering the impact of different weather types on prediction errors, the WAB correction 363 
method proposed in this research estimated and corrected prediction error fluctuations caused by 364 
the development of weather processes, and reduced the inadequate or excess correction caused by 365 
sudden severe changes of 6h average prediction bias. Therefore, compared with the AB correction 366 
method, the WAB correction method improved the prediction by reducing the bias in the standard 367 
deviation of prediction.  368 

In Figure 5, four of all the 18 weather types are observed during the period of 7 days with 369 
different statistical typical errors, highlighted by different background colors. The 12th (red area, 370 
noted by WT=12 in Figure 5) weather type has a larger positive bias than the 1st (yellow area) type, 371 
which results in an overestimation of prediction bias after Oct. 15 through the bias estimation. The 372 
weather adapted correction method successfully reduced the excessive correction with respect to 373 
prediction (red line), and the WAB corrected prediction (blue line) shows an improvement compared 374 
with the AB prediction (green line).  375 
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 376 

Figure 5. Original (OF, the blue solid line) and two corrected predictions (AB, the green line and WAB, 377 
the red line) outputs and observation data (real, the black), and corresponding forecast biases (solid 378 
lines in subplot below), with weather types in each period highlighted by background color. In lines 379 
below axis, WT shows the number of each period’s weather type, and Er means the corresponding 380 
typical error of that weather type.  381 

In this research, the refined weather adapted bias correction method is based on the assumption 382 
that there is a good correlation between local near-surface wind speed in wind farms and the weather 383 
types of this area. This also forms the basis of estimating the prediction errors through mesoscale 384 
weather fields in numerical weather predictions. If the local wind speed in the wind farm has a strong 385 
local property, and is rarely influenced by background weather field, the effect of correction would 386 
nonetheless deteriorate. 387 

The sample wind farms are located in Jiangsu Province, the east coast of China, which is a flat 388 
area without complex terrain. Therefore the correlation between weather types and real wind speed 389 
is relatively clear. Similar performance of the newly developed correction method can be expected in 390 
offshore wind farms, while the effect may not be as satisfactory in mountainous areas. 391 

Supplementary Materials: The following are available online at www.mdpi.com/link, Figure S1: title, Table S1: 392 
title, Video S1: title.  393 
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Appendix A 399 

Table A1. Number of ensemble members & schemes used in multi-scheme system. 400 

MP SFC CU PBL 

14 Lin et al. 4 thermal diffusion 

scheme 

2 Kain-Fritsch, 

1 Betts-Miller, 

1 Grell-Devenyi 

1 YSU; 1 MYJ 

1 YSU 

1 YSU 

 4 unified Noah 2 Kain-Fritsch,  

1 Betts-Miller, 

1 Grell-Devenyi 

1 YSU; 1 MYJ 

1 YSU 

1 YSU 

 3 RUC 1 Kain-Fritsch,  

1 Betts-Miller, 

1 YSU 
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1 Grell-Devenyi 

 3 Pleim-Xu 1 Kain-Fritsch,  

1 Betts-Miller, 

1 Grell-Devenyi 

1 YSU 

13 WSM 3-class 

simple ice scheme 

3 thermal diffusion 

scheme 

1 Kain-Fritsch,  

1 Betts-Miller, 

1 Grell-Devenyi 

1 YSU 

 4 unified Noah 2 Kain-Fritsch, 

1 Betts-Miller, 

1 Grell-Devenyi 

1 YSU; 1 MYJ 

 3 RUC 1 Kain-Fritsch,  

1 Betts-Miller, 

1 Grell-Devenyi 

YSU 

 3 Pleim-Xu 1 Kain-Fritsch,  

1 Betts-Miller, 

1 Grell-Devenyi 

YSU 

13 WSM 6-class 

scheme 

3 thermal diffusion 

scheme 

1 Kain-Fritsch,  

1 Betts-Miller, 

1 Grell-Devenyi 

YSU 

 4 unified Noah 2 Kain-Fritsch, 

1 Betts-Miller, 

1 Grell-Devenyi 

1 YSU; 1 MYJ 

 3 RUC 1 Kain-Fritsch,  

1 Betts-Miller, 

1 Grell-Devenyi 

YSU 

 3 Pleim-Xu 1 Kain-Fritsch,  

1 Betts-Miller, 

1 Grell-Devenyi 

YSU 
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