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Abstract: 

Abstract  
Ground level ozone is a criteria air pollutant having fatal effect on human 
health and surrounding environment. Formation of ground level ozone is a 
complex photochemical phenomenon and involves numerous intricate 
factors most of which are interrelated with each other. Machine learning 
techniques can be adopted to predict the ground level ozone. The main 
objective of the present study is to develop the state-of-the-art ensemble 
bagging approach to model the summer time ground level ozone in an 
industrial area comprising a hazardous waste management facility. Factors 
such as NO, NO2 and meteorological parameters were taken into account 
while modeling the ground level ozone. Multilayer perceptron, RTree, 
REPTree and Random forest were employed as the base learners. The error 

measures used for checking the performance of each model includes CC, 
RMSE, MAE, RRSE, R2 and IA. The model results were validated against an 
independent test data set. Bagged random forest predicted the ground 
level ozone better with higher coefficient of determination 0.9432 and with 
lower error rates of RRSE = 6.357; MAE =6.5774; RAE= 0.2289. This 
study scaffolded the current research gap in big data analysis identified 
with air pollutant prediction.  
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Implications: The main focus of this paper is to model the summer time ground level O3 

concentration in an Industrial area comprising of hazardous waste management facility. 

Comparison study was made between the base classifiers and the ensemble classifiers. Most of 

the conventional models can well predict the average concentrations. In this case the peak 

concentrations are of importance as it has serious effect on human health and environment. The 

models developed should also be homoscedastic.  
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Introduction 

In the recent years, ground level ozone (O3) has become a serious concern in many countries 

across the world. Ground level O3 is a secondary pollutant that is formed when the primary 

pollutants Nitrogen Oxides (NOX) and Volatile Organic Compounds (VOCs) react in the 

presence of sunlight. NOx and Non Methane VOCs are considered to be the major precursors of 

surface level ozone and other precursors include carbon monoxide, methane and Sulphur di 

oxide. Since O3 has a long life time varying from hours to a day depending on humidity, 

temperature and air movement, it acts as a transboundary pollutant. O3 is toxic beyond certain 

level as it is a strong oxidant. It can damage the lung tissue and weaken the immune system of 

human beings (Jakab et al., 1995). It can cause impairment of rubber goods and surface coating 

of materials. O3 causes membrane damage on leaves especially in plants like bean, tobacco, birch 

etc (Chaudhary and Agrawal, 2015; Lee et al., 2017).   

The formation of O3 is considered to be a complex reaction since, the production of O3 is altered 

by the influence of solar intensity, meteorological conditions, NOX and VOC ratio and type of 

hydrocarbon (Finlayson-pitts and Pitts, 2000; Jenkin and Clemitshaw, 2002). Several researches 

have focused on identifying the factors causing O3 formation and its transport (Jana et al., 2014; 

Souza and Kova, 2016; Tony and Sexauer, 2015). Besides, recent studies have reported 

statistically strong relationship between peak O3 levels and meteorological parameters, NOX and 

VOC (Knezovic et al., 2018; Thi et al., 2017).  

Modeling of ground level O3 has been one of the notable topics during the last decade in the air 

pollution community.  Numerous approaches for predicting ground level O3 have been reported 

in literature (Lu and Wang, 2014). These approaches can be categorized as follows: traditional 

statistical approach, deterministic approach (chemistry transport models) and machine learning. 

Traditional statistical approach includes: multiple linear regression (Abdul-Wahab et al., 2005; 

Özbay et al., 2011) multiple linear regression combined with principal component analysis 

(Abdul-Wahab et al., 2005; Pavón-Domínguez et al., 2014; Rajab et al., 2013; Tan et al., 2016) 

and DAUMOD-GRS models (Pineda Rojas et al., 2016). Deterministic models include WRF 

CHEM (Hoshyaripour et al., 2016) and WRF CMAQ (Astitha et al., 2017; Hogrefe et al., 2015; 

Sharma et al., 2016; Sharma and Khare, 2017), CHIMERE (Boynard et al., 2011). With the 

development of data mining tools, machine learning techniques have gained much interest, for 

example, multilayer perceptron (Fontes et al., 2014; Kumar et al., 2017; Lu and Wang, 2014; 

Mishra and Goyal, 2016), support vector machine (Gong and Ordieres-Meré, 2016; Lu and 

Wang, 2014), Ensemble approach (Bagging) (Al Abri et al., 2015).  

The complexity of O3 formation combined with uncertainty in the measurement of parameters 

involved makes the modeling process intricate. Non linear relationship between O3 and its 
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contributing factors makes the linear models unfit (Cannon et al., 2011). Neural networks proved 

to be strong nonlinear estimators except the limitation of over fitting (Singh et al., 2013).   

In the recent years, researchers have focused on advanced models like ensemble models which 

showed better performance than standard single machine learning classifiers (Gong and 

Ordieres-Meré., 2016; Hu et al. 2018). Framing and building of ensemble models is difficult and 

hence consumes more time for training the data set, combination of base classifiers and tuning of 

parameters associated with each classifier (Lu and Wang, 2014). Ensemble classifiers proved to 

perform well when compared with single base classifiers in the sectors like banking (Erdal and 

Karahanoğlu, 2016), medical applications (Zheng et al., 2018) and, industries (Hu et al., 2018). 

Three types of ensemble methods include: bagging, boosting and stacked generalization. 

Bagging (Boot Strap Aggregating) technique was developed by Breiman (Hacer et al., 2015). 

Bagging decreases the residual error between the observed and predicted values by creating 

bootstrapped replica data sets (Friedman, 2002). Cannon et al., (2011) adopted ensemble neural 

network approach for predicting the summer season O3 levels. Ensemble neural network models 

showed 7% increase in the variance compared to multiple linear regression models. Singh et al., 

2013 used ensemble trees to predict the air quality utilizing meteorological parameters as 

estimators. Performance was checked in terms of classification as well as regression. They found 

that both bagging and boosting trees performed better than single SVM classifier. These studies 

were constrained in a way that bagging was employed with REPTree. REPTree is the default 

classifier associated with bagging. 

In this paper, the supremacy and viability of ensemble bagging classifiers over base classifiers 

such as multi layer perceptron, RTree, REPTree and Random forest for predicting summer time 

ground level O3 prediction has been presented. A comparative study was carried out to assess the 

performance of machine learning techniques using the WEKA tool kit (WEKA 3.8.2). The main 

objectives of the present study are (i) to develop ensemble bagging model to predict the ground 

level O3  concentration (dependent variable) utilizing air quality (NO, NO2) and meteorological 

parameters (temperature, solar irradiance, relative humidity, wind speed and wind direction) as 

the independent variables and (ii) to evaluate the capability of each modeling method. A 

comparative analysis is provided to assess the performance of ensemble bagging classifiers and 

single classifier in predicting O3 concentration. 

Ensemble Method 

 

Bagging 

 

For a regression problem bagging works as follows (Hacer et al., 2015):  
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A training set D consists of data {(Xi, Yi) i=1, 2…, n} where Xi is a realization of a multi-

dimensional predictor variable and Yi is a realization of a real-valued variable. A predictor 

��|� = �� = ���� is denoted by  

	
	��� = ℎ
��, …
����                                                (1) 

Bagging is explained as follows:  

Step 1: Create a bootstrapped sample 

         �∗ = ���∗, ��∗�                                                           (2)                           

According to the empirical distribution of the pairs Di = (Xi,Yi) where (i=1,2,…,n). 

	
∗��� = ℎ
��∗, … , 
∗����                                               (3) 

Step 2: Assess the bootstrapped predictor by the plug-in-principle, where Cn(x)=hn(D1…,Dn)(x) 

Finally the bagged predictor is 

	
:���� = �|
∗���|                                                          (4) 

The procedure for the model development of ensemble bagging trees is shown in Figure 1. 

Figure 1 here 

Data Collection and Data Preprocessing 

 

Data Collection 

An industrial site at Gummidipoondi town with geographical position of 13.4069°N and 

80.1103°E and located 45 km north of Chennai city, Tamilnadu was chosen for ozone 

measurements. The industrial complex in which the study area is located comprises of steel, 

chemicals, Auto ancillary, auto components and plastic industries. In particular, the monitoring 

location is nearby a hazardous waste management facility which includes an incinerator and a 

landfill. In addition, Asian Highway 45 (AH 45) is at a distance of 500 m from the study location 

and is illustrated in Figure 2. Hazardous waste landfill facility has a storage facility wherein 

hazardous wastes such as solvents, flammables, explosives etc. were stored. These wastes acted 

as key source of VOCs in addition to the VOCs emanating from landfill. NOX is produced 

mainly from the trucks moving inside the industrial area and other vehicles plying on AH 45 

road. Hence it would result in large concentration of O3 at the study area.  

Figure 2 here 

 O3 42 M analyzer was used to measure the ozone concentration at the site. O3 analyzer was 

installed in an existing building at the site. The inlet tube of the O3 analyzer was open to the 

atmosphere outside the building at a height of 3m. NOX measurements were done using 32M 

NOX analyzer, which was kept besides the O3 analyzer. NOX  analyzer uses the principle of 

chemiluminiscence. The gas measurements were recorded every 15 minutes to depict the O3 
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variation. Furthermore, meteorological parameters were also measured by using Spectrum 

Watchdog 2000 series weather station model 2900ET.  

Continuous measurements of all parameters namely O3, NO, NO2, meteorological parameters 

were made during the period between Jan 2016 and Dec 2016 except during the maintenance of 

the analyzers. There were a total of 8278 instances recorded during the entire study period. The 

ensemble classifiers were trained for predicting the summer time data (March to May) of 2130 

instances.   Trials were conducted to evaluate the performance and suitability of different 

classifiers for the dataset. Summary statistics of the data set are shown in Table 1. Further, the 

box plot of NO, NO2, O3 is shown in Figure 3 (a) and hourly variation of meteorological 

parameters across the time period is shown in Figure 3 (b). 

Figure 3 here 

In the present study, prediction of surface ozone concentrations was carried out using data 

mining algorithms. The process was instigated using machine learning open-source software 

WEKA 3.8.2. Two types of data analysis exist: classification and prediction. Models are built 

based on the information obtained from important attribute classes.  Meta - Bagging classifier is 

used for the present study. Both explorer and experimenter environments in WEKA were used 

for the data analysis.  

Bagging algorithm, which is considered to a prevalent ensemble learning method was used to 

predict the O3 concentration. Instance based machine learning classifiers such as decision stump, 

Rtree and Reduced error pruning tree, random forest, MLP and SMOreg were employed as the 

base learner.  

Table 1 here 

Data preprocessing 

 

Data preprocessing is an essential stage in obtaining the final data set which can be used for 

further data mining (García et al., 2015). There were missing values and outliers in the data set, 

which were recorded during the malfunctioning of analyzers, during high temperatures and 

clogging of filter paper. In order to remove these outliers, data preprocessing techniques such as 

“interquartile range for attributes” and “remove with values for instances” were adopted. Wind 

direction is considered as one of the attribute for predicting the O3 concentration and was 

measured with reference to 360° on the compass (true North) in a clockwise direction. The data 

possess 0° and 360° which will be considered as different values by the algorithm. Thus to avoid 

such mistake, wind speed and wind direction were combined together. Sine and cosine functions 

of the wind direction were calculated and replaced with wind direction. Attribute selection was 

done using filters such as CfssubsetEval (Best first and Greedystepwise), Principal components 
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and ReleifFattributeEval. It was observed that there was no improvement in the prediction 

accuracy. Rather the values of error measures deteriorated through the application of filters as it 

resulted in the loss of input information. 

Performance indices 

The indices used for analyzing the performance of analyzers are as follows: Correlation 

Coefficient (CC), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Relative 

Absolute Error (RAE), Root Relative Squared Error (RRSE), R2 and Index of Agreement (IA).  

���� =		�∑ �������� !�"#

                                                    (5) 

�$� =	 �
∑ %&�' − )'% = 	 �

'*� ∑ |+�|	
'*�                             (6) 

		 = 	 
∑�������∑����∑���	�
�
�∑�� ���∑��� �
,∑��� -��∑���� 

                              (7) 

 �$� = ∑ %�����	�����%!�"#
∑ %���./%!�"#

                                                       (8) 

 ���� = ∑ ������������ !�"#
∑ ����./� !�"#

                                                   (9) 

  0$ = 1 − 2 ∑ �������� !�"#
∑ 3%����./%4%���./%5 !�"#

6                                 (10) 

Where, P(ij) is the predicted value, Oj is the observed value, µo is the mean of the observed 

values, n= number of pairs of data, ei is the absolute error. 

Model Building 

 

Initially, data set was tested using conventional multiple regression techniques combined with 

PCA. These methods are highly data dependent. For the present data set, the prediction was 

relatively poor using the multiple linear regression. Since the error measures obtained from the 

above method are RAE =69.21% and RRSE= 73.44%, the prediction is relatively poor as is 

evident from the Figure 4.  In the next phase, machine learning techniques were used to improve 

the prediction of peak O3 concentration. Supervised classification was used and classifiers 

employed for the study include: Function (linear regression, Multilayer Perceptron, RBF-

Network, SMOreg); Lazy (IBK, Kstar, LWL); Meta (additive regression, bagging, Random-

Subspace); Rules (M5Rules); Trees (REPTrees, Random forest, Decision-Stump and M5P). The 
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parameters for each classifier were optimized and over fitting was avoided by using k fold cross 

validation. Ten fold cross validation was used to create the models. This involves splitting the 

dataset into ten equal subsets and using nine subsets as training data and one as test data. The 

procedure was iterated 10 times so that every subset was utilized as test data once. The final 

model was then the average of the 10 iterations.   

Figure 4 here 

Most of the above mentioned classifiers were able to predict the lower concentration values well 

but the prediction for high concentrations were relatively poor. The main objective of the present 

study is to predict the peak values of O3, as it can pose health risk to the workers in the 

surrounding areas and not the time series analysis of O3. High levels of O3 were recorded during 

the summer season (March 2016- May 2016).  Back trajectory analysis using HYSPLIT was 

carried out (shown in Figure 5) and it proved that during the summer months, the air mass had 

marine origin and was relatively clean. Hence the high concentration of O3 observed was 

assumed to be mainly due to the photochemical reaction of the precursors present in-situ and 

local transportation. The time dependent analysis was not helpful in improving the prediction 

accuracy. 

In order to quantify the performance of the ensemble models in predicting peak O3 

concentrations, the error measures for the values greater than 180 µg/m3 of observed O3 

concentration were also considered. The peak O3 levels were further evaluated manually by 

calculating the error in the predicted peak values. The performance of the classifier was 

estimated based on the number of peaks predicted within certain error ranges. The percentage of 

errors considered in this study was 5%, 10%, 15 % and 20%. 

Figure 5 here 

Results and Discussion 

The formation of ensemble consists of two steps, namely, creation of individual ensemble 

members and appropriately consolidates the output from the individual ensemble learners. In the 

present study, ensemble learning approach, in particular, boot strap aggregating (bagging) was 

utilized. The base learners selected for the present study are MLP, RTree, REPTree and random 

forest. To reduce the impact of the variability of the training set, the experiments were repeated 

hundred times. Each time, all algorithms were trained on the same portion of the training data 

and evaluated on the same test data.  Initially, runs were performed with default parameters and 

optimized results were not obtained. Hence, selection of optimal parameters becomes important 

for better prediction of O3 using both bagging and base learners.  The parameters associated with 

bagging technique are number of iterations and bag size percent. In the present study, the number 
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of iterations was chosen as 100, 200, 300, 400 and 500 and the size of bag as 60%, 70%, 80%, 

90% and 100%. By default, the number of iterations is 10 and bag size is 100%. For all the 

models, the number of seed was taken as 1.  

R2 value was used to check the goodness of the fit and the relationship present in the data. Also, 

this error measure outlines the degree of descriptiveness of the regression model. For each 

model, improvement in R2 values is shown in Figures 6 (a) – (d). Optimum parameters for 

bagging were selected as the one which had R2 value close to unity and other error measures 

close to zero.  

Figure 6 here 

By simultaneously tuning the parameters in bagging as well as base learner, the improvement in 

R2 values were 30.6%, 7.38% and 13.08% for RTree, REPTree and random forest, respectively. 

The performance of the optimized models were analyzed using CC, MAE, RRSE, RAE and IA 

evaluation criteria as shown in Figures 7 (a) – (e). The distributions of the observed and the 

predicted concentrations are shown as box plot in Figure 8. In Figure 8, the square box indicates 

the median, the horizontal line at the top and bottom indicate the maximum and minimum value 

and ‘x’ depict the 1st and 99th percentiles. The skewness of the actual and the predicted data were 

analyzed for all the methods and were found to be positively skewed. 

Figure 7 here 

Figure 8 here 

To check the statistical significance among the prediction models, Wilcoxon signed-rank test 

(two- tailed test at 95% confidence level) was carried out. It is to be noted that the Wilcoxon 

signed rank test was not impacted by the outlier data points. The results of the Wilcoxon signed-

rank are shown in Table 2. The test results shown in Table 2 indicated that RTree, REPTree and 

bagged RTree models follow similar trend. Bagged random forest model predicted both peak and 

low values accurately.  

Table 2 here 

The scatter plots of the observed and the predicted O3 concentrations are shown in Figures 9 (a) – 

(h).  From Figures 9 (a) – (h), it can be observed that the bagged random forest model performed 

better compared to other models. Figures 9 (a) - (h) confirms that the predicted peak value points 

remained fairly constant between the base classifiers except for random forest. There was a big 

shift in values close to the 45° line in the bagged REPTree and bagged random forest classifiers, 

but the majority of the peak values remain unchanged in ensemble MLP and RTrees classifiers. 

Also, the variance around the regression line is same for all the data points in case of bagged 

random forest (Figure 9 (h)), hence the model is homoscedastic for entire range of data. When 

compared with the other models, the ensemble random forest performed well, with R2 value of 
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0.9432. From Figure 9 (g), it can be observed that Bagged REP tree predicted the peak values 

well but the model is heteroscedastic, i.e., it performs well only in a particular range of data. 

Hence, bagged REP tree model was checked with specified range of data. It was found once 

again to be heteroscedastic and hence, not suitable for prediction of O3.  

Figure 9 here 

The ensemble random forest model produced marginally better performance across the entire 

data set and much better prediction of peak O3 concentration (Table 3). Considering the entire 

data set, bagged random forest model experienced up to 70.66% reduction in RMSE value 

among the ensemble models. RTree performed better than the bagged RTree with lower error 

rate and higher coefficient of determination. 

Table 3 here 

Peak flow performance was further confirmed by manually determining the error rates of each 

peak within the dataset (shown in Table 3). Peak values (greater than 180 µg/m3) were 

determined manually producing results which confirmed the performance of each classifier. The 

increased performance of ensemble models was further confirmed by manual peak calculations 

(Table 4). Sixteen peaks with less than 10 % error in the bagged random forest model indicate 

very high performance, and this result is the major difference between the bagged random forest 

and the bagged REPTree results. 

Table 4 here 

To check the performance of the bagged random forest classifier, independent data set which 

was included in training phase was used.  The data set included 10 days hourly data (240 

instances) measured during the summer season. Initially, the test data set was subjected to 

preprocessing techniques. The prediction of ground level O3 by ensemble models is shown in 

Figure 10. It is evident from Table 4 that the bagged random forest predicted better with 

increased correlation coefficient and decreased values of other error measures such as CC, MAE, 

RRSE, RAE, R2 and IA. Similar results were reported by Erdal and Karahanoğlu, 2016 and 

Nawahda, 2016 . From Figure 10, it is evident that there were less predictions of under 

estimations and over estimations. Also, the peak values which are the key focus of this study are 

predicted well within 5% error range. Hence bagged random forest model proved to be effective 

and reliable method for predicting the ground level O3 concentration. It is to be noted, that the 

execution of these models is subject to the data set that it is applied to. 

The O3 measurements tend to have lot of noise and the noises disrupted the training data for 

building the model. Bagging helped to reduce such noises present in the data. Bagging trains a 

large number of strong learners in parallel and finally merges the output of all the strong learners 

Page 11 of 34

http://mc.manuscriptcentral.com/jawma  Email: journal@jawma.org

Journal of the Air & Waste Management Association

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

together so as to smooth out their predictions. Due to the above procedure, it endeavors to avoid 

the problem of over fitting linked with classifiers such as MLP. 

Figure 10 here 

Conclusion 

The objective of the present study was to accurately predict the summer time ground level O3 

concentration in an industrial area in Chennai, Tamilnadu. The data set included hourly averages 

of O3, and NO, NO2 and meteorological parameters such as relative humidity, temperature, solar 

irradiance, wind speed and wind direction. Single base classifiers and ensemble classifiers were 

employed for the prediction of O3 concentration observed during the summer season. In addition, 

the performance was checked against multiple regression model combined with PCA. It was 

found that most of the models developed were heteroscedastic. The ensemble classifiers yielded 

better results than the base classifiers and also had better accuracy in predicting both low as well 

as high concentration of O3. Bagged random forest performed better than the other methods such 

MLP, RTree and REPTree. The developed bagged random forest model was homoscedastic and 

showed lower values of RAE, MAE, RRSE and higher values of CC and IA compared to the 

traditional methods such as MLP. These models can be used as tools while framing ozone 

control strategies and setting O3 standards.  Ensemble approach reduces the bias by effectively 

using the training data set. Also, it lowers the variance by combining the outputs multiple times 

from the same learning method.  
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Table 1. Statistic summary of the attributes for the prediction of ground level O3 concentration 

during the study period 

Attribute Statistics Summary (Training Set)  

 (1890 records) 

Statistics Summary (Test Set)                             

(240 records) 

  

 Min Max Mean Std. dev Min Max Mean Std. dev 

         

O3 (µg/m3) 0.016 497.232 25.3383 35.8386 0.024 398.928 23.713 27.963 

Relative 

humidity 

(%) 

24.53 99.07 82.128 17.78 21.5 99.1 77.7 15.8 

Temperature 

(oC) 

22.99 40.59 33.019 2.60 21.5 40.3 30.2 2.8 

Wind speed 

(mph) 

0.21 4.04 1.36 0.621 0.15 4.5 1.9 0.7 

Wind 

direction 

(degrees) 

0 358 142.16 101.32 0 355 169 83 

Solar 

radiation 

(W/m2) 

0 933.5 196.69 265.5 0 924.9 173.83 172.6 

NO (µg/m3) 11.56 335.48 69.75 37.36 8.47 261.8 18.8 35.9 

NO2 (µg/m3) 1.97 452.52 72.48 42.36 1.42 378.2 20.53 44.74 
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Table 2. Wilcoxon signed rank test for base classifiers and bagged classifiers 

 

MLP Rtree 
REPTre
e 

Random 
forest B-MLP B-Rtree 

B-
REPTre
e 

B-
Random 
forest 

 
        

MLP 
        

Rtree -13.036*      
  

REPTree -11.5* -7.967     
  

Random 
forest -10.396* -9.394* -2.946*    

  

B-MLP -12.141* -2.553* -8.498 -11.095   
  

B-Rtree -10.731* -7.071* -0.073 -2.552* -8.173  
  

B-REPTree -10.596* -7.397* -1.389 -1.489 -11.67 0.99* 
  

B-Random 
forest -9.579* -8.994* -4.038* -4.519* -12.662 -4.04* -3.319* 

 

*significant at 0.05 level 

Table 3. Performance of models for entire data set and peak values (>180 µg/m3) in terms of 

RRSE and R2
 

 Entire Dataset  Peak Values       
(>180 µg/m3) 

 RRSE R2 prediction 
with error 
<10% 

RRSE R2 

MLP 23.4372 0.6159 155 8.804 0.4385 
RTree 13.8421 0.6351 366 8.633 0.5608 
REPTree 10.4818 0.7794 432 8.521 0.5285 
Random forest 10.437 0.7896 427 7.47 0.44 
B-MLP 10.3526 0.7872 355 7.815 0.5331 
B-RTree 10.8496 0.7761 398 7.646 0.5696 
B-REPTree 8.3353 0.8371 421 6.354 0.5342 
B-Random 
forest 

6.3571 0.9432 588 1.8196 0.5991 
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Table 4. Error measures for peak values of O3 (>180 µg/m3) 

 Single  Ensemble 

 <1% <5% <10% <20%  <1% <5% <10% <20% 

MLP 0 3 10 15  0 7 12 22 

RTree 4 11 16 25  2 8 18 24 

REPTree 1 6 12 18  3 4 10 18 

Random forest 1 11 16 22  2 15 19 29 

 

Table 5. Performance of the Bagging classifier for predicting ground level O3 concentration 

using a test dataset 

Classifier Training data Test Data 

 CC MAE RRSE RAE R2 IA CC MAE RRSE RAE R2 IA 
             

B-MLP 0.8873 10.3418 10.3526 0.36 0.7872 0.94 0.7948 13.4157 10.4372 0.857 0.6419 0.75 

B-RTree 0.881 10.8396 10.8496 0.3773 0.7761 0.93 0.8969 13.83 13.8421 0.4813 0.5987 0.84 

B-REPTree 0.9142 23.4158 8.3353 0.3645 0.8371 0.95 0.8729 10.472 10.4818 0.3645 0.7959 0.85 

B-Random 
forest 

0.9711 6.5774 6.3576 0.2286 0.9432 0.98 0.9422 10.427 10.437 0.3629 0.8321 0.89 
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Caption for Figures 

Figure 1. Model development procedure of ensemble bagging tree 

Figure 2. Map of the study location 

Figure 3. (a) Box plot variation of NO,NO2 and O3 across the study period (b) Hourly 

variation of relative humidity, temperature and wind speed 

Figure 4. Scatter plots of observed vs. predicted ozone in case of multiple linear 

regression combined with principal component analysis 

Figure 5. seven days air mass back trajectory using HYSPLIT reaching the monitoring 

location 

Figure 6.  Improvement of R2 statistic for various iteration and cluster size in case of  (a) 

MLP (b) RTree (c) REPTree (d) random forest 

Figure 7. Performance comparison of single models and ensemble models in terms of 

(a) CC (b) RRSE (c) MAE (d) RAE (e) IA 

Figure 8. Box plot representation of observed vs. predicted concentration for different 

models 

Figure 9. Scatter plots of observed vs. predicted ozone for (a) MLP (b) bagged MLP (c) 

RTree (d) bagged RTree (e) REPTree (f) bagged REPTree (g) random forest (h) 

bagged random forest 

Figure 10. Prediction of hourly O3 concentration using single classifier and ensemble 

classifier for independent data set. (Plot is shown for 1 day for clear understanding) 
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Figure 1. Model development procedure of ensemble bagging tree 
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Figure 2. Map of the study location 
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Figure 3. (a) Box plot variation of NO,NO2 and O3 across the study period (b) Hourly 

variation of relative humidity, temperature and wind speed 
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Figure 4. Scatter plots of observed vs. predicted ozone in case of multiple linear 

regression combined with principal component analysis 

 

Page 24 of 34

http://mc.manuscriptcentral.com/jawma  Email: journal@jawma.org

Journal of the Air & Waste Management Association

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

 

Figure 5. seven days air mass back trajectory using HYSPLIT reaching the monitoring 

location 
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Figure 6.  Improvement of R2 statistic for various iteration and cluster size in case of  (a) 

MLP (b) RTree (c) REPTree (d) random forest 
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Figure 7. Performance comparison of single models and ensemble models in terms of 

(a) CC (b) RRSE (c) MAE (d) RAE (e) IA 

 

 

Figure 8. Box plot representation of observed vs. predicted concentration for different 

models 
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Figure 9. Scatter plots of observed vs. predicted ozone for (a) MLP (b) bagged MLP (c) 

RTree (d) bagged RTree (e) REPTree (f) bagged REPTree (g) random forest (h) 

bagged random forest 

 

Page 34 of 34

http://mc.manuscriptcentral.com/jawma  Email: journal@jawma.org

Journal of the Air & Waste Management Association

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

 

Figure 10. Prediction of hourly O3 concentration using single classifier and ensemble 

classifier for independent data set. (Plot is shown for 1 day for clear understanding) 

 

 

 

 

 

 

 

 

 

 

Page 35 of 34

http://mc.manuscriptcentral.com/jawma  Email: journal@jawma.org

Journal of the Air & Waste Management Association

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


