

Performance of WRF Large-Eddy Simulations in summertime CBL characteristics over the Taklimakan Desert: A Real Test Case

Journal:	Journal of Meteorological Research (JMR)	
Manuscript ID	ACTA-E-2018-0001.R2	
Manuscript Type:	Original Article	
Date Submitted by the Author:	15-Jul-2018	
Complete List of Authors:	Xu, Hongxiong Wang, Minzhong Wang, Yinjun; Chinese Academy of Meteorological Sciences, State Key Laboratory of Severe Weather	
Keywords:	WRF, Large Eddy Simulation, Convective Boundary Layer, Taklimakan	
Speciality:	y: Large Eddy Simulation, Convective Boundary Layer	

SCHOLARONE™ Manuscripts

1	Performance of WRF Large Eddy Simulations in modeling the			
2	convective boundary layer over the Taklimakan Desert, China			
3				
4				
5	Hongxiong Xu ¹ , Minzhong Wang ¹²⁴ , Yinjun Wang ¹ , Wenyue Cai ¹³			
6				
7	1 State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences			
8	Beijing, China 100081			
9	2 Institute of Desert Meteorology, CMA (Chinese Meteorological Administration),			
.0	Urumqi, China			
1	3National Climate Center, Chinese Meteorological Administration,			
12	Beijing, China 100081			
13	4 Taklimakan Desert Atmospheric Environment Observation Experimental Station, Tazhong 841000,			
4	China			
L 5				
16	Submitted to Journal of Meteorological Research			
17	January 2, 2018			
18	Corresponding author:			
<u> 1</u> 9	Dr. Minzhong Wang			
20	Institute of Desert Meteorology,			
21	CMA (Chinese Meteorological Administration),			
22	No. 46, Zhongguancun South Street, Haidian District, Beijing			
23	P. R. China, 100081			
24	Email: wangmz@idm.cn			
25	dorn1984@163.com			
6				

Abstract

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

The maximum height of the convective boundary layer (CBL) over the Taklimakan Desert can exceed 5000 m during the summer and has a crucial role in simulating the regional circulation and weather. We combined Weather Research and Forecasting Large Eddy Simulations with data from Global Positioning System (GPS) radiosondes and eddy covariance stations to evaluate the performance of the model in predicting the characteristics of the deep convective planetary boundary layer over the central Taklimakan Desert. The model reproduced the evolution of planetary boundary layer processes reasonably well, but the simulations predicted warmer and more moist conditions than the observations as a result of the over-prediction of surface fluxes and large-scale advection. Further simulations were performed with multiple configurations and sensitivity experiments. The sensitivity tests for the lateral boundary conditions (LBCs) showed that the model results are sensitive to changes in the time resolution and domain size of the specified LBCs. A larger domain size varies the distance of the area of interest from the LBCs and reduces the influence of large forecast errors near the LBCs. Comparing the model results using the original land surface parameterized sensible heat flux with the Noah land surface scheme and those of the sensitivity experiments showed that the desert CBL is sensitive to the sensible heat flux produced by the land surface scheme during daytime in summer. A reduction in the sensible heat flux can correct overestimates of the potential temperature profile. However, increasing the sensible heat flux significantly reduces the total time needed to increase the CBL to a relatively low altitude (<3 km) in the middle and initial stages of the development of the CBL rather than producing a higher CBL in the later stages. Keywords: Weather Research and Forecasting Model, Large Eddy Simulations, convective

48 I

boundary layer, Taklimakan Desert

50

1 Introduction

The Taklimakan Desert in south-central Xinjiang Province, China is the world's
second-largest flow desert and has a profound influence on the regional weather and climate.
As a result of the extreme range in near-surface temperatures, the planetary boundary layer
(PBL) in this region commonly reaches 4-6 km in height during the boreal summer (Wang et
al.), the deepest on Earth. This deep PBL, which is significantly higher than that over the
surrounding mountains and oases, plays an important role in the regional circulation and
weather. The accurate forecast of PBL processes over the Taklimakan Desert is an important
problem in northwest China.
The atmosphere over large deserts (such as the Sahara and Taklimakan deserts) is a key
component in the Earth's climate system. Surface heating from intense solar radiation leads to
the development of a near-surface, low-pressure thermal system, commonly referred to as a
the development of a near surrane, is in pressure intimar system, venturely referred to as a
heat low (Engelstaedter et al. 2015). However, despite the vital role that deserts have in the
heat low (Engelstaedter et al. 2015). However, despite the vital role that deserts have in the
heat low (Engelstaedter et al. 2015). However, despite the vital role that deserts have in the Earth's climate system, observations are extremely sparse and the available data are usually
heat low (Engelstaedter et al. 2015). However, despite the vital role that deserts have in the Earth's climate system, observations are extremely sparse and the available data are usually obtained from surrounding areas (Marsham et al. 2011). This lack of observational data has
heat low (Engelstaedter et al. 2015). However, despite the vital role that deserts have in the Earth's climate system, observations are extremely sparse and the available data are usually obtained from surrounding areas (Marsham et al. 2011). This lack of observational data has restricted the development of our understanding of deserts and has led to large discrepancies
heat low (Engelstaedter et al. 2015). However, despite the vital role that deserts have in the Earth's climate system, observations are extremely sparse and the available data are usually obtained from surrounding areas (Marsham et al. 2011). This lack of observational data has restricted the development of our understanding of deserts and has led to large discrepancies in analyses and significant biases in operational numerical weather prediction (NWP) models.
heat low (Engelstaedter et al. 2015). However, despite the vital role that deserts have in the Earth's climate system, observations are extremely sparse and the available data are usually obtained from surrounding areas (Marsham et al. 2011). This lack of observational data has restricted the development of our understanding of deserts and has led to large discrepancies in analyses and significant biases in operational numerical weather prediction (NWP) models. The ability of local models to simulate real-world examples is often hindered by a lack of data
heat low (Engelstaedter et al. 2015). However, despite the vital role that deserts have in the Earth's climate system, observations are extremely sparse and the available data are usually obtained from surrounding areas (Marsham et al. 2011). This lack of observational data has restricted the development of our understanding of deserts and has led to large discrepancies in analyses and significant biases in operational numerical weather prediction (NWP) models. The ability of local models to simulate real-world examples is often hindered by a lack of data with which to assess the performance of the model (Garcia-Carreras et al. 2015).

Administration, Urumqi (Liu et al. 2012; Wang et al. 2016a; Wang et al. 2016b). These data will allow the evaluation of the performance of the deep PBL process in NWP models over the Taklimakan Desert.

- The motion of the atmosphere interweaves small-scale, complex interactions with multiscale nonlinear interactions. As a result of their limited resolution in both time and space, mesoscale atmospheric models are unable to represent all these processes (Talbot et al. 2012), which include turbulent motion on a scale that is too small to be resolved by simplified processes in atmospheric models. Turbulent mixing throughout the PBL can have a large impact on forecasts by NWP models (Shin; Hong 2011; Shin; Hong 2015).
- Complex turbulent flows in NWP models can be analyzed by large eddy simulation (LES) techniques, which can explicitly resolve the energy-containing turbulent motions responsible for turbulent transport (Moeng et al. 2007). LES techniques have been used intensively to examine the detailed structure of turbulence, to generate statistics and to study physical processes (Garcia-Carreras et al. 2015; Heinold et al. 2013; Heinold et al. 2015; Heinze et al. 2015; Sun; Xu 2009). However, most applications of LES techniques to the PBL have been limited to idealized physical conditions. Recently, some studies have attempted to test and assess the performance of LES in simulating real-world case studies (Liu et al. 2011; Talbot et al. 2012). Liu et al. (2011) suggested that the Weather Research and Forecasting Large Eddy Simulation (WRF-LES) is a valuable tool with which to simulate real-world microscale weather flows and to develop real-time forecasting systems, although further modeling to determine the accuracy of synoptic forcing and the effect of resolution has been highly recommended. Talbot et al. (2012) suggested that the ability of WRF-LES to simulate

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

real-world examples is hindered by a lack of favorable synoptic forcing. The initial and lateral boundary conditions (LBCs) were found to be more important in the LES results than subgrid-scale turbulence closures. Thus the LBCs can significantly alter the status of high-resolution LESs via inflow boundaries (Rai et al. 2017).

Most of the LES research over desert regions has been limited to idealized physical conditions (Garcia-Carreras et al. 2015) or conducted outside the Taklimakan Desert (Liu et al. 2011; Talbot et al. 2012). The aim of this study was to apply LES to a real example of a deep convective boundary layer (CBL) over the Taklimakan Desert. An important aspect of this work is to assess the skillfulness of the WRF-LES in simulating real examples of deep desert PBL processes at a relatively coarse resolution (333 m) over the Taklimakan Desert during the boreal summer. We first use a combination of the WRF-LES and Global Positioning System (GPS) radiosonde and surface fluxes over the central Taklimakan Desert calculated using an eddy covariance method to evaluate the performance of the WRF-LES in a real-world example. We then assess the potential errors related to the LBCs. One of our aims is to evaluate the relative contribution of uncertainties in the surface model to the typical behavior of PBL processes by conducting sensitivity experiment. We therefore studied the sensitivity of the model performance to the surface sensible heat flux. Section 2 gives a brief description of the synoptic conditions of the case study and describes the data, model configuration and design of the numerical experiments. The results of the numerical simulations are presented in Section 3 and our conclusions are summarized in Section 4.

2 Methods

2.1 Model configuration

117	We used version 3.8.1 of the WRF model (Skamarock et al. 2008) at a sub-kilometer
118	resolution to simulate an extreme CBL over the Taklimakan Desert. The model is integrated
119	for 12 h, starting from 0800 BJT (Beijing Time) on 1 July 2016. We use one-way nested
120	WRF model from the mesoscale down to LES scales. All the domains consist of 51 levels
121	extended to 50 hPa. The altitudes for the lowest 20 levels are 1130.473, 1157.705, 1207.765,
122	1294.703, 1423.873, 1591.895, 1795.526, 2021.868, 2272.33, 2558.433, 2882.675, 3248.113,
123	3658.499, 4118.481, 4633.882, 5212.111, 5855.802, 6517.111, 7151.295 and 7757.151 m and
124	the horizontal spacing of the model is 12, 3, 1 and 0.33 km for d01, d02, d03, and d04. We
125	used (411 \times 321), (791 \times 651), (211 \times 201) and (403 \times 406) model grids. Figure 1. shows
126	the domain used for all the experiments except BDY_T3. A smaller grid size (205 \times 208) is
127	used in experiment BDY_T3 to verify the effect of domain size on the LES.
128	The initial and LBCs are provided at the coarsest mesoscale simulations from the
129	National Centers for Environmental Prediction Global Data Assimilation System Final
130	Operational Global Analyses dataset. The analyses are $0.25^{\circ} \times 0.25^{\circ}$ grids operationally
131	prepared every six hours and available on the surface and at 32 mandatory (and other pressure)
132	levels from 1000 to 10 mbar (National Centers for Environmental Prediction 2015).
133	The physical options in the model include the WSM5 microphysics scheme (Hong; Lim
134	2006), the Yonsei University PBL scheme (Hong; Pan 1996), the Kain-Fritsch cumulus
135	parameterization scheme (Kain 1993; Kain 2004), the rapid update cycle (RUC) land surface
136	model (Smirnova Tatiana et al. 2000; Smirnova et al. 1997), the rapid radiative transfer model
137	(Mlawer et al. 1997) at long wavelengths and the Dudhia shortwave radiation scheme
138	(Dudhia 1989). The cumulus parameterization scheme is only applied to the d01 (12 km) grid

domain to parameterize the convective rainfall and the LES is only applied to d04 (0.333 km).

Table 1 lists the experiments. Experiment 1 was the control experiment, denoted as CTRL. Experiments 2 (six-hourly updated LBC; denoted BDY_T2) and 3 (with domain sizes 205 × 208, denoted BDY_T2) were conducted as in the CTRL experiment, but with different domain sizes and frequency of LBC updates. In experiments 4 (HFX_%75) and 5 (HFX_%125), the sensible heat flux was reduced to 75 and 125%, respectively, of that in the CTRL experiment in the RUC land surface scheme to highlight the impact of the sensible heat flux on the deep CBL in the Taklimakan Desert. In experiment 6 (denoted Noah), the Noah land surface model (Chen; Dudhia 2001a, 2001b) replaced the RUC land surface model in the CTRL experiment to discriminate the influence of different land surface models on the deep CBL.

2.2 Data

The model simulations are compared with the Tazhong field experiment carried out throughout the month of July 2016 by the Institute of Desert Meteorology, Chinese Meteorological Administration, Urumqi. The main station was located at (86.63° E, 39.03° N). The location is relatively flat with few hills and is covered by sand combined with grass (Figure 1. c). The deep PBL in our simulation was under a cloudless sky in a dry environment.

The surface fluxes were measured by an eddy correlation system using an R3-50 supersonic anemometer developed by Gill (UK) deployed at a height of 10 m. The frequency of data acquisition was 20 Hz and the surface sensible heat flux was calculated by the eddy covariance method.

The vertical profiles were measured using soundings. Upper air soundings of the temperature, pressure, humidity, and wind speed and direction were conducted three to six times per day with the CASIC23 GPS sounding system developed by the No. 23 Institute of China Aerospace Science & Industry. The sounding times were 01:15, 07:15, 10:15, 13:15, 16:15 and 19:15.

2.3 Synoptic patterns

Figure 2 shows the synoptic patterns at 0800 BJT on 1 July 2016 at 850, 700, 500 and 100 hPa. There were cyclonic vortexes from 850 to 500 hPa centered at 55° N (Figure 2. a, b and c). The Taklimakan Desert was located east of the cyclonic vortex and embedded in an east—west elongated ridge at 0800 BJT on 1 July 2016. To the southwest, influenced by the South Asian High centered over the eastern Iranian Plateau, the upper air over the Taklimakan Desert was controlled by the westerly jet stream at 100 hPa (Figure 2. d). A low-pressure system at low levels, termed a heat low (Figure 3.), dominated most of southern Xinjiang and resulted in continuous high temperatures over the desert. This situation favored subsidence and served as a triggering mechanism for the deep PBL in the region in the subsequent two to three days (not shown).

3 Results

3.1 Validation of the deep CBL structure

The time series of the surface variables at Tazhong station from the CTRL simulation for 1 July 2016 are presented in Figure 4. a and b. The results show that there are large discrepancies in the thermodynamic surface variables (surface temperature and the sensible and latent heat fluxes) between the model and the observations. The surface sensible heat flux

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

is far lower in the observations (maximum 243 W m⁻²) than in the model (maximum 613 W m⁻²), indicating that the sensible heat flux from the WRF simulation is 2.5 times than that of the observations when they are both at their maximum. By contrast, the model shows a significant cold bias for the surface temperature, which is much higher in the observations (maximum 70°C) than in the model (maximum 50°C). To further verify the surface variables, the root-mean-square error (RMSE) and mean bias (BIAS) are calculated including integration hours from 3 to 12 h for Tazhong station (Table 2). The model significantly overestimates the sensible heat flux (RMSE 263.636 W m⁻², BIAS:250.14 W m⁻²) and dramatically underestimates the surface temperature (RMSE 14.65°C, BIAS –13.37°C). There are two possible reasons for the model sensible heat flux being far greater than that of the observations. First, mismatches in land use between the model and the observations. The WRF models uses land use categories to assign static parameters and initial values to each grid cell (e.g. the albedo and surface roughness; Schicker et al. 2016). However, Figure 1. c shows that station EC is surrounded by a mixture of grass and sand. This complex underlying surface may not be adequately reproduced by the model and may have an impact on the overestimation of the sensible heat flux. Second, the sensible heat flux and the latent heat flux based on the eddy correlation method may be underestimated (LeMone et al. 2013). It has been shown that if the other two terms in the budget (the net radiation and flux into the soil) are accurate, then the data used for the whole experiment to find the sensible and latent heat fluxes for Tazhong station are, on average 75%, of the values required to balance the surface energy budget.

In contrast with the large differences in the surface variables between the model and the
observations, the near-surface variables (the 2 m temperature, the relative humidity) and the 10
m wind speed; Figure 4. e, f and g) in the model are higher than in the observations. The time
series evolution of the 2 m temperatures follow those of the observations (RMSE 1.66, BIAS
1.61), but the model produces a surface warmer by about 3 K at the beginning of integration
and 1 K when the model and observations both reach their maximum temperature.

The results indicate that the near-surface relative humidity in the model is close to the initial observations (Figure 4. f). However, the humidity in the model increases during the first few hours of model integration, while the observed humidity decreases. After three hours of spin-up, the model reproduces the evolution of humidity reasonably well, in agreement with the observations (RMSE 1.22), but the values are higher than the observed values (BIAS 1.11).

One reason for this discrepancy is the overestimation of the soil moisture content during the simulation. The soil moisture content can have a strong influence on the near-surface humidity. An overestimation of the soil moisture content in the initial condition of the model may result in a considerable difference in the humidity of the near-surface layer (Talbot et al. 2012). In our simulations, the model produces large overestimates of the soil moisture content. At initialization of the model in the CTRL simulation, the soil moisture content at 5 cm depth at station EC was 0.230 m³ m⁻³, whereas the initial value in the model was 0.6 m³ m⁻³ (Figure 4. d). This large overestimate of the soil moisture content results in a continuing increase in the latent heat in the model (Figure 4. b, f). As a result, the near-surface in the model is far moister than in the observations during the first few hours of model integration. The model

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

simulation has the ability to correct some of the bias due to the initial conditions of the surface and the results from the CTRL experiment are closer to the observed values after three hours of spin-up.

Figure 5. (solid lines) compares the potential temperatures simulated by the model with the GPS sounding measurements (dash lines) at Tazhong from 0800 to 2000 BJT on 1 July 2016. The radiosonde was about 7 km away from Tazhong when it reached a height of 6 km. The profiles of the model simulations are therefore averaged at a radius of 3.5 km from the measurement station. When the model is initialized at 0800 BJT, the nocturnal inversion reaches 300 m (not shown). This inversion is eroded in the model by 1100 BJT, in agreement with the observations, and both the model results and the observations reach about 300 m at 1100 BJT (Figure 5. a). However, the simulated CBL grows faster in the morning than that in the observations due to a larger sensible heat flux, reaching 3500 m (3000 m in the observations) at 1400 BJT (Figure 5. b). The simulated and observed CBL heights exceed 4000 and 5000 m, respectively, at 1700 BJT (Figure 5. c). This indicates that the simulated CBL increases more slowly in the afternoon than the observed CBL. Compared with the measurements, the model is initially cooler, but with a faster heating rate in the morning. As a result, the model is warmer than the observations in the afternoon, but in agreement with the observations by the end of the day. This may be due to the differences in the potential temperature lapse rate above the top of the mixing layer between the observations and the simulated results. The stronger simulated inversion layer restricts the development of the CBL.

The model initially simulates a cooler and drier CBL at 1100 BJT on July 2016 than the

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

observations (Figure 5. a). Compared with the observed potential temperature profile, the CBL appears earlier in model forecasts due to an obvious warming in the surface layer. The residual layer may play a key part in the deep PBL over the Taklimakan Desert. At 1100 BJT, when the CBLH (Convective Boundary Layer Height) in the observations was about 300 m, the potential temperature was about 317 K in the PBL and 320 K in the residual layer. When the potential temperature in the CBL increased to the value in the residual layer (320 K), the CBL merged with the residual layer and the height of the PBL in the observations reached 3000 m at 1400 BJT. These results are in good agreement with those of Han et al. (2012), who, by analyzing observations from a CBL in the Badanjilin region, found that the CBL developed rapidly after 1200 LST, possible as a result of the disappearance of the inversion layer. When the sensible heat flux reached its maximum at 1400 BJT (Figure 5. b), the potential temperature profile was closer to the observations than at the initial time and their value was higher than the observed values. By 2000 BJT (Figure 5. d), the height of the CBL in the model reached its maximum value, consistent with the observations, despite being about 0.4 K cooler at lower levels (<2.5 km). One cause of the higher temperatures produced in the model may be the large difference in the surface heat fluxes and we concluded that the surface sensible heat flux from the land surface parameterization was the crucial factor affecting the CBL processes during the daytime in summer. Differences in the surface sensible heat flux create differences in the vertical development of the PBL. Thus the large difference in the surface sensible heat flux between the model and the observations may lead to differences in the growth of the CBL during the daytime and in its peak depth during the

simulation. Fortunately, the surface sensible heat flux computed by the land surface model can artificially be modified to control the calculation of the surface fluxes. Sensitive simulations will be realized and discussed in next section.

Figure 5. also shows vertical profiles of the vapor mixing ratio (dashed lines) at Tazhong station. The simulated profiles with a lower residual layer are much drier than the observations from 1500 to 3500 m at 1100 BJT. Vertical mixing results in a uniform structure of the vapor mixing ratio within the CBL, so the differences between the profiles of the simulated results and the observations are remarkably reduced when the CBL is above 4000 m at 1400 BJT. The differences are generally <1 g kg⁻¹ at 1100 BJT, reaching a maximum of 0.3 g kg⁻¹ at 1400 BJT. However, the PBL shows an inverse layer at lower levels (≤2000 m) with a measured moisture content of 2.8–3.6 g kg⁻¹, which is not captured by the model. As the CBL grows, the inversion moisture structure below 3000 m develops and is maintained below 3000 m from 1400 to 2000 h BJT. By the end of the day, the simulated humidity of the CBL is higher than in the observations because the model cannot reproduce the inverse moisture layer within the CBL.

The inverse pattern in humidity may be caused by the interactions between the heterogeneous pattern of humidity and large-scale advection over the underlying surface. For instance, the interaction of an oasis with the desert environment may lead to an inverse humidity layer in the PBL above the desert. One possible reason for the discrepancy between the model results and the observations may be an error in the classification of land use type. The USGS land use data in the ARW-WRF model is based on Advanced Very High Resolution Radiometer 1 km resolution satellite data during the time period 1992–1993 and

this land use data may no longer be accurate in the Taklimakan Desert. Misclassifications have also been found in the USGS land use data, which is the default land use dataset in the WRF model (Schicker et al. 2016). This is confirmed by the discrepancies in land use between the simulation and the observations at Tazhong station. The large-scale advection of dry air can affect the moisture profile. The moisture content is also variable in the horizontal direction, so advection at low levels may contribute to the drier conditions in the lower PBL and more moist conditions in the upper PBL between 1100 and 2000 BJT.

The mismatch between the model results and the observations in terms of moisture content suggest that the effects of land use type and large-scale advection need to be quantified and that more detailed data may be required for the Taklimakan Desert (both land and atmosphere) to realize more realistic results. Extra care should also be taken with the sparse and limited data at the periphery of the Taklimakan Desert (ter Maat et al. 2012).

3.2 Sensitivity to the lateral boundary conditions

After verifying the details of the LES experiments, we assessed the sensitivity of the simulations to the time resolution and domain size of the specified LBCs. For a one-way nest, the specified LBCs are obtained from coarser simulations. The analysis and forecast times from a previously run larger area simulation are used to specify the LBC. The primary cause of the differences in the structure of the PBL was diagnosed as the difference in the domain sizes and frequency provided by the coarser resolution. The aim was to assess the sensitivity of the finer LESs to uncertainties of the specified LBC forcing by model simulations with a larger area.

Figure 5. compares the profiles of the simulated potential temperature and vapor

mixing ratio profiles from the LBC sensitivity experiments and observations. The results			
show that there is a distinct relationship between the development of the LBCs and the CBL.			
The profiles produced by the model are almost all the same at the initial time (not shown).			
However, the results show that there are large discrepancies in the CBL structure among the			
different experiments. The results indicate that a larger domain size and higher time			
frequency for the LBCs leads to a warmer and drier PBL, but a cooler and moister free			
troposphere. This sensitivity is monotonic with respect to the LBCs (Figure 5.). Over the next			
three hours, the differences between the sensitivity experiments increase over time (Figure 5.			
a, b). The potential temperature profiles within the CBL diverge at 1100 BJT. However, the			
results show a greater convergence in the afternoon as the CBL continues to grow (Figure 5. c)			
but the largest discrepancies are found at end of the day (Figure 5. d) when the model CBL			
potential temperature is warmer than the observations by up to 0.7 and 0.9 K in BDY_T2 and			
BDY_T1, respectively.			
Figure 6. shows cross-sections of the horizontal winds along 39.03° N, superposed with			
theta and the vapor mixing ratio. Less frequent updates of the LBCs are desirable in the cold			
zone near the LBCs, which results in cold advection of the temperature and moisture to the			
area of interest (Figure 6. b, c). A larger domain size, which changes the distance of the area			
of interest from the LBC, is efficient in reducing the influence of large forecast errors near the			
LBCs on the area of interest (CMP, Figure 6. a, c).			
To further examine the impact of the LBCs on the turbulence in the deep Taklimakan			
Desert CBL, the instantaneous vertical velocity fields are shown in Figure 7. By 1400 BJT,			
he convection of the CTRL simulation had clearly intensified under strong surface heating			

(Xu et al. 2018). Thus the maximum vertical velocity reached 9 m s ⁻¹ and the depth of the			
mixed layer grew to about 4.3 km (Figure 7 a). The distances between the boundary layer			
rolls correspondingly increased to about 12 km and the height of the peak up-draft was raised			
to just under 4 km. The cellular shape of the up- and down-drafts characteristic of the			
boundary layer rolls is clear in the horizontal view showing the strength of convection. The			
BDY_T2 and BDY_T3 experiments (Figure 7b, c) both reproduce motions with much weaker			
maximum and minimum values at the boundary of the domain. In BDY_T3, Tazhong station			
at the center of the model is directly influenced by the inflow of cold advection produced by			
the low-frequency LBCs, resulting in much weaker maximum and minimum values of w			
(about 6 m s ⁻¹). However, despite the underestimation of the potential temperature, the w			
fields in the BDY_T2 experiment are similar to those in the CTRL experiment in plan view			
and the horizontal extent of the up-/down-drafts agrees with the CTRL experiment.			
and the horizontal extent of the up-/down-drafts agrees with the CTRL experiment. To further examine the vertical structure of the desert CBL, Figure 8 presents vertical			
To further examine the vertical structure of the desert CBL, Figure 8 presents vertical			
To further examine the vertical structure of the desert CBL, Figure 8 presents vertical cross-sections of w along Tazhong station (39° N). Wide and regularly spaced up-drafts along			
To further examine the vertical structure of the desert CBL, Figure 8 presents vertical cross-sections of w along Tazhong station (39° N). Wide and regularly spaced up-drafts along A1–A2 split into stronger and more irregular motions in the CTRL and BDY_T2 experiments.			
To further examine the vertical structure of the desert CBL, Figure 8 presents vertical cross-sections of w along Tazhong station (39° N). Wide and regularly spaced up-drafts along A1–A2 split into stronger and more irregular motions in the CTRL and BDY_T2 experiments. The up-drafts are much weaker in experiment BDY_T3 (Figure 8. c). The peak up-drafts in			
To further examine the vertical structure of the desert CBL, Figure 8 presents vertical cross-sections of w along Tazhong station (39° N). Wide and regularly spaced up-drafts along A1–A2 split into stronger and more irregular motions in the CTRL and BDY_T2 experiments. The up-drafts are much weaker in experiment BDY_T3 (Figure 8. c). The peak up-drafts in BDY_T3 are about 4 m s ⁻¹ , much weaker than in the CTRL (9 m s ⁻¹) and BDY_T2 (8 m s ⁻¹)			
To further examine the vertical structure of the desert CBL, Figure 8 presents vertical cross-sections of <i>w</i> along Tazhong station (39° N). Wide and regularly spaced up-drafts along A1–A2 split into stronger and more irregular motions in the CTRL and BDY_T2 experiments. The up-drafts are much weaker in experiment BDY_T3 (Figure 8. c). The peak up-drafts in BDY_T3 are about 4 m s ⁻¹ , much weaker than in the CTRL (9 m s ⁻¹) and BDY_T2 (8 m s ⁻¹) experiments. The inflow boundary is wider in BDY_T2 and BDY_T3 and the intensity of the			
To further examine the vertical structure of the desert CBL, Figure 8 presents vertical cross-sections of <i>w</i> along Tazhong station (39° N). Wide and regularly spaced up-drafts along A1–A2 split into stronger and more irregular motions in the CTRL and BDY_T2 experiments. The up-drafts are much weaker in experiment BDY_T3 (Figure 8. c). The peak up-drafts in BDY_T3 are about 4 m s ⁻¹ , much weaker than in the CTRL (9 m s ⁻¹) and BDY_T2 (8 m s ⁻¹) experiments. The inflow boundary is wider in BDY_T2 and BDY_T3 and the intensity of the convection is weaker at the boundary. The horizontal distribution of the vertical velocity at			

be quantified to realize a more realistic performance in sub-kilometer-scale simulations.

3.3 Simulations with different surface sensible heat fluxes and land surface

models

An important cause of the differences in the structure of the PBL was determined to be the differences in sensible heat flux predicted by the land surface schemes. The sensible heat flux is a key factor affecting the height of the CBL during daytime in summer. The difference between the models and observations may therefore lead to differences in the growth of the PBL during the day. To further confirm whether this occurs, three additional sensitive simulations were realized based on the CTRL experiment. The Noah land surface model replaced the RUC land surface model in the CTRL experiment and the sensible heat fluxes for HFX-125% and HFX-75% are %125 and %75 that of the CTRL (HFX -100%) experiment while the other parameters remain the same.

The results in Figure 10. and Table 2 show that HFX-75% successively improved the simulation of the sensible heat flux with an RMSE of 151.12 compared with 263.64 and 357.11 in the CTRL and HFX-125% experiments, respectively. The Noah land surface experiment yielded the best performance in terms of the sensible heat flux, the surface temperature and the air temperature. However, the Noah land surface model showed large discrepancies with the observations in terms of the soil moisture content, resulting in a dramatic overestimate of the latent heat flux and relative humidity compared with the CTRL experiment.

A further examination of the potential temperature and vapor mixing ratio (Figure 9.) indicates that a smaller sensible heat flux leads to a cooler, more moist lower PBL and a

warmer, drier free atmosphere. This sensitivity is monotonic with respect to the sensible heat flux. The structure of the CBL from the HFX-75% and Noah experiments matches the GPS radiosonde measurements better than the CTRL (HFX-100%) simulations. The potential temperature profiles from the CTRL (HFX-100%) and HFX-125% experiments are consistently warmer than the observations by about 0.4 and 0.5 K, respectively, whereas the results from the HFX-75% and Noah experiments are within about 0.2 K at 1400 BJT (Figure 9. b). These results suggest that the model is sensitive to changes in the sensible heat flux from the land surface model. The simulations converge at the end of the day, although there are still differences at 2000 BJT (Figure 9. d). The HFX-75% and Noah experiments with a weaker surface sensible heat flux still produce almost the same deep CBL as the CTRL and HFX-125% experiments. This indicates that the sensible heat flux may not the dominant factor in the formation of the deep CBL over the Taklimakan Desert.

The results of the simulations of the desert PBL in the morning agree with previous studies of the sensitivities the land surface model in other areas (Hu et al. 2010; Zhang et al. 2017). However, all the experiments produce nearly the same height of the CBL and moisture content from 1700 to 2000 BJT on 1 July 2016 (Figure 9. b, d), in agreement with the observations in the PBL. The effects of the sensible heat flux on the evolution of the PBL structures in the Taklimakan Desert during this period need to be examined further to determine why the simulations are insensitive to land surface processes at the end of the day. As reported by Stull (1988), the development of the CBL is mainly influenced by the effects of thermodynamic and turbulent entrainment if we do not consider factors such as large-scale advection or subsidence. In addition to the surface sensible heat, the intensity of the

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

entrainment process determines the increase in the CBL. Thus the entrainment rate w_e is a valuable indicator of the development of the structure of the PBL. The rate of growth of the CBL is mainly determined by the entrainment rate w_e at the inversion layer without considering large-scale vertical motion. w_e usually has a positive correlation with the amount of heat flux at the inversion layer $\overline{(w'\theta_v')_h}$ and LES experiments show that $\overline{(w'\theta_v')_h}$ is about 0.2 times the surface flux of the buoyancy $(w'\theta_0')$. During the period from 1100 to 1400 BJT, a larger sensible heat flux is clearly correlated with stronger turbulent entrainment and warmer air from the free atmosphere entraining into the Mixing Layer (ML). As a result, the CBL develops rapidly and warms too quickly in the early simulation phase due to the clear increase in temperature and strong vertical mixing in the model. The reduction in the sensible heat flux reproduces the evolution of the desert PBL better in the early simulation phase because the HFX-75% and Noah simulations produce the smallest simulation errors in both temperature and moisture. However, the height of the CBL and the potential temperature for HFX-75% and Noah reach >5000 m and 323.2 K, respectively, at 1700 BJT (Figure 9. a). For the rest of the day, the rate of increase in the height of the CBL slows due to the deep CBL (>5000 m), which requires more heat for the increase in the depth of the PBL. we decreases with increasing intensity of the inversion, which inhibits the mixing and entrainment processes. These two factors limit the growth of the CBL when the height is >5000 m in this deep desert event. Therefore increasing the sensible heat flux from 75 to 125% significantly reduced the total time required for the increase in the CBL to a relatively low altitude (<5000 m) at the middle and preliminary stages of the development of the CBL, rather than produces a higher CBL at a later stage. When the height of the CBL over the

Taklimakan Desert exceeds 5000 m, it may not change in proportion to the sensible heat flux (Figure 9. d). As a result, the PBL is basically the same in the WRF simulations and is not sensitive to the sensible heat flux at the end of the day.

4 Summary

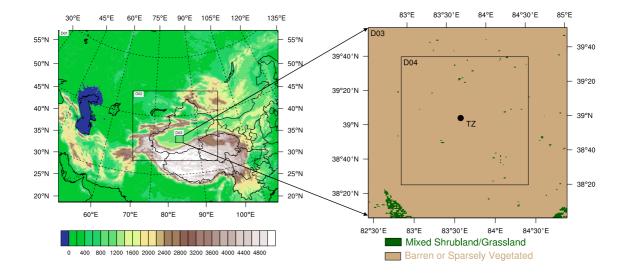
In this paper, we assessed the performance of the WRF model LES in an example of a deep convective PBL over the Taklimakan Desert. The tests were performed with multiple configurations and sensitivity experiments. The sensitivity tests for the LBCs showed that the model results are sensitive to changes in the size of the time resolution and domain of the specified LBC. A larger domain size changes the distance of the area of interest from the LBC and is efficient in reducing the influence of the large forecast error near the LBC.

The model reproduces the evolution of PBL processes reasonably well with the configuration used in this study. The model shows discrepancies between the main CBL characteristics in the morning, including the thermal and moisture structures. The model simulates the relatively colder and drier morning CBL, underestimating the temperature in the near-surface layer at Tazhong station by up to 1.5 K and the moisture content by 1 g kg⁻¹. The overestimation of the CBL profile may be caused by initial discrepancies between the model and the observations. This indicates that the results are sensitive to the initial conditions of the model, although the simulation seems to be able to correct some of the bias due to the initial conditions. The model correctly reproduces the thermal structure in the afternoon, but the simulations are relatively warmer and moister than the observations. The potential temperature profile at the CBL appears warmer than the observations by about 0.4 K. The model seriously overestimates the moisture content in the afternoon and overestimates the

vapor mixing ratio in the CBL by about 1-2 g kg⁻¹. The largest discrepancies are found in 0-3 km layer, where the model vapor mixing ratio is twice as moist as that of the observations (up to about 3 g kg⁻¹).

Three additional simulations were realized to confirm whether the large differences in the sensible heat flux lead to differences in growth of the CBL during the daytime relative to the CTRL experiment. The results suggest that the model results are sensitive to changes in the sensible heat flux and different land surface models. The large difference between the model and observations may lead to differences in the growth of the CBL during the daytime. It was concluded the surface sensible heat flux is an important factor affecting the processes of the CBL over the Taklimakan Desert during the daytime in summer. However, its peak depth during the simulation was less sensitive to the sensible heat flux because w_e had decreased by the end of the day. One should note that the CBL of Taklimakan need several days of favorable environment to reach its super depth (> 4000m), and sustained high temperature and SH is the crucial factor for CBL to develop from shallow to deep CBL. The SH is not dominant factor, but still an important factor affecting the deep CBL.

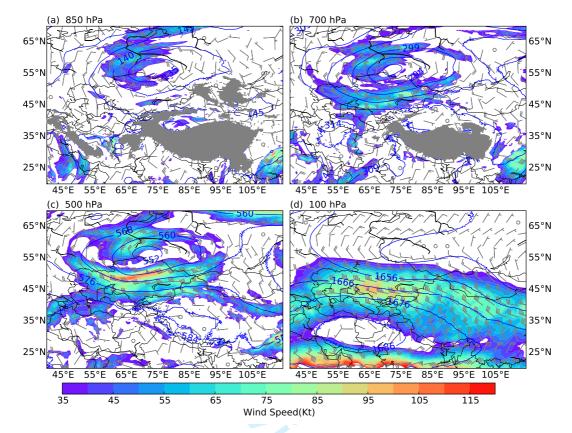
Future work will study several other examples of a deep CBL over the Taklimakan Desert to determine their common features. We hope to use high-resolution models and observations to describe the fine characteristics of a typical deep CBL over the Taklimakan Desert, particularly the turbulent and vertical mixing and its impact on the regional weather forecast. This research aims to improve our understanding of the deep CBL over the Taklimakan Desert and its influence on the regional weather and climate.


Conflict of interests

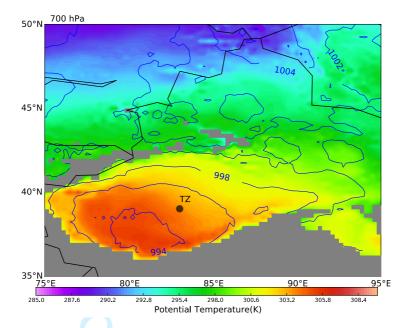
- The authors declare that there is no conflict of interests regarding the publication of this paper. 468
- Acknowledgments 469
- 470 This study is supported by the National Natural Science Foundation of China (Grant no.
- 471 41575008 and 41775030). The author thanks the reviewers and editors for their professional
- advice in improving this paper. 472

- 474 Captions:
- Figure 1. Simulation domains used in the ARW model with (a) the terrain height (shaded,
- units:m), (b) the land use categories for domains D03 and D04 and (c) photograph of the area
- around Tazhong station.
- 478 Figure 2. Horizontal distribution of the geopotential height (solid lines, units: da gpm), wind
- speed (shaded, units: knots) and wind barbs from the NCEP FNL analysis at 0800 BJT on 1
- 480 July 2016 at (a) 850, (b) 700, (c) 500 and (d) 100 hPa. Figure 2. Horizontal distribution of the
- 481 geopotential height (solid lines, units: da gpm), wind speed (shaded, units: knots) and wind
- 482 barbs from the NCEP FNL analysis at 0800 BJT on 1 July 2016 at (a) 850, (b) 700, (c) 500
- 483 and (d) 100 hPa.
- Figure 3. NCEP FNL 700 hPa potential temperature (colors) and mean sea level pressure
- (white lines) at 0800 BJT on 1 July 2016. The black dot shows the location of Tazhong station
- 486 in Xingjiang province.
- Figure 4. Time series of the initial simulated surface variables from the innermost domain of
- the simulations and the surface observations at Tazhong station (83.63° E, 39.03° N) at 0800
- BJT on 1 July 2016: (a) sensible heat flux; (b) latent heat flux; (c) surface temperature; (d)
- soil moisture content; (e) temperature at 2 m; (f) relative humidity at 2 m; (g) wind speed at
- 491 10 m; and (h) wind direction at 10 m.
- Figure 5. Vertical profiles of the potential temperature (solid line, units: K) and vapor mixing
- ratio (dashed line, units: g kg⁻¹) from the innermost domain of the simulations and the
- observations from GPS sounding at Tazhong station (83.63° E, 39.03° N) at (a) 1100, (b)

495	1400, (c) 1700 and (d) 2000 BJT on 1 July 2016. The profiles of the model output are		
496	averaged over a radius of 3.5 km.		
497	Figure 6. Cross-sections along 39.03° N of the horizontal winds (barbs, units: m s ⁻¹) at		
498	intervals of 5 m $\rm s^{-1}$ superposed with theta (shaded, units: K) and the vapor mixing ratio		
499	(contours, units: g kg ⁻¹) from the (a) BDY_T1, (c) BDY_T2 and (e) BDY_T3 experiments at		
500	1400 BJT on 1 July 2016 and the (b) BDY_T1, (d) BDY_T2 and (f) BDY_T3 experiments at		
501	2000 BJT on 1 July 2016.		
502	Figure 7. Instantaneous vertical velocity fields (shading: m s ⁻¹) at 3000 m for the (a) BDY_T1		
503	(CTRL), (b) BDY_T2, (c) BDY_T3 and (d) Noah experiments at 1400 BJT on 1 July 2016.		
504	Figure 8. Vertical cross-sections of the instantaneous vertical velocity fields (shading: m s ⁻¹)		
505	along A1-A2 in for the (a) BDY_T1 (CTRL), (b) BDY_T2, (c) BDY_T3 and (d) Noah		
506	experiments at 1400 BJT on 1 July 2016.		
507	Figure 9. Vertical profiles of the potential temperature (solid line, units: K) and vapor mixing		
508	ratio (dashed line, units: g kg ⁻¹) for the sensible heat flux sensitivity and Noah land surface		
509	experiments at (a) 1100, (b) 1400, (c) 1700 and (d) 2000 BJT on 1 July 2016. The profiles of		
510	the model output are averaged over a radius of 3.5 km.		
511	Figure 10. Time series of the initial simulated surface variables for the sensible heat		
512	flux sensitivity and Noah land surface experiments: (a) sensible heat flux; (b) latent		
513	heat flux; (c) surface temperature; (d) soil moisture content; (e) temperature at 2 m; (f)		
514	relative humidity at 2 m; (g) wind speed at 10 m; and (h) wind direction at 10 m.		

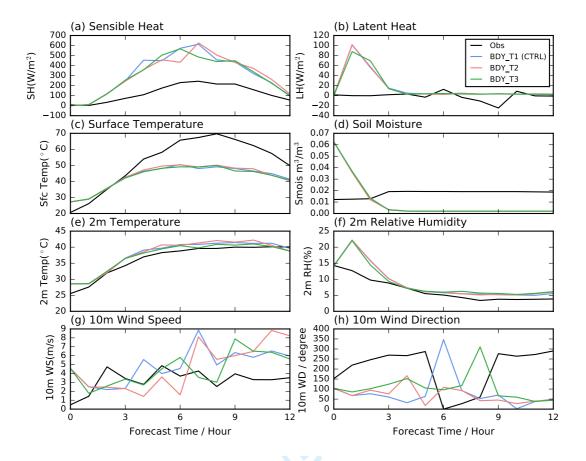


(a)


Figure 1. Simulation domains used in the ARW model with (a) the terrain height (shaded, units:m), (b) the land use categories for domains D03 and D04 and (c) photograph of the area around Tazhong station.

528 529

Figure 2. Horizontal distribution of the geopotential height (solid lines, units: da gpm), wind speed (shaded, units: knots) and wind barbs from the NCEP FNL analysis at 0800 BJT on 1 July 2016 at (a) 850, (b) 700, (c) 500 and (d) 100 hPa.


531532

535

536

Figure 3. NCEP FNL 700 hPa potential temperature (colors) and mean sea level pressure (white lines) at 0800 BJT on 1 July 2016. The black dot shows the location of Tazhong station in Xingjiang province.

540

541

542

Figure 4. Time series of the initial simulated surface variables from the innermost domain of the simulations and the surface observations at Tazhong station (83.63° E, 39.03° N) at 0800 BJT on 1 July 2016: (a) sensible heat flux; (b) latent heat flux; (c) surface temperature; (d) soil moisture content; (e) temperature at 2 m; (f) relative humidity at 2 m; (g) wind speed at 10 m; and (h) wind direction at 10 m.

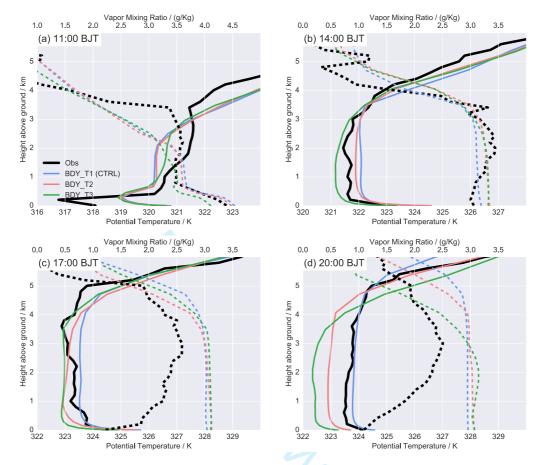


Figure 5. Vertical profiles of the potential temperature (solid line, units: K) and vapor mixing ratio (dashed line, units: g kg⁻¹) from the innermost domain of the simulations and the observations from GPS sounding at Tazhong station (83.63° E, 39.03° N) at (a) 1100, (b) 1400, (c) 1700 and (d) 2000 BJT on 1 July 2016. The profiles of the model output are averaged over a radius of 3.5 km.

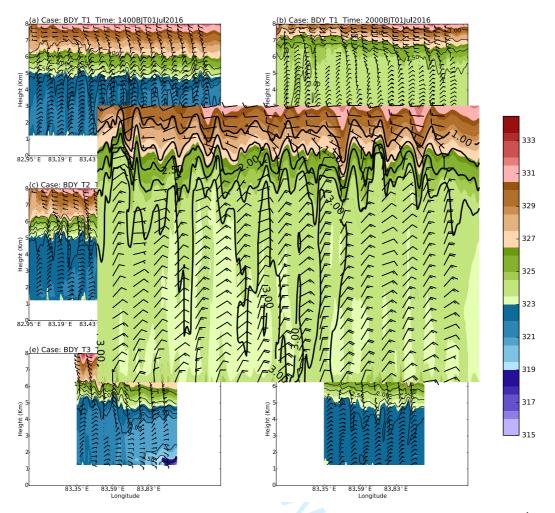
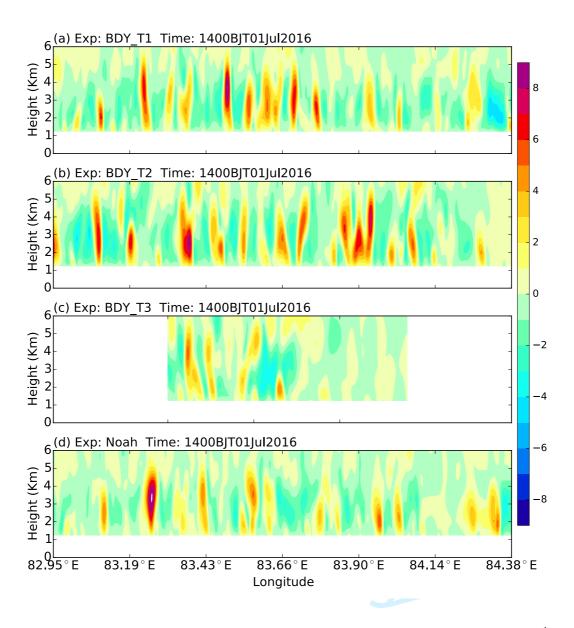


Figure 6. Cross-sections along 39.03° N of the horizontal winds (barbs, units: m s⁻¹) at intervals of 5 m s⁻¹ superposed with theta (shaded, units: K) and the vapor mixing ratio (contours, units: g kg⁻¹) from the (a) BDY_T1, (c) BDY_T2 and (e) BDY_T3 experiments at 1400 BJT on 1 July 2016 and the (b) BDY_T1, (d) BDY_T2 and (f) BDY_T3 experiments at 2000 BJT on 1 July 2016.

> (a) Exp: BDY_T1 Time: 1400BJT01Jul2016 (b) Exp: BDY_T2 Time: 1400BJT01Jul2016 39.6°I 39.3°N TZ TZ 39° 38.7°N 3 38.4°I 84.4°I 83.2°E 83.6°E 84°E 84.4°E 83.2°E 83.6°E 84°E 0 (c) Exp: BDY_T3 Time: 1400BJT01Jul2016 (d) Exp: Noah Time: 1400BJT01Jul2016 39.6°N -3 39.3°N TZ 39°I 38.7° 38.4°I 83.2°E 83.6°E 84°E 84.4°E 83.2°E 83.6°E 84°E 84.4°E


561 562

563

564

Figure 7. Instantaneous vertical velocity fields (shading: m s⁻¹) at 3000 m for the (a) BDY_T1 (CTRL), (b) BDY_T2, (c) BDY_T3 and (d) Noah experiments at 1400 BJT on 1 July 2016.

565

568

569

570

Figure 8. Vertical cross-sections of the instantaneous vertical velocity fields (shading: m s⁻¹) along A1–A2 in for the (a) BDY_T1 (CTRL), (b) BDY_T2, (c) BDY_T3 and (d) Noah experiments at 1400 BJT on 1 July 2016.

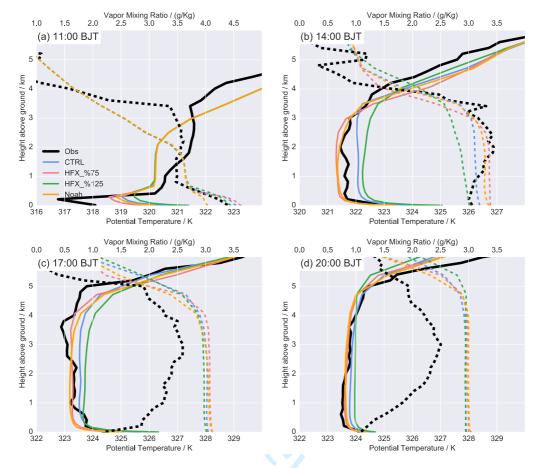
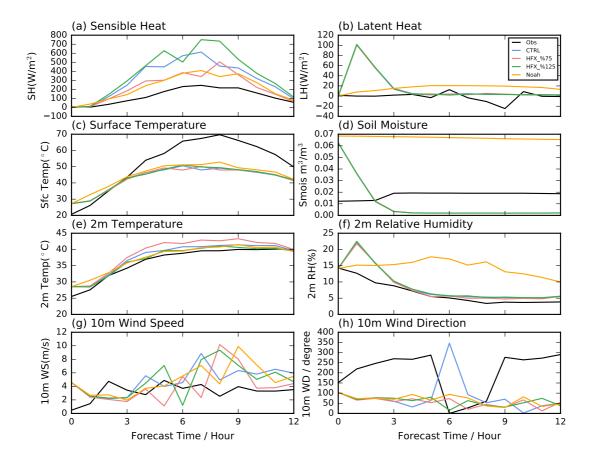



Figure 9. Vertical profiles of the potential temperature (solid line, units: K) and vapor mixing ratio (dashed line, units: g kg⁻¹) for the sensible heat flux sensitivity and Noah land surface experiments at (a) 1100, (b) 1400, (c) 1700 and (d) 2000 BJT on 1 July 2016. The profiles of the model output are averaged over a radius of 3.5 km.

581

582

Figure 10. Time series of the initial simulated surface variables for the sensible heat flux sensitivity and Noah land surface experiments: (a) sensible heat flux; (b) latent heat flux; (c) surface temperature; (d) soil moisture content; (e) temperature at 2 m; (f) relative humidity at 2 m; (g) wind speed at 10 m; and (h) wind direction at 10 m.

Experiment	Name	Remarks
1	BDY_T1(CTRL)	LBC of D04 is provided by d03 every one hour with
		403×406 model grids
2	BDY_T2	As BDY_T1, but LBC of D04 is provided by d03
		every six hours
3	BDY_T3	As BDY_T2, but with 205 ×208 model grids
4	HFX_%75	As CTRL_T2, but with a sensible heat flux of 75%
_		
5	HFX_%125	As CTRL_T2, but with a sensible heat flux of 125%
6	Noah	As CTRL T2, but with the Noah land surface model
O	110411	113 CTRE_12, out with the Ivoth land surface model

586

587

Table 1. List of designed experiments.

	Sensib	le heat flux	Latent	heat flux	Surface t	emperature	Soil m	oisture	Tempera	ature at 2	Relative	humidity	Wind spe	eed at 2 m
							cor	itent	1	n	at	2 m		
	RMSE	BIAS	RMSE	BIAS	RMSE	BIAS	RMSE	BIAS	RMSE	BIAS	RMSE	BIAS	RMSE	BIAS
Experiments														
CTRL	263.636	250.140	12.398	6.674	14.654	-13.373	0.017	-0.017	1.666	1.613	1.220	1.109	2.579	1.864
BDY_T2	249.395	240.660	12.383	6.253	14.116	-12.853	0.017	-0.017	1.912	1.817	1.275	1.162	2.943	1.307
					ノた、									
BDY_T3	241.681	232.705	12.251	6.328	14.929	-13.737	0.017	-0.017	1.227	1.046	1.483	1.280	2.118	1.287
HFX %75	151.119	134.594	12.544	6.354	14.740	-13.426	0.017	-0.017	3.078	3.016	0.956	0.826	3.335	0.874
111 11_7010	131.11)	15 1.55 1	12.3 1 1	0.55 1	11.710	13.120	0.017	0.017	3.070	5.010	0.550	0.020	3.333	0.071
HFX_%125	357.711	335.556	12.439	6.152	14.244	-13.043	0.017	-0.017	1.026	0.860	1.303	1.231	3.265	2.052
Noah	125.695	120.313	23.350	20.664	12.757	-11.502	0.048	0.048	1.046	0.983	10.116	9.904	2.788	1.795

Table 2. Summary of the verification of surface and air variables including the integration hours from 3 to 12 h for Tazhong station.

590

- 591 Reference:
- 592 Chen, F., and J. Dudhia, 2001a: Coupling an Advanced Land Surface–Hydrology Model with the Penn
- 593 State–NCAR MM5 Modeling System. Part II: Preliminary Model Validation. *Monthly Weather Review*,
- **129,** 587-604.
- 595 —, 2001b: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5
- 596 modeling system. Part I: Model implementation and sensitivity. Monthly Weather Review, 129,
- 597 569-585.
- 598 Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment
- using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077-3107.
- Engelstaedter, S., R. Washington, C. Flamant, D. J. Parker, C. J. T. Allen, and M. C. Todd, 2015: The
- 601 Saharan heat low and moisture transport pathways in the central Sahara—Multiaircraft observations
- and Africa-LAM evaluation. *Journal of Geophysical Research: Atmospheres*, **120**, 2015JD023123.
- Garcia-Carreras, L., and Coauthors, 2015: The Turbulent Structure and Diurnal Growth of the Saharan
- Atmospheric Boundary Layer. *Journal of the Atmospheric Sciences*, **72**, 693-713.
- Han, B., S. Lü, and Y. Ao, 2012: Development of the convective boundary layer capping with a thick
- 606 neutral layer in Badanjilin: Observations and simulations. Adv. Atmos. Sci., 29, 177-192.
- 607 Heinold, B., P. Knippertz, and J. H. Marsham, 2013: Large Eddy Simulations of Nocturnal Low-Level
- Jets over Desert Regions and Implications for Dust Emission. EGU General Assembly Conference.
- 609 Heinold, B., P. Knippertz, and R. J. Beare, 2015: Idealized large-eddy simulations of nocturnal
- low-level jets over subtropical desert regions and implications for dust-generating winds. Quarterly
- *Journal of the Royal Meteorological Society*, **141**, 1740–1752.
- 612 Heinze, R., D. Mironov, and S. Raasch, 2015: Second-moment budgets in cloud topped boundary
- 613 layers: A large-eddy simulation study. Journal of Advances in Modeling Earth Systems, 7, 510-536.
- Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range
- forecast model. *Monthly weather review*, **124**, 2322-2339.
- Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J.
- 617 Korean Meteor. Soc, 42, 129-151.
- 618 Hu, X.-M., J. W. Nielsen-Gammon, and F. Zhang, 2010: Evaluation of Three Planetary Boundary
- Layer Schemes in the WRF Model. *Journal of Applied Meteorology and Climatology*, **49**, 1831-1844.
- 620 Kain, J. S., 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. *The*
- 621 representation of cumulus convection in numerical models, Meteor. Monogr, **46**, 165-170.
- Kain, J. S., 2004: The Kain–Fritsch Convective Parameterization: An Update. *JOURNAL OF APPLIED*
- 623 *METEOROLOGY*, **43**, 170-181.
- LeMone, M. A., M. Tewari, F. Chen, and J. Dudhia, 2013: Objectively Determined Fair-Weather CBL
- Depths in the ARW-WRF Model and Their Comparison to CASES-97 Observations. *Monthly Weather*
- 626 Review, 141, 30-54.
- 627 Liu, Y., Q. He, H. Zhang, and A. Mamtimin, 2012: Improving the CoLM in Taklimakan Desert
- 628 hinterland with accurate key parameters and an appropriate parameterization scheme. Adv. Atmos. Sci.,
- **29**, 381-390.
- Liu, Y., and Coauthors, 2011: Simultaneous nested modeling from the synoptic scale to the LES scale
- for wind energy applications. *Journal of Wind Engineering and Industrial Aerodynamics*, **99**, 308-319.
- Marsham, J. H., P. Knippertz, N. Dixon, D. J. Parker, and G. M. S. Lister, 2011: The importance of the
- 633 representation of deep convection for modeled dust- generating winds over West Africa during summer.
- 634 Geophysical Research Letters, 38.

- 635 Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for
- inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys.
- 637 *Res.*, **102**, 16663-16682.
- 638 Moeng, C.-H., J. Dudhia, J. Klemp, and P. Sullivan, 2007: Examining Two-Way Grid Nesting for Large
- Eddy Simulation of the PBL Using the WRF Model. *Monthly Weather Review*, **135**, 2295-2311.
- National Centers for Environmental Prediction, N. W. S. N. U. S. D. o. C., 2015: NCEP GDAS/FNL
- 0.25 Degree Global Tropospheric Analyses and Forecast Grids. Research Data Archive at the National
- 642 Center for Atmospheric Research, Computational and Information Systems Laboratory.
- Rai, R. K., L. K. Berg, B. Kosović, J. D. Mirocha, M. S. Pekour, and W. J. Shaw, 2017: Comparison of
- Measured and Numerically Simulated Turbulence Statistics in a Convective Boundary Layer Over
- 645 Complex Terrain. *Boundary-Layer Meteorology*, **163**, 69-89.
- 646 Schicker, I., D. Arnold Arias, and P. Seibert, 2016: Influences of updated land-use datasets on WRF
- simulations for two Austrian regions. *Meteorology and Atmospheric Physics*, **128**, 279-301.
- Shin, H. H., and S. Y. Hong, 2011: Intercomparison of Planetary Boundary-Layer Parametrizations in
- the WRF Model for a Single Day from CASES-99. Boundary-Layer Meteorology, 139, 261-281.
- 650 Shin, H. H., and S.-Y. Hong, 2015: Representation of the Subgrid-Scale Turbulent Transport in
- 651 Convective Boundary Layers at Gray-Zone Resolutions. *Monthly Weather Review*, **143**, 250-271.
- 652 Skamarock, W. C., and Coauthors, 2008: A Description of the Advanced Research WRF Version 3.
- 653 NCAR/TN-475+STR, NCAR TECHNICAL NOTE.
- Smirnova Tatiana, G., M. Brown John, G. Benjamin Stanley, and D. Kim, 2000: Parameterization of
- 655 cold- season processes in the MAPS land- surface scheme. Journal of Geophysical Research:
- 656 Atmospheres, **105**, 4077-4086.
- 657 Smirnova, T. G., J. M. Brown, and S. G. Benjamin, 1997: Performance of Different Soil Model
- 658 Configurations in Simulating Ground Surface Temperature and Surface Fluxes. Monthly Weather
- 659 Review, **125**, 1870-1884.
- 660 Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Atmospheric Sciences Library, 8,
- 661 89
- Sun, J., and Q. Xu, 2009: Parameterization of Sheared Convective Entrainment in the First-Order Jump
- Model: Evaluation Through Large-Eddy Simulation. *Boundary-Layer Meteorology*, **132**, 279-288.
- Talbot, C., E. Bou-Zeid, and J. Smith, 2012: Nested Mesoscale Large-Eddy Simulations with WRF:
- Performance in Real Test Cases. *Journal of Hydrometeorology*, **13**, 1421-1441.
- ter Maat, H. W., E. J. Moors, R. W. A. Hutjes, A. A. M. Holtslag, and A. J. Dolman, 2012: Exploring
- 667 the Impact of Land Cover and Topography on Rainfall Maxima in the Netherlands. Journal of
- 668 *Hydrometeorology*, **14**, 524-542.
- 669 WANG, and Coauthors, 2016a: Summer atmospheric boundary layer structure in the hinterland of
- Taklimakan Desert, China. Journal of Arid Land, 8, 846-860.
- Wang, M., X. Xu, and H. Xu: The possible influence of the summertime deep atmospheric boundary
- layer process over the Taklimakan Desert on the regional weather. (submitted to Quarterly Journal of
- 673 the Royal Meteorological Society).
- Wang, M. Z., H. Lu, H. Ming, and J. Zhang, 2016b: Vertical structure of summer clear-sky atmospheric
- 675 boundary layer over the hinterland and southern margin of Taklamakan Desert: The deep convective
- boundary layer of Taklamakan Desert. *Meteorological Applications*, **23**, 438-447.
- Zhang, F., Z. Pu, and C. Wang, 2017: Effects of Boundary Layer Vertical Mixing on the Evolution of
- Hurricanes over Land. *Monthly Weather Review*, **145**, 2343-2361.

679

Reviewer(s)' Comments to Author:

Reviewer: 1

Comments to the Author

The content of the manuscript looks OK, but still needs focus on its main findings and contribution to the science. Moreover, it needs a lot of works/corrections for grammar and typos.

Thank you for the comments.

Main findings:

(1) SH may not be the dominant factor for the super deep CBL over the Taklimakan desert. As explained in lines 392~426, in addition to the surface sensible heat, the intensity of the entrainment process determines the increase in the CBL. The entrainment rate w, is a valuable indicator of the development of the structure of the PBL. The rate of growth of the CBL is mainly determined by the entrainment rate w_e at the inversion layer without considering large-scale vertical motion. w_{e} usually has a positive correlation with the amount of heat flux at the inversion layer $\overline{(w'\theta_v')_h}$ and large LES experiments show that $\overline{(w'\theta_v')_h}$ is about 0.2 times the surface flux of the buoyancy $(w'\theta_0')$. During the period from 1100 to 1400 BJT, a larger sensible heat flux is clearly correlated with stronger turbulent entrainment and warmer air from the free atmosphere entraining into the Mixing Layer. As a result, the CBL develops rapidly and warms too quickly in the early simulation phase due to the clear increase in temperature and strong vertical mixing in the model. The reduction in the sensible heat flux reproduces the evolution of the desert PBL better in the early simulation phase because the HFX-75% and Noah simulations produce the smallest simulation errors in both temperature and moisture. However, the height of the CBL and the potential temperature for HFX-75% and

Noah reach >5000 m and 323.2 K, respectively, at 1700 BJT. For the rest of the day, the rate of increase in the height of the CBL slows due to the deep CBL (>5000 m), which requires more heat for the increase in the depth of the PBL. w_e decreases with increasing intensity of the inversion, which inhibits the mixing and entrainment processes. These two factors limit the growth of the CBL when the height is >5000 m in this deep desert event. Therefore, increasing the sensible heat flux from 75 to 125% significantly reduced the total time required for the increase in the CBL to a relatively low altitude (<5000 m) at the middle and preliminary stages of the development of the CBL, rather than produces a higher CBL at a later stage.

(2) The SH is an important factor affecting the super deep CBL. Although SH is not dominant factor in this super deep CBL case, the CBL of Taklimakan need several days of favorable environment to reach its super depth (> 4000m), and Sustained high temperature and SH is the crucial factor for CBL to develop from shallow to deep CBL.

It needs a lot of works/corrections for grammar and typos.

We have used professional English language edit service (Lucid Paper) to correct grammar and typos in the manuscript.

Reviewer: 2

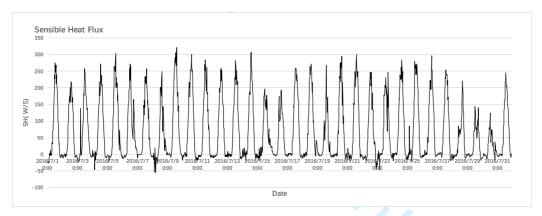
Comments to the Author

Review comments on the revised version of "Characteristics over the Taklimakan Desert: A Real Test Case" (ACTA-E-2018-0001.R1)"

Many changes were made through the authors' efforts in the revised manuscript. However, the grammar errors continue to occur almost everywhere in this updated version. A heavy English edit work is required to improve the writing. It is strongly recommended to seek a professional language edit service.

Thank you for the comments.

We have used professional English language edit service (Lucid Paper) to edit and improve the English writing.


Intended without intended in the control of the con	r the
Forecasting Model Large Edgly Simulations in modeling the convolve boundary layer over the Tailminan Deart. Other is document certifies that the above detailed manuscript was edited by a native English speaking expert a sold/paper on the date stated. The manuscript will be ready for consideration by the target poured once the edits have	r the
idPapers on the date stated. Illowing the editing process, the editor's overall assessment is that: The manuscript will be ready for consideration by the target journal once the edits have	expert at
llowing the editing process, the editor's overall assessment is that: The manuscript will be ready for consideration by the target journal once the edits have	
The manuscript will be ready for consideration by the target journal once the edits have	
been checked and approved/rejected as necessary.	
The manuscript may or will require modifications to the text in response to the editor's	
comments/queries, but further professional editing is unlikely to be needed.	
The manuscript requires modifications to the text in response to the editor's	7 1
comments/queries, and further professional editing may be needed. The manuscript requires modifications to the text in response to the editor's	_
comments/queries, and further professional editing is more than likely going to be	
needed. The manuscript requires modifications to the text in response to the editor's	
comments/queries, and further professional editing is strongly recommended.	

As pointed out in the first turn review, it is not useful to present the impact of the ingest frequency of the lateral boundary conditions on the large-eddy simulation (LES) results if the WRF/LES has a capability of running the online-coupling mode. Thank you for the comments.

Yes, it is not useful to test the frequency of the lateral boundary conditions especially in two-way nest mode (online-coupling). However, one of our aims is to assess the contribution of uncertainties in LBC to the typical behavior of super deep PBL processes. LBC frequency sensitive experiments are still kept, because these experiments can provide an explanation of the important role of LBC play in LES. As showed by the experiments, LBC may be more important than the physics schemes used in the model.

In addition, the simulated sensible and latent heat fluxes presented in Figures 4 and 10 are not accepted for publication without further improvement. As pointed by the authors, the observed sensible heat flux could be too low on July 1, 2016. What about the observational data for other days? Did the authors see the similar low observed sensible heat fluxes on other days since you have one-month data in July 2017?

Yes, we see the similar low observed sensible heat fluxes on other days in July 2017. Wang et.al., statics the PBL height of Tazhong during July 2016. The number of days when the PBL exceeds 4,000 m depth is 8, and that of higher than 3,000 m is 20. However, most of observed deep PBL cases show similar low observed sensible heat fluxes as on July 1, 2016 (Figure b3).

Over-predicted latent heat flux in the first several simulation hours should be alleviated by setting the initial soil moisture in the simulations as the observed value. Did the authors try that?

Thank you for the comments.

Yes, we have tried to set the initial soil moisture in the simulations as the observed value (experiment EXP_SMOIST). In EXP_SMOIST experiment, initial soil moisture was simply minus 0.05 (difference between model and observation over Tazhong station, Figure b1).

Over-predicted latent heat flux the first several simulation hours are largely reduced in EXP_SMOIST. The large overestimate of soil moisture makes LH (Figureb2 b, f) from the

model continue to increase. As a result, near-surface of model is in agreement with observation (Figure b2 d). However, the results from CTRL experiment are closer to EXP_SMOIST experiment after 3 hours' spin-up. The large overestimate of soil moisture at initial stage(0~3hours) may have little impact on the large over-prediction of sensible heat flux during 3~12 hours' simulation.

Figure b1 Soil moisture from model initial condition for (a) CTRL, (b) SOIL MOISTURE CORRECTED

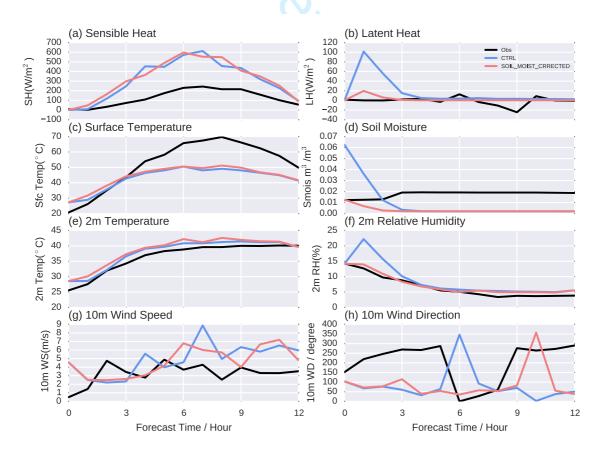


Figure b2 the same as Figure4, but for initial soil moisture sensitive experiment.

It is noted that the great efforts were made to improve the manuscript. However, another major revision is needed before it is accepted for publication.

Thank you for the comments.

More specific comments are found below.

1. The LES results presented in Figures 4 and 10 need further improvements. It is suggested to use the observed soil moisture as the initial condition for the new LES runs.

Yes, we have tried to set the initial soil moisture in the simulations as the observed value (experiment EXP_SMOIST). In EXP_SMOIST experiment, initial soil moisture was simply minus 0.05 (difference between model and observation over Tazhong station, Figure b1).

Over-predicted latent heat flux the first several simulation hours are largely reduced in EXP_SMOIST. The large overestimate of soil moisture makes LH (Figureb2 b, f) from the model continue to increase. As a result, near-surface of model is in agreement with observation (Figure b2 d). However, the results from CTRL experiment are closer to EXP_SMOIST experiment after 3 hours' spin-up. The large overestimate of soil moisture at initial stage(0~3hours) may have little impact on the large over-prediction of sensible heat flux during 3~12 hours' simulation.

2. Lines 398-399, the authors pointed out that the sensible heat (SH) may not be the dominant factor for the development of the deep CBL over the Taklimakan desert. However, in the conclusion part (line 461), the authors highlight that the SH is an important factor affecting the CBL depth over dominant. Please have double check and make them to be consistent? It should be very careful to make the former statement. If this were the case, that would be a big finding from this study?

Thank you for the comments.

(1) SH may not be the dominant factor for the super deep CBL over the Taklimakan desert. As explained in lines 392~426, in addition to the surface sensible heat, the intensity of the entrainment process determines the increase in the CBL. The entrainment rate w, is a valuable indicator of the development of the structure of the PBL. The rate of growth of the CBL is mainly determined by the entrainment rate w_e at the inversion layer without considering large-scale vertical motion. w_{e} _usually has a positive correlation with the amount of heat flux at the inversion layer $(w'\theta_v')_h$ and large LES experiments show that $(w'\theta_v')_h$ is about 0.2 times the surface flux of the buoyancy $\overline{(w'\theta_0')}$. During the period from 1100 to 1400 BJT, a larger sensible heat flux is clearly correlated with stronger turbulent entrainment and warmer air from the free atmosphere entraining into the Mixing Layer. As a result, the CBL develops rapidly and warms too quickly in the early simulation phase due to the clear increase in temperature and strong vertical mixing in the model. The reduction in the sensible heat flux reproduces the evolution of the desert PBL better in the early simulation phase because the HFX-75% and Noah simulations produce the smallest simulation errors in both temperature and moisture. However, the height of the CBL and the potential temperature for HFX-75% and Noah reach >5000 m and 323.2 K, respectively, at 1700 BJT. For the rest of the day, the rate of increase in the height of the CBL slows due to the deep CBL (>5000 m), which requires more heat for the increase in the depth of the PBL. w_e decreases with increasing intensity of the inversion, which inhibits the mixing and entrainment processes. These two factors limit the growth of the CBL when the height is >5000 m in this deep desert event. Therefore, increasing the sensible heat flux from 75 to 125% significantly reduced the total time required for the

increase in the CBL to a relatively low altitude (<5000 m) at the middle and preliminary stages of the development of the CBL, rather than produces a higher CBL at a later stage.

- (2) The SH is an important factor affecting the super deep CBL. Although SH is not dominant factor in this super deep CBL case, the CBL of Taklimakan need several days of favorable environment to reach its super depth (> 4000m), and Sustained high temperature and SH is the crucial factor for CBL to develop from shallow to deep CBL.
- 3. L136: The setting of vertical levels of the WRF/LES simulations is not correct. It is impossible that the vertical level starts from 1130.473m.

Sorry for the mistake, 1130.473m is altitude. We have changed "height for lowest 20 levels" to "altitude for lowest 20 levels"

4. Please make sure all the abbreviated terms are defined at the place where they appear at the first time. Please define GPS at Line 45, and check the same issue throughout the manuscript.

Ok.

5. Line 48: Change "relative warmer" to "relatively warmer".

Ok.

6. Lines 50-51, change "Lateral Boundary Layer(LBC)" to "lateral boundary layer (LBC)". Please add one space before "(". There are many similar errors in other places of the manuscript.

Ok.

- 7. Please be careful to use the upper case for the first letter of a word. Here "Lateral Boundary Layer" is one example (L50-51). More similar problems include "china" (L73), "Vertical" (L288), "Large-scale" (L300), "Specified LBC" (L319), etc. I am not going to list all of them here. It is the authors' responsibility to correct all the problems.
- Ok. We have changed "Lateral Boundary Layer" to "china", "Vertical", "Large-scale" (L300), and "Specified LBC" to "Lateral Boundary Condition (LBC)", "China", "vertical", "large-scale" (L300), and "specified LBC" respectively. We also carefully corrected similar problems in the manuscript.
- 8. Please pay more attention to the usage of past tense and singularity of verbs. Some examples include "model show..." (L206), "but model produce" (L223-224), "... temperature are ..." (L245),

"Figure 5 compare" (L327), etc. There are too many errors like this. The authors should be able to correct and avoid them.

Ok.

9. Lines 52-54. Please rewrite the sentence starting with "It is found". It is difficult to understand the authors' meaning.

We have changed "It is found that larger domain size varies the distance of the area of interest from the LBC, is efficient to reduce the influences of large forecast error near the LBC." to "It is found that larger domain size varies the distance of the area of interest from the LBC, is efficient to reduce the influences of large forecast error near the LBC." to "It is found that larger domain size varies the distance from the area of interest to the LBC, which is efficient to reduce the influences of large forecast error near the LBC."

10. Please change "locates" to "located".

Ok.

11. Line 70: Please add year after Wang et al.

Thank your comment, we didn't add year because the paper is still under review.

12. Line 81, please rewrite the sentence "This fundamentally restrict the development of understanding desert and surrounding area".

Ok, we have changed "This fundamentally restrict the development of understanding desert and surrounding area" to "This fundamentally restrict further understanding desert and surrounding area"

13. Line 86, "To fill in the gaps of Taklimakan desert" is ugly.

Ok, we have changed "To fill in the gaps of Taklimakan desert" to "To fill in the gaps in the available data for the Taklimakan Desert".

14. Line 97, "PBL can heavily impacted"?

Ok, we have changed "PBL can heavily impacted" to "PBL can severely impacted".

15. Line 98, "One way to tackle complex turbulent flows in weather forecast models is Large eddy simulation (LES)....." needs an improvement. Please correct. Again, there is no need to redefine LES if it is defined previously.

Ok.

16. Line 112, what is the LBCs?

We have changed "lateral boundary conditions (LBCS)" to "lateral boundary conditions (LBCs)".

17. Line 118, For the statement of "this paper is to examine assess the skillfulness....", please delete examine or assess.

Ok, we have deleted "examine"

18. Lines 136-138, what is the unit of the height?

The units are meter.

19. Line 140, please change the sentence "The sizes of model grids are 411 x321 791x651 211x201 and 403x406 respectively." to "The numbers of model grids from the outmost to the innermost domains are 411x 321, 791x651, 211x201, and 403x406, respectively". Several similar issues can be found in other places such as Lines 139, 207-208, etc. Please pay more attention on how to use ",".

Ok.

20. Lines 258-260, how can you attribute the reason to the potential temperature lapse rate?

Yes, this may be due to the differences in the potential temperature lapse rate above the top of the mixing layer between the observations and the simulated results. The stronger simulated inversion layer restricts the development of the CBL.

21. Line 266, please define CBLH. Please check out throughout the manuscript.

We have changed "CBLH" to "CBLH (Convective Boundary Layer Height)"

22. Line 301, "may resulted in" => "may result in".

Ok

23. Line 318, for "LES simulation", please delete "simulation" since LES has included.

Ok

24. Lines 330-331, for the sentence "However, the comparison results reveal that discrepancies among different experiments are large for CBL"? What does the "discrepancy" represent?

Thank you for the comments. "discrepancy" represent moisture and temperature profile in CBL. We have changed "However, the comparison results reveal that discrepancies among different experiments are large for CBL" to "the results show that there are large discrepancies in the CBL structure among the different experiments".

25. Using "The" or "the" correctly is a big challenge. It seems that the authors have a big trouble of using "the" or "The". For example, on Lines 331, "CBL" should be "the CBL". There are too many issues like this.

Ok.

26. Line 350, the sentence "CBL, the instantaneous vertical velocity fields for the horizontal are displayed in" is incomplete. Please correct.

Ok, we have changed "CBL, the instantaneous vertical velocity fields for the horizontal are displayed in" to "CBL, the instantaneous vertical velocity fields are shown in Figure 7"

27. L353-357, figure number is missing.

Ok, we have changed "(a)" and "(b,c)" to "(Figure 7a)" and "(Figure 7 b, c)" respectively.

28. Line 374: import or important?

Ok, we have changed "import" to "important".

29. Line 375, "surface-land schemes" should be "land-surface schemes".

Ok.

30. Line 376: "the difference between model and observation" should be "the difference between simulations and observations". Similar issues can be found other places too.

Ok.

31. Lines 382-384, please rewrite the sentence "The results ... 125%".

Ok.

32. Line 414, what do the large LES experiments mean?

We have deleted "large".

33. Lines 446-447, please rewrite the sentence "Overestimation of CBL profile may be caused by discrepancy between model and measurement initially".

Ok.

34. Lines 527-528: (d) "surface temperature (°C)" is not matched with Figure 4.d.

Sorry for the mistake, we have corrected the caption of Figure 4.

35. Line 534, please add "," between (a), (b), (c), and (c).

Ok.

 $36.\ Line\ 535,$ change "01 Jul2016" to "01 July 2016". Check the same issues in other places too.

Ok.

37. Figure 7, please add labels to x-axis and y-axis for all the four panels.

Ok.

38. I have to say that it is difficult to list all of the writing errors here since there are too many.

Thank you for the comments. We have tried our best to avoid writing errors and used professional English language edit service (Lucid Paper) to edit and improve the English writing

Editor(s)' Comments to Author:

Comments to the Author:

While the reviewers appreciated the efforts the authors spent during the revision, they still raised issues regarding English writing and too large model bias of surface fluxes.

Please be more careful for writing and improve introduction to put this work into the perspective.

Also please carefully address the 2nd reviewer's remaining concern.

Thank you for the comments.

- (1) We have carefully replied reviewers' remaining concern and rewritten part of the introduction to make it clear.
- (2) We have used professional English language edit service (Lucid Paper) to edit and improve the English writing.

1	Performance of WRF Large Eddy Simulations in modeling the		删除的内容: Weather Research and Forecasting Model
			删除的内容: RF
2	convective boundary layer over the Taklimakan Desert, China		删除的内容: -Eddy
3			删除的内容: in summertime
4	v v. l. v v 124 v v l. v 0.:13		删除的内容: CBL characteristics
5	Hongxiong Xu ¹ , Minzhong Wang ¹²⁴ , Yinjun Wang ¹ , Wenyue Cai ¹³	/ /	删除的内容: : A Real Test Case
7	State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences		批注 [LP1]: The title of your paper has been edited for clarity
8	Beijing, China 100081	//	– please check and confirm meaning is now correct.
9	2 Institute of Desert Meteorology, CMA (Chinese Meteorological Administration),	1	删除的内容: Minzhong Wang ¹²
10	Urumqi, China		删除的内容:
11 12	3National Climate Center, Chinese Meteorological Administration,		
12	Beijing, China 100081		
13 14	4 Taklimakan Desert Atmospheric Environment Observation Experimental Station, Tazhong 841000, China		
	Cililia		
15 			Bird IVA, Ada, La, Adap
16	Submitted to Journal of Meteorological Research	-	删除的内容:[2]
J		The state of	删除的内容: [3]
17	January 2, 2018		删除的内容:
18	Corresponding author;		删除的内容:
19	Dr. Minzhong Wang		删除的内容: Yinjun Wang
20	Institute of Desert Meteorology,	and a second	删除的内容:
21	CMA (Chinese Meteorological Administration),		
22	No. 46, Zhongguancun South Street, Haidian District, Beijing		删除的内容: State Key Laboratory of Severe Weather
23	P. R. China, 100081,	*****	删除的内容: Chinese Academy of Meteorological Sciences
24	Email: wangmz@idm.cn	· · · · · · · · · · · · · · · · · · ·	删除的内容:
25	<u>dorn1984@163.com</u>		
26			

69

70

boundary layer, Taklimakan Desert

47 Abstract The maximum height of the convective boundary layer (CBL), over the Taklimakan Desert 48 49 can exceed 5000 m during the summer and has a crucial role in simulating the regional circulation 50 and weather. We combined Weather Research and Forecasting Large, Eddy Simulations, with data from Global Positioning System (GPS) radiosondes and eddy covariance stations to evaluate the 51 performance of the model in predicting the characteristics of the deep convective planetary 52 53 boundary layer over the central Taklimakan Desert. The model reproduced the evolution of planetary boundary layer processes reasonably well, but the simulations predicted warmer and 54 more moist conditions than the observations as a result of the over-prediction of surface fluxes and 55 56 large-scale, advection. Further simulations were performed with multiple configurations and 57 sensitivity experiments. The sensitivity tests for the lateral boundary conditions (LBCs) showed that the model results are sensitive to changes in the time resolution and domain size of the 58 specified LBCs. A larger domain size varies the distance of the area of interest from the LBCs and 59 60 reduces the influence of large forecast errors near the LBCs. Comparing the model results using the original land surface parameterized sensible heat flux with the Noah land surface scheme and 61 62 those of the sensitivity experiments showed that the desert CBL is sensitive to the sensible heat 63 flux produced by the land surface scheme during daytime in summer. A reduction in the sensible heat flux can correct overestimates of the potential temperature profile, However, increasing the 64 sensible heat flux significantly reduces the total time needed to increase the CBL to a relatively 65 low altitude (<3 km) in the middle and initial stages of the development of the CBL rather than 66 67 producing a higher CBL in the later stages Keywords: Weather Research and Forecasting Model, Large Eddy Simulations, convective 68

删除的内容: Email: pbl wyj@sina.cn

删除的内容:

带格式的: 行距: 1.5 倍行距

删除的内容: During the summer season over Taklimakan

Desert, the ...he maximum height of the CBL (...onyactiva)

删除的内容: p...sitioning Ss

[5]

删除的内容:)...radiosondes and eddy-...covariance etations [6]

带格式的: 字体颜色: 文字 1

删除的内容: g

带格式的: 字体颜色: 文字 1

删除的内容: the

删除的内容: more frequently updated LBC is desirable to

删除的内容: The inhibit model errors near the LBCs are inhibited by more frequent updates of the LBCs., On the other hand, modelForecast errorbut are increased as the distance between the area of interest and the lateral boundaries decreasesd.

删除的内容: Furthermore,

删除的内容:

删除的内容: c...omparing the model results using t

删除的内容: a reduction(increment) in SH decreases(increases) maximum PBL by roughly 15% over desert—the desert It

删除的内容: very ...ensitivity... to the to...SH...ensible heat flux produced by surface ...he land surface scheme during summer ...ay

删除的内容: e

删除的内容: SH

删除的内容: in the CBL during summer day time

删除的内容: SH...ensible heat flux significantly reduces the total time needed for...o CBL ...ncrease the CBL to a relatively low altitude (< ... km) at...n the middle and preliminary...nitial stages of the development of the CBL rather than produce...ng a higher CBL at

删除的内容: WRF

删除的内容:

2

1 Introduction

175	The Taklimakan Desert, in south central Xinjiang Province, China, is the world's
176	second-largest flow desert and has a profound influence on the regional weather and climate.
177	As a result of the extreme range in near-surface temperatures, the planetary boundary layer
178	(PBL) in this region commonly reaches 4–6 km in height during the boreal summer (Wang et
179	al.), the deepest on <u>Farth</u> . <u>This</u> deep PBL, which is significantly higher than that <u>over</u> the 删除的内容: (Wang et al.)
180	surrounding mountains and oases, plays an important role in the regional circulation and 删除的内容: part
181	weather. The accurate forecast of PBL processes over the Taklimakan Desert is an important ## ## ## ## ## ## ## ## ## ## ## ## ##
182	problem in northwest China.
183	The atmosphere over large deserts (such as the Sahara and Taklimakan deserts) is a key 删除的内容: ,and Taklimakan et aleserts) [14]
184	component in the Earth's climate system. Surface heating from intense solar radiation leads to
185	the development of a near-surface, <u>Jow-pressure thermal system</u> , commonly referred to as <u>a</u>
186	heat low_(Engelstaedter et al. 2015). However, despite the vital role that deserts have in the
187	Earth's climate system, observations are extremely sparse and the available data are usually
188	obtained from surrounding areas (Marsham et al. 2011). This lack of observational data has 删除的内容: conditions are very difficult
189	restricted the development of our understanding of deserts and has led to large discrepancies
190	<u>in</u> analyses and significant biases in operational numerical weather prediction (NWP) models.
191	The ability of Jocal models to simulate real-world examples is often hindered by a lack of data
192	with which to assess the performance of the model (Garcia-Carreras et al. 2015).
193	To fill in the gaps in the available data for the Taklimakan Desert a field observation 删除的内容:o fill in the gaps ofn the available data for the Taklimakan Desert a field observation
194	experiment was <u>carried out during July 2016</u> in Tazhong, <u>Jocated in the center of the</u>
195	Taklimakan, Desert near, the Institute of Desert Meteorology, Chinese Meteorological 删除的内容: g 删除的内容: g
	мятачня 1 3-ы 1, досентней бу in the institute of 2 [17]

277	Administration, Urumqi (Liu et al. 2012; Wang et al. 2016a; Wang et al. 2016b). These data
278	will allow the evaluation of the performance of the deep PBL process in NWP models over
279	the Taklimakan Desert.
280	The motion of the atmosphere interweaves small-scale, complex interactions with 删除的内容: On the other hand, atmospheric [19]
281	multiscale nonlinear interactions. As a result of their limited resolution in both time and space.
282	mesoscale atmospheric models are <u>unable to represent all these processes (Talbot et al. 2012).</u> 删除的内容: cannot 删除的内容: explicitlyepresent all these processes (Talbot et al. 2012).
283	which include turbulent motion on a scale that is too small to be resolved by simplified
284	processes in atmospheric models. Turbulent mixing throughout the PBL can have a large 删除的内容: planetary boundary layer (BL) [21]
285	impact_on_forecasts by NWP models (Shin; Hong 2011; Shin; Hong 2015).
286	Complex turbulent flows in NWP models can be analyzed by large eddy simulation 删除的内容: One way to tackle complex turbulent flows in NWP models can be analyzed by large eddy simulation 23
287	(LES) techniques, which can explicitly resolve the energy-containing turbulent motions
288	responsible for turbulent transport_(Moeng et al. 2007). LES techniques have been used
289	intensively to examine the detailed structure of turbulence, to generate statistics and to study
290	physical_processes (Garcia-Carreras et al. 2015; Heinold et al. 2013; Heinold et al. 2015;
291	Heinze et al. 2015; Sun; Xu 2009). However, most applications of LES techniques to the PBL
292	have been limited to idealized physical conditions. Recently, some studies have attempted to
293	test and assess the performance of LES in simulating real-world case studies (Liu et al. 2011; 删除的内容: LESnd assess itshe performance of LEShe performance of LES
294	Talbot et al. 2012). Liu et al. (2011) suggested that the Weather Research and Forecasting
295	Large Eddy Simulation (WRF-LES) is a valuable tool with which to simulate real-world
296	microscale weather flows and to develop real-time forecasting systems, although further 删除的内容:
297	modeling to determine the accuracy of synoptic forcing and the effect of resolution has been 删除的内容: LESodeling tests,such as elucidata [25]
298	highly recommended. Talbot et al. (2012) suggested that the ability of WRF-LES to simulate

5	real_world_examples is hindered by a lack of favorable synoptic forcing. The initial and lateral	删除的内容:orld cases arexamples is hinder ad hiv a [26]
7	boundary conditions (LBCs) were found to be more important in the LES results than	
3	subgrid-scale turbulence closures. Thus, the LBCs, can significantly alter the status of	删除的内容: initial condition
		删除的内容: ofan significantly alter the status of [27]
)	high-resolution LESs via inflow boundaries (Rai et al. 2017).	删除的内容: WRF land-surface modelnflow bowndaria[28]
)	Most of the LES research over desert regions has been limited to idealized physical	删除的内容: However, most of the research abo [29]
L	conditions_(Garcia-Carreras et al. 2015) or conducted outside the Taklimakan_Desert (Liu et	
2	al. 2011; Talbot et al. 2012). The aim of this study was to apply LES to a real example of a	删除的内容: As far as we know,
		删除的内容: is the first attempt toas to applicate
3	deep convective boundary layer (CBL) over the Taklimakan Desert. An important aspect of	删除的内容: Thus, a
	this work is to assess the skillfulness of the WRF-LES in simulating real examples of deep	删除的内容: the ongoinghis paper [31]
+	this work is to assess the skinitumess of the WKF-LES in simulating fear examples of deep	删除的内容: examine
5	desert PBL processes at a relatively coarse resolution (333 m) over the Taklimakan Desert	删除的内容: in relative coarse resolution (333m) over
		Taklimakan dessert
5	during the boreal summer, We first use a combination of the WRF-LES and Global	删除的内容:
7	Positioning System (GPS) radiosonde and surface fluxes over the central Taklimakan Desert	删除的内容: casesxamples of deep desert PBL [32]
		删除的内容: First we assess the potential errors related to
3	calculated <u>using</u> an eddy covariance method to evaluate the performance of the WRF-LES in	LBC. Then
		删除的内容: First we first use a combination of the 33
)	a real-world example. We then assess the potential errors related to the LBCs. One of our	删除的内容: 0
		Majarina 1 a H
)	aims is to evaluate the relative contribution of uncertainties in the surface model to the typical	
L	behavior of PBL processes by conducting sensitivity experiment, We therefore studied the	删除的内容: theensitivity experiment.sThus
2	sensitivity of the model performance to the surface sensible heat flux Section 2 gives a brief	
		删除的内容: . In Section 3
3	description of the synoptic conditions of the case study and describes the data, model	
		删除的内容: ,and weescribed the data, and [35]
ł	configuration and design of the numerical experiments. The results of the numerical	
5	simulations are presented in Section 3 and our conclusions are summarized in Section 4.	删除的内容: 4
		删除的内容:Finally, wend our [36]
5	2 Methods	([00]
		删除的内容: <#>Data
7	2.1 Model configuration	мэжнэ гэ т. т. Бата , [37]

486	We used version 3.8.1 of the WRF model (Skamarock et al. 2008) at a sub-kilometer	删除的内容: convection-permitting
487	resolution to simulate an extreme CBL over the Taklimakan Desert. The model is integrated	删除的内容: sto simulate the[38]
		删除的内容: rainfall
488	for 12_h, starting from 0800 BJT (Beijing Time) on 1 July 2016. We use one-way nested	删除的内容: event inver the Taklimakan Desert
489	WRF model from the mesoscale down to LES scales. All the domains consist of 51 levels	删除的内容: Figure 1 shows the domain for two
403	WRI model from the mesoscale down to LES scales. All the domains consist of 31 levels	experiments. We use the outermost domain and three
490	extended to 50 hPa. The altitudes for the lowest 20 levels are 1130.473, 1157.705, 1207.765,	one-way nested domains.
		删除的内容: conducted
491	1294.703, 1423.873, 1591.895, 1795.526, 2021.868, 2272.33, 2558.433, 2882.675, 3248.113,	删除的内容: a
492	3658.499, 4118.481, 4633.882, 5212.111, 5855.802, 6517.111, 7151.295, and 7757.151 m, and	删除的内容: -
432	3030.477, 4110.401, 4033.002, 3212.111, 3033.002, 0317.111, 7131.233 and 7737.131 means	已移动(插入) [1]
493	the horizontal spacing of the model is 12, 3, 1, and 0.33 km for d01, d02, d03, and d04. We	删除的内容: were
		删除的内容: Height
494	used (411 × 321), (791 × 651), (211 × 201) and (403 × 406) model grids, Figure 1. shows	删除的内容: Ahe altitudes for the lowest 20 levels a re [[40]]
		带格式的: 字体:12 pt
495	the domain used for all the experiments except BDY T3. A smaller grid size (205 × 208) is	删除的内容: Figure 1. Figure 1Figure 1
400	used in experiment BDY T3 to verify the effect of domain size on the LES.	带格式的: 字体:12 pt
496	used in experiment BD1_13 to verify the effect of domain size on the LEST.	删除的内容: forDY_T3. S smaller grid sizes (205) [41]
497	The initial and LBCs, are provided at the coarsest mesoscale simulations from the	批注 [LP2]: Are units required for the grid sizes?
		删除的内容: simulation
498	National Centers for Environmental Prediction Global Data Assimilation System Final	删除的内容:
499	Operational Global Analyses dataset. The analyses are $0.25^{\circ} \times 0.25^{\circ}$ grids operationally	删除的内容: (Figure 1).
133	Specialism Global Amalyses and Specialism Sp	已上移 [1]: All domains were 51 levels extended to 50 hPa.
500	prepared every six hours and available on the surface and at 32 mandatory (and other pressure)	删除的内容:
E01	levels from 1000 to 10 mbar (National Centers for Environmental Prediction 2015).	删除的内容: ized conditionnd LBCslateral boupdary
501	levels from 1000 to 10 moan (National Centers for Environmental Prediction 2013).	删除的内容: on
502	The physical options in the model include the WSM5 microphysics scheme (Hong; Lim	删除的内容: -degree by0.25°-degreegrids [43]
503	2006), the Yonsei University PBL, scheme (Hong; Pan 1996), the Kain-Fritsch cumulus	删除的内容: 26
	2000), the Tollot Children (Tollog, Tail 1990), the Tail Thom Calling	删除的内容: millibarso 10 millibarsbar (National 44)
504	parameterization scheme_(Kain 1993; Kain 2004), the rapid update cycle (RUC) land surface.	删除的内容: modelhysical options in the model include 45
505	model (Smirnova Tatiana et al. 2000; Smirnova et al. 1997), the rapid radiative transfer model	删除的内容: (Smirnova Tatiana et al. 2000; Smirnova et al. 1997)the Noah land surface model(Chen; Dudhia 2001a,
506	(Mlawer et al. 1997) at long wavelengths, and the Dudhia shortwave radiation scheme	2001b),
		删除的内容: longwave,
507	(Dudhia 1989). The cumulus parameterization scheme is only applied to the d01 (12 km) grid	

609	domain to parameterize the convective rainfall and the LES is only applied to d04 (0.333 km).
610	Table 1 Jists the experiments. Experiment 1 was the control experiment, denoted as
611	CTRL. Experiments 2 (six-hourly updated LBC; denoted BDY_T2) and 3 (with domain sizes
612	205 × 208, denoted BDY T2) were conducted as in the CTRL experiment, but with different
613	domain sizes and frequency of LBC updates. In experiments 4 (HFX %75) and 5
614	(HFX %125), the sensible heat flux was reduced to 75 and 125%, respectively, of that in the
615	CTRL experiment in the RUC land surface scheme to highlight the impact of the sensible heat
616	flux on the deep CBL in the Taklimakan Desert. In experiment 6 (denoted Noah), the Noah
617	land surface model (Chen; Dudhia 2001a, 2001b) replaced the RUC land surface model in the
618	CTRL experiment to discriminate the influence of different land surface models on the deep
619	CBL.
620	2.2 Data
621	The model simulations are compared with the Tazhong field experiment carried out Milking field experiment which Milking field experiment Milking fi
622	throughout the month of July 2016 by the Institute of Desert Meteorology, Chinese
623	Meteorological Administration, Urumqi. The main station was located at (86.63° E, 39.03° N).
624	The location is relatively flat with few hills and is covered by sand combined with grass
625	(Figure 1. , c). The deep PBL in our simulation was under a cloudless sky in a dry ■
626	environment。 *** ********************************
627	The surface fluxes, were measured by an eddy correlation system using an R3-50 删除的内容: 1)he surface fluxes:were measured [50]
628	supersonic anemometer developed by Gill (IJK) deployed at a height of 10 m. The frequency
629	of data acquisition was 20 Hz and the surface sensible heat flux was calculated by the eddy.
630	covariance method.
	7

删除的内容: 2...he)...vertical profiles were measured using [51] 689 The vertical profiles were measured using soundings. Upper air soundings of the temperature, pressure, humidity, and wind speed and direction were conducted three to six 690 times per day with the CASIC23 GPS sounding system developed by the No. 23 Institute of 691 China Aerospace Science & Industry, The sounding times were 01:15, 07:15, 10:15, 13:15, 692 693 16:15 and 19:15 694 2.3 Synoptic patterns Figure 2 shows the synoptic patterns at 0800 BJT on 1 July 2016 at 850, 700, 500 and 695 删除的内容:° 100 hPa. There were cyclonic vortexes from 850 to 500 hPa centered at 55° N (Figure 2. a, b 696 删除的内容: Figure 2. Figure 2Figure 2 697 and c). The Taklimakan Desert was located east of the cyclonic vortex and embedded in an 删除的内容: ... b and c). The Taklimakan was ... [52] **带格式的:** 字体:12 pt 698 $east-west_elongated\ ridge\ at\ 0800\ BJT\ \underline{on\ 1\ July\ 2016}.\ To\ the\ southwest,\ influenced\ by\ the$ **带格式的:** 字体:12 pt 699 South Asian High centered over the eastern Iranian Plateau, the upper air over the Taklimakan 删除的内容: Figure 2. Figure 2Figure 2 Desert was controlled by the westerly jet stream at 100 hPa (Figure 2. d). A Jow-pressure 700 **带格式的:** 字体:12 pt **删除的内容:** ...). The [53] 701 system at low levels, termed a heat low (Figure 3.), dominated most of southern Xinjiang and 删除的内容: high **带格式的:** 字体:12 pt resulted in continuous high temperatures over the desert. This situation favored subsidence 702 删除的内容: which is ...ermed of [54] 删除的内容: Figure 3. 703 and served as a triggering mechanism for the deep PBL in the region in the subsequent two to 删除的内容: Figure 3Figure 3 704 three days (not shown) 删除的内容: area of ...outhern Xinjiang and resulted in [... [55]] 705 Results 删除的内容: <#>Sensitive to Lateral Boundary 3.1 Validation of the deep CBL structure 706 Condition(LBC) Simulated d The time series of the surface variables at Tazhong station from the CTRL simulation for 707 **删除的内容:** Simulated d...he time series of iurnal [56] 删除的内容: 0 1 July 2016 are presented in Figure 4. a and b. The results show that there are large 708 带格式的 删除的内容: Figure 4. Figure 4 709 discrepancies in the thermodynamic surface variables (surface temperature and the sensible 带格式的 710 and latent heat fluxes) between the model and the observations. The surface sensible heat flux 删除的内容: 删除的内容: ,...and b. R...he results show that the

775	is far <u>Jower in the observations</u> (maximum, 243 W m ⁻²) than in the model (maximum, 613 W	删除的内容: lessower in the observations [[58]
776	m ⁻²) indicating that the sensible heat flux from the WRF simulation is 2.5 times than that of	
777	the observations when they are both at their maximum. By contrast, the model shows a	
778	significant cold bias for the surface temperature, which is much higher in the observations	
779	(maximum, 70°C) than in the model (maximum, 50°C). To further verify the surface variables,	
780	the root-mean-square error (RMSE) and mean bias (BIAS) are calculated including	删除的内容:,the
781	integration hours from 3 to 12 h for Tazhong station (Table 2). The model significantly	删除的内容: inTable 2). As mentioned earlier,ha.madal
782	overestimates the sensible heat flux (RMSE 263.636 W m ⁻² BIAS:250.14 W m ⁻²) and	
783	dramatically underestimates the surface temperature (RMSE 14.65°C, BIAS13.37°C).	
784	There are two possible reasons for the model sensible heat flux being far greater than	删除的内容: Three
785	that of the observations. First, mismatches in land use between the model and the	删除的内容: result inor the model SHensible heat flux [60]
		删除的内容 : (1)) Ttheirst, [61]
786	observations. The WRF models uses land use categories to assign static parameters and initial	删除的内容: mismatch
787	values to each grid cell_(e.g. the albedo and surface roughness; Schicker et al. 2016). However,	删除的内容: ofn landse between the model
788	Figure 1. c. shows that station EC is surrounded by a mixture of grass and sand. This complex	带格式的: 字体: 12 pt 删除的内容: Figure 1. Figure 1
789	underlying surface may not be adequately reproduced by the model and may have an impact	带格式的: 字体:12 pt 删除的内容: ,shows that the ECtation EC is
790	on the overestimation of the sensible heat flux Second, the sensible heat flux and the latent	删除的内容:
791	heat flux based on the eddy correlation method may be underestimated (LeMone et al. 2013).	删除的内容: (2) lit is should be noted thatecond tha [64]
792	It has been shown that if the other two terms in the budget (the net radiation and flux into the	
		批注 [LP3]: Please give 'E + LE' in full (no abbreviations).
793	soil) are accurate, then the data used for the whole experiment to find the sensible and latent	删除的内容: Hensible +nd LE [65]
794	heat fluxes for Tazhong station are, on average 75%, of the values required to balance the	删除的内容: equal to ann average of[66]
795	surface energy budget	删除的内容: 70
I		删除的内容: what would behe values required fer [67] 删除的内容: (LeMone et al. 2013)
		Minpor Hij y 3 合: (LCIVIOHC Ct al. 2013)

ı		
904	In contrast with the large differences in the surface variables between the model and the	删除的内容: Despite
		删除的内容: surface
905	observations, the near-surface variables (the 2 m temperature, the relative humidity and the 10	删除的内容: on the surface variables between the model [68]
906	m wind speed. Figure 4. e, f and g) in the model are higher than in the observations. The time	带格式的
300	in white specet, right 4.2, rand g) in the moder are inguer than in the observations. The time	删除的内容: Figure 4. Figure 44
907	series evolution of the 2 m temperatures follow those of the observations (RMSE 1.66, BIAS	删除的内容: (Figure 6 e)
		带格式的
908	1.61) but the model produces a surface warmer by about 3 K at the beginning of integration	删除的内容:, f and g) are closer to measurements than [69]
000		删除的内容: nearly
909	and 1_K when the model and observations both reach their maximum temperature.	删除的内容: observations
910	The results indicate that the near-surface relative humidity in the model is close to the	删除的内容: 1.66, BIAS:1.61); but the modal [70]
		删除的内容: Resultshe results indicate [71]
911	initial observations (Figure 4., f). However, the humidity in the model increases during the	带格式的
012	See	删除的内容: Figure 4. Figure 44
912	first few hours of model integration, while the observed humidity decreases. After three hours	删除的内容: fromn the model keepsncreasin [72]
913	of spin-up, the model reproduces the evolution of humidity reasonably well, in agreement	带格式的
914	with the observations (RMSE, 1.22), but the values are higher than the observed values (BIAS,	删除的内容: observation
		删除的内容:1.22), but theirvalues are relative inhar [73]
915	1.11).	
916	One reason for this discrepancy is the overestimation of the soil moisture content during	删除的内容: eon of the soil moisture content during the
310	One reason for this discrepancy is the overestimation of the son moisture content during	([13])
917	the simulation. The soil moisture content can have a strong influence on the near-surface	
918	humidity. An overestimation of the soil moisture content in the initial condition of the model	
010	was a sould be a sould as the difference in the house like of the many of the large (Talket et al.	删除的内容:
919	may result in a considerable difference in the humidity of the near-surface layer Talbot et al.	
920	2012). In our simulations, the model produces Jarge overestimates of the soil moisture content.	删除的内容: theur presentimulations, the modal results [75]
921	At initialization of the model in the CTRL simulation, the soil moisture content at 5 cm depth	MATERIAL AL AND THE
		/ 删除的内容: Figure 4. Figure 44
922	at station EC was 0.230 m ³ m ⁻³ , whereas the initial value in the model was 0.6 m ³ m ⁻³ (Figure	删除的内容:). This large overestimate of the scil
923	4. d). This large overestimate of the soil moisture content results in a continuing increase in	/ 删除的内容: Figure 4. Figure 44
		删除的内容:, f) from the model continue to increase
924	the latent heat in the model (Figure 4. b, f), As a result, the near-surface in the model is far	删除的内容: from the model to continue increasing, then
025	and its order in the absorbations during the first C. 1	forces near-surface far moister than observation at the first
925	moister than in the observations during the first few hours of model integration. The model	few hours of model integration.
		删除的内容: An interesting result to note is that t

1035	simulation has the ability to correct some of the bias due to the initial conditions of the	删除的内容: abilitiesbility to correct some of that the correct some of the correct so
1036	surface and the results from the CTRL experiment are closer to the observed values after three	删除的内容: t
1037	hours <u>of</u> spin-up _*	删除的内容: observationbserved values after 3 [79]
1038	Figure 5. (solid lines) compares the potential temperatures simulated by the model with	删除的内容: Figure 5. Figure 5
1039	the GPS sounding measurements (dash lines) at Tazhong from 0800 to 2000 BJT on 1 July	删除的内容: The model simulatedotential temperature [80]
1040	2016, The radiosonde was about 7 km away from Tazhong when it reached a height of 6 km.	
1041	The profiles of the model simulations are therefore averaged at a radius of 3.5 km from the	
1042	measurement station. When the model is initialized at 0800 BJT, the nocturnal inversion	
1043	reaches 300 m (not shown). This inversion is eroded in the model by 1100 BJT, in agreement	
1044	with the observations, and both the model results and the observations reach about 300 m at	
1045	1100 BJT (Figure 5. a). However, the simulated CBL grows faster in the morning than that in	删除的内容: Figure 5. Figure 5Figure 删除的内容:). However, the simulated CBL grave factor 81
1046	the observations due to a larger sensible heat flux, reaching 3500 m (3000 m in the	J [81]
1047	observations) at 1400 BJT (Figure 5. h). The simulated and observed CBL heights exceed	删除的内容: Figure 5. Figure 5Figure 删除的内容:
1048	4000 and 5000 m, respectively, at 1700 BJT (Figure 5. c). This indicates that the simulated	删除的内容:
1049	CBL increases more slowly in the afternoon than the observed CBL. Compared with the	删除的内容: At 1700 BJT (Figure 5Figure c),, t. ha 删除的内容: Figure 5. Figure 5
1050	measurements, the model is initially cooler, but with a faster heating rate in the morning. As a	删除的内容: growsncreases more slowly in the flamous [83]
1051	result, the model is warmer than the observations in the afternoon, but in agreement with the	删除的内容: The main source of model error is inauthentic
1052	observations by the end of the day. This may be due to the differences in the potential	cold advection within PBL in the afternoon which will be discussed below. Another
1053	temperature lapse rate above the top of the mixing layer between the observations and the	删除的内容: One possible minor reason ishis mau ha dua [84]
1054	simulated results. The stronger simulated inversion layer restricts the development of the	删除的内容: Simulatedhe stronger simulated invarian
1055	CDI	删除的内容: Han et al. (2012)
1055	CBL	删除的内容: Moreover, in terms of CBL temperatures, t
1056	The model initially simulates a cooler and drier CBL at 1100 BJT on July 2016 than the	删除的内容: P
I		删除的内容: at

1143	observations (Figure 5. a). Compared with the observed potential temperature profile, the		删除的内容: edtions,at 1100 BJT01 JUL [87]
1144	CBL appears earlier in model forecasts due to an obvious warming in the surface layer. The		删除的内容: Figure 5. Figure 4
1	022 pppears earner in moder to too and some of the many in medical and the many in the man	-/	删除的内容: toith the observed potential temperature [88]
1145	residual layer may play a key part in the deep PBL over the Taklimakan Desert, At 1100 BJT,		
1146	when the CBLH (Convective Boundary Layer Height) in the observations was about 300 m.		带格式的: 字体:(默认) Times New Roman, (中文) +中文主題正文 (宋体), 字体颜色: 文字 1
1147	the potential temperature was about 317 K in the PBL and 320 K in the residual layer. When		删除的内容: was about 300 mn the observation [89]
1148	the potential temperature in the CBL increased to the value in the residual layer (320 K), the		
1149	CBL merged with the residual layer and the height of the PBL in the observations reached		
1150	3000 m at 1400 BJT. These results are in good agreement with those of Han et al. (2012)		
1151	who, by analyzing observations from a CBL in the Badanjilin region, found that the CBL		
1152	developed rapidly after 1200 LST, possible as a result of the disappearance of the inversion		
1153	layer		
1154	When the sensible heat flux reached its maximum at 1400 BJT (Figure 5. b), the		删除的内容: However, w
1155	potential temperature profile was closer to the observations than at the initial time and their		删除的内容: SH
1133	potential temperature prome was closer to the voscrvations than at the initial time, and then	$/\!\!/\!\!/$	删除的内容: haseached [90]
1156	value was higher than the observed values. By 2000 BJT (Figure 5. d), the height of the CBL	///	删除的内容: extent
1157	in the model reached its maximum value, consistent with the observations, despite being		删除的内容: Figure 5. Figure 5Figure 4
1158	about 0.4 K cooler at lower levels (<2.5 km). One cause of the higher temperatures produced		删除的内容: isas closer to measurementshe [91]
1130	about 0.4_K coolet at lower levels_(2.53km). The cause of the inglier temperatures produced	M / M	删除的内容: Figure 5. Figure 4
1159	in the model may be the large difference in the surface heat fluxes and we concluded that the		删除的内容: PBL height
1160	surface sensible heat flux from the land surface parameterization was the crucial factor		删除的内容: Hin the model reaches its maxin [92]
	saliate sension near near near near sension parameter reason was near transfer.	W	删除的内容:,onsistent with the observations, although
1161	affecting the CBL processes during the daytime in summer. Differences in the surface		删除的内容: of approximatelyeing about 0.4 K
1162	sensible heat flux create differences in the vertical development of the PBL. Thus, the large		
1163	difference in the surface sensible heat flux between the model and the observations may lead		
1164	to differences in the growth of the CBL during the daytime and in its peak depth during the	/	
	12		

		and 164	竹中寮. Fasturatalu ana ana artificiallu ana Jifu t
1255	simulation. Fortunately, the surface sensible heat flux computed by the Jand surface model		的内容: Fortunately, one can artificially modify t
256	can artificially be modified to control the calculation of the surface fluxes. Sensitive	\	的内容: T
230	can artificially to modified to control the calculation of the surface fluxes. Schstave	The same of the sa	的内容: heurface SHensible heat flux commuted by [95]
1257	simulations will be realized and discussed in next section.		的内容: modified
		删除	的内容:,whicho controlsthe calculation of the [96]
1258	Figure 5. also shows vertical profiles of the vapor mixing ratio (dashed lines) at	删除	的内容:
1259	Tazhong station. The simulated profiles with a lower residual layer are much drier than the		的内容: Figure 5. Figure 5Figure
		删除	的内容: alsohows vVrtical profiles of than 197]
260	observations from 1500 to 3500 m at 1100 BJT. Vertical mixing results in a uniform structure		
1261	of the vapor mixing ratio within the CBL, so the differences between the profiles of the		
262	simulated results and the observations are remarkably reduced when the CBL is above 4000		
1263	m at 1400 BJT. The differences are generally ≤ 1 g kg ⁻¹ at 1100 BJT, reaching a maximum of		
1264	0.3 g kg ⁻¹ at 1400 BJT. However, the PBL shows an inverse layer at lower levels (\$\leq\$2000 m)		
1265	with a measured moisture content of 2.8-3.6 g kg ⁻¹ , which is not captured by the model. As		
266	the <u>CBL</u> grows, the inversion moisture structure below 3000_m develops and <u>is maintained</u>		
267	below 3000 m from 1400 to 2000 h BJT. By the end of the day, the simulated humidity of the		
1268	CBL is higher than in the observations because the model cannot reproduce the inverse	删除	的内容: with nonverse moisture layer with [98]
1269	moisture layer within the CBL	删除	的内容:
270	The inverse pattern in humidity may be caused by the interactions between the	删除	的内容: Inversehe inverse pattern in humidity may be [99]
271	heterogeneous pattern of humidity and large-scale advection over the underlying surface. For		
272	instance, the interaction of an oasis with the desert environment may lead to an inverse		
1273	humidity layer in the PBL above the desert. One possible reason for the discrepancy between		
1274	the model results and the observations may be an error in the classification of land use type.		
1275	The USGS land_use_data in the ARW-WRF model is based on Advanced Very High		
1276	Resolution Radiometer, 1_km resolution satellite data during the time period 1992–1993, and		

1352	this land_use data may no longer be accurate in the Taklimakan Desert. Misclassifications
1353	have also been found in the USGS land use data, which is the default land use dataset in the
1354	WRF_model_(Schicker et al. 2016). This is confirmed by the discrepancies in land_use
1355	between the simulation and the observations at Tazhong station, The large-scale advection of
1356	dry air can affect the moisture profile. The moisture content is also variable in the horizontal
1357	direction, so advection at Jow levels may contribute to the drier conditions in the lower PBL 删除的内容: at bottom base of the
1358	and more moist conditions in the upper PBL between 1100 and 2000 BJT. *** 批注 [LP4]: This sentence has been edited for clarity – please check and confirm meaning is now correct.
1359	The mismatch between the model results and the observations in terms of moisture 删除的内容: moisture …ore moist conditions at
1360	content suggest that the effects of land use type and large-scale advection need to be
1361	quantified and that more detailed data may be required for the Taklimakan Desert (both land
1362	and atmosphere) to realize more realistic results. Extra care should also be taken with the
1363	sparse and limited data at the periphery of the Taklimakan Desert (ter Maat et al. 2012).
1363 1364	sparse and Limited data at the periphery of the Taklimakan Desert (ter Maat et al. 2012). 3.2 Sensitivity to the lateral boundary conditions.
	删除的内壳 a ty to the leteral boundary
1364	3.2 Sensitivity to the lateral boundary conditions. Miles by the lateral boundary
1364 1365	3.2 Sensitivity to the lateral boundary conditions After verifying the details of the LES experiments, we assessed the sensitivity of the 删除的内容: simulationexperiments [104]
1364 1365 1366	3.2 Sensitivity to the lateral boundary conditions. After verifying the details of the LES experiments, we assessed the sensitivity of the simulations to the time resolution and domain size of the specified LBCs. For a one-way nest, Milk hyperiments
1364 1365 1366 1367	3.2 Sensitivity to the lateral boundary conditions After verifying the details of the LES experiments, we assessed the sensitivity of the simulations to the time resolution and domain size of the specified LBCs. For a one-way nest, the specified LBCs are obtained from coarser simulations. The analysis and forecast times
1364 1365 1366 1367	## 3.2 Sensitivity to the lateral boundary conditions After verifying the details of the LES experiments, we assessed the sensitivity of the simulations to the time resolution and domain size of the specified LBCs. For a one-way nest, the specified LBCs are obtained from coarser simulations. The analysis and forecast times ## 5 pp tructure of the DPL was diagnosed as a previously, run larger area simulation are used to specify the LBC. The primary cause
1364 1365 1366 1367 1368	3.2 Sensitivity to the lateral boundary conditions. After verifying the details of the LES experiments, we assessed the sensitivity of the 删除的内容: simulationexperimentss
1364 1365 1366 1367 1368 1369	## After verifying the details of the LES experiments, we assessed the sensitivity of the simulations to the time resolution and domain size of the specified LBCs. For a one-way nest, the specified LBCs are obtained from coarser simulations. The analysis and forecast times from a previously run larger area simulation are used to specify the LBC. The primary cause of the differences in the structure of the PBL was diagnosed as the difference in the domain sizes and frequency provided by the coarser resolution. The aim was to assess the sensitivity

1447	mixing ratio profiles from the LBC sensitivity experiments and observations. The results	1	删除的内容: Rhe results indicathowethat, thar is a [108]
1448	show that there is a distinct relationship between the development of the LBCs and the CBL.	///	
		////	删除的内容: more moist
1449	The profiles produced by the model are almost all the same at the initial time (not shown).	/////	删除的内容: erfree troposphere. Such
		// ///	删除的内容: Figure 5. Figure 5Figure 4
1450	However, the results show that there are large discrepancies in the CBL structure among the	IML	带格式的: 检查拼写和语法
1451	different experiments. The results indicate that a larger domain size and higher time		删除的内容: Furthermore, inver the next three hours that [110]
1,31	difference experimental line results indicate that a larger domain size and singler time	Ш	删除的内容: Figure 5. Figure 5Figure 4
1452	frequency for the LBCs leads to a warmer and drier PBL, but a cooler and moister free		带格式的: 检查拼写和语法
	***************************************		删除的内容:, b). The potential temperature profiles[111]
1453	troposphere. This sensitivity is monotonic with respect to the LBCs (Figure 5.). Over the next		删除的内容: Figure 5. Figure 5Figure 4
			带格式的: 检查拼写和语法
1454	three hours, the differences between the sensitivity experiments increase over time (Figure 5.)		删除的内容:)Finally, [112]
1455	a, b). The potential temperature profiles within the CBL diverge at 1100 BJT. However, the		删除的内容: and
1-33	1, 0). The potential temperature promes within the EBE tiverge at 1100 BS1. However, the		删除的内容: by
1456	results show a greater convergence in the afternoon as the CBL continues to grow (Figure 5.c)		删除的内容: Figure 5. Figure 5Figure 4
		W	带格式的: 检查拼写和语法
1457	but the largest discrepancies are found at end of the day (Figure 5. d) when the model CBL	1	删除的内容:) where the model CBL potential
			带格式的: 字体:12 pt
1458	potential temperature is warmer than the observations by up to 0.7 and 0.9 K in BDY T2 and	////	删除的内容: Figure 6. Figure 6 6
	DDV Til	/ ///	带格式的: 字体:12 pt
1459	BDY_T1, respectively,	M	删除的内容: sectionsalong 39.03°Nf the harizantal
1460	Figure 6. shows cross-sections of the horizontal winds along 39.03° N, superposed with a		带格式的: 字体:12 pt
1400	Figure 6. shows cross section. For the normal winds along 57.05 14, superposed with 5	///	删除的内容: Figure 6. Figure 6 6
1461	theta and the vapor mixing ratio. Less frequent updates of the LBCs are desirable in the cold	/ //	带格式的: 字体:12 pt
			删除的内容:, c). L larger domain size, which
1462	zone near the LBCs, which results in cold advection of the temperature and moisture to the		带格式的: 字体:12 pt
			删除的内容: Figure 6. Figure 6 6
1463	area of interest (Figure 6. b, c). A larger domain size, which changes the distance of the area	7	带格式的: 字体:12 pt
1464			删除的内容:
1464	of interest from the LBC, is efficient in reducing the influence of large forecast errors near the		删除的内容: The results suggest that the model results are
1465	LBCs on the area of interest (CMP, Figure 6. a, c).		sensitive to changes in the time resolution and domain size of
1465	LBCs pit the area of interest (CWF, Figure 0. a. c).	•	Sthe specified LBCs. The mismatch among sensitive
1466	To further examine the impact of the LBCs on the turbulence in the deep Taklimakan		experiments is present means that the effect of the LBCs
100	To turner examine the impact of the LDC, on the tarourence in the acep Takinimatan		needs to be quantified to realize a more realistic performance
1467	Desert CBL, the instantaneous vertical velocity fields are shown in Figure 7. By 1400 BJT,		in the sub-kilometer-scale simulations.
		The same	删除的内容: S on the turbulence ofn the dee [116]
1468	the convection of the CTRL simulation had clearly intensified under strong surface heating		批注 [LP5]: Is Figure 7 correct here?
I		****	删除的内容: obviously

1565	(Xu et al. 2018). Thus, the maximum vertical velocity reached 9 m, s ⁻¹ and the depth of the	117]
1 566	mixed layer grew to about 4.3 km (Figure 7 a). The distances between the boundary layer 批注 [LP6]: Is Figure 7 correct here?	
1 567	删除的内容: he distances between the boundard base rolls correspondingly increased to about 12 km and the height of the peak up-draft was raised	118]
1 568	to just under 4 km. The cellular shape of the up-, and down-drafts characteristic of the	
1569	boundary layer rolls is clear in the horizontal view showing the strength of convection. The	ary
1 570	layer rolls' – please try to clarify. BDY T2 and BDY T3 experiments (Figure 7b, c) both reproduce motions with much weaker	
1370	删除的内容:, c) both reproduce motions with much	110
1571	maximum and minimum values at the boundary of the domain. In BDY_T3_Tazhong station	119])
1572	at the center of the model is directly influenced by the inflow of cold advection produced by	
1573	the low-frequency LBCs, resulting in much weaker maximum and minimum values of w	
1574	(about 6 m, s^{-1}). However, despite the underestimation of the potential temperature, the w	
1575	fields in the BDY T2 experiment are similar to those in the CTRL experiment in plan view.	
1576	and the horizontal extent of the up-/down-drafts agrees with the CTRL experiment.	
1577	To further examine the vertical structure of the desert CBL, Figure 8 presents vertical 删除的内容:o further examine the vertical structure	120]
1 578	cross-sections of w along Tazhong station (39° N). Wide and regularly spaced up-drafts along	
1579	A1-A2 split into stronger and more irregular motions in the CTRL and BDY T2 experiments.	
1 580	The up-drafts are much weaker in experiment BDY T3 (Figure 8. c). The peak up-drafts in	
	測除的内容: Figure 88	
1581	BDY T3 are about 4 m _s s ⁻¹ , much weaker than in the CTRL (9 m s ⁻¹) and BDY T2 (8 m s ⁻¹) 删除的内容:). Phe peak up-drafts io BDV_T2.	1017
1582	experiments. The inflow boundary is wider in BDY T2 and BDY T3 and the intensity of the	141])
1583	convection is weaker at the boundary. The horizontal distribution of the vertical velocity at	
1584	Tazhong station in BDY T3 is much weaker than in BDY T2. The results suggest that the	
1585	model results are sensitive to changes in the time resolution and domain size of the specified	
1586	LBCs. The mismatch among sensitive experiments means that the effect of the LBCs needs to	

1647	be quantified to realize a more realistic performance in sub-kilometer-scale simulations.	/ #	制除的内容:
1648	3.3 Simulations with different surface sensible heat fluxes and land surface		删除的内容: (SH)nd surface-
		#	附除的内容: The
1649	<u>models</u>	// #	N除的内容: primary
1650	An important cause of the differences in the structure of the PBL was determined to be	#	附除的内容: PBLhe structure of the PBL was
		/ _	M除的内容: surface sensible heat flux
1651	the differences in sensible heat flux predicted by the land surface schemes. The sensible heat	#	附除的内容: SHensible heat flux predicted by the curface [124]
1652	flux is a key factor affecting the height of the CBL during daytime in summer. The difference	1 mg	N除的内容: surface sensible heat flux
		#	附除的内容: SHensible heat flux is one of the
1653	between the models and observations may therefore lead to differences in the growth of the	#	M除的内容: dominant
1654	PBL during the day. To further confirm whether this occurs, three additional sensitive	#	州除的内容 : H
	The during the during To rather commit whether this peeds, thee additional sensitive	W	制除的内容: depth
1655	simulations were realized based on the CTRL experiment. The Noah land surface model		州除的内容: summerayime in summer. Thp: thic tho
1656	replaced the RUC land surface model in the CTRL experiment and the sensible heat fluxes for	1! \\ Y	制除的内容: the
1656	Teplaced the NOC land surface, model in the CTRL experiment and the sensible heat fluxes for	#	附除的内容: PBhe Lrowth of the PBL during tha
1657	HFX-125% and HFX-75% are %125 and %75 that of the CTRL (HFX -100%) experiment		N除的内容: and in its peak depth during the simulated day
		M	附除的内容: ; To further confirm whether this
1658	while the other parameters remain the same	#	附除的内容 : two
1659	The results in Figure 10. and Table 2 show that HFX-75% successively improved the	#	附除的内容: For Noah experimenthe Noah land[129]
		M	州除的内容 : For
1660	simulation of the sensible heat flux with an RMSE of 151.12 compared with 263.64 and	#	州除的内容: ,and HFX75% the surface sen sible heat [[130]
1661	357.11 in the CTRL and HFX-125% experiments, respectively. The Noah Jand surface	#	州除的内容:
		#	附除的内容: ,while the other parameters remain the came
1662	experiment yielded the best performance in terms of the sensible heat flux, the surface	M	制除的内容: from
1663	temperature and the air temperature. However, the Noah Jand surface model showed large	M	制除的内容: Figure 10. Figure 10
			特格式的: 检查拼写和语法
1664	discrepancies with the observations in terms of the soil moisture content, resulting in a	/ [制除的内容: edthat HFX-75% successively impraved that 132
1665	dramatic overestimate of the latent heat flux and relative humidity compared with the CTRL	/ _	除的内容: F further examining
1003	dramatic overestimate of the fatent near riax and relative number compared with the CTRE	-// }-	6倍入的: 子伴:12 pt 制除的内容: Figure 9. Figure 9
1666	experiment.	1// U	************************************
		77	州除的内容: The resultsndicates that , [134]
1667	A further examination of the potential temperature and vapor mixing ratio (Figure 9.)	// #	別除的内容: with smaller SH ([135]
1668	indicates that a smaller sensible heat flux leads to a cooler, more moist lower PBL and a	#	M除的内容: and
I		#	州除的内容: er

773	warmer, drier free atmosphere. This sensitivity is monotonic with respect to the sensible heat		删除的内容: andrier free troposphere [136]
			删除的内容: Suchhis sensitivity is monotonic with recessor
774	flux. The structure of the CBL from the HFX-75% and Noah experiments matches the GPS		删除的内容 : determinedrom the HFX-%5% and Moah [[138]
775	radiosonde measurements better than the CTRL (HFX-100%) simulations. The potential	\int	删除的内容: (FX-100%) simulations. The nP tential [139]
776	temperature profiles from the CTRL (HFX-100%) and HFX-125% experiments are	/	删除的内容: CTRLnd (FX-125% experim
777	consistently warmer than the observations by about 0.4 and 0.5 K, respectively, whereas the	1	删除的内容: whilehereas the results from the HEV 759/ [141]
778	results from the HFX-75% and Noah experiments are within about 0.2 K at 1400 BJT (Figure	{	删除的内容: CTRL (HFX-100%) 带格式的: 字体:12 pt
779	9. b). These results suggest that the model is sensitive to changes in the sensible heat flux		删除的内容: Figure 9. Figure 9Figure
			带格式的: 字体:12 pt
780	from the land surface model. The simulations converge at the end of the day, although there	1	删除的内容:
			已移动(插入) [2]
781	are still differences at 2000 BJT (Figure 9. d). The HFX-75% and Noah experiments with a	//	删除的内容: results ares sensitive to changes ip the 142
782	weaker surface sensible heat flux still produce almost the same deep CBL as the CTRL and	\ \ <u>\</u>	删除的内容: Smulations results [143]
702	weaker surface sensible near max sum produce annost the sum queep edit as the extremal		删除的内容: but remain
783	HFX-125% experiments. This indicates that the sensible heat flux may not the dominant	111 1	带格式的: 字体:12 pt 删除的内容: Figure 9. Figure 9Figure
			帶格式的: 字体:12 pt
784	factor in the formation of the deep CBL over the Taklimakan Desert	}	
705	The results of the simulations of the desert PBL in the morning agree with previous	11 11	删除的内容:
785	The results of the simulations of the desert PBL in the morning agree with previous	\mathbb{N}	删除的内容:
786	studies of the sensitivities the land surface model in other areas (Hu et al. 2010; Zhang et al.		已上移 [2]: The results suggest that the model results are sensitive to changes SH from land-surface model.
787	2017). However, all the experiments produce nearly the same height of the CBL and moisture	11	删除的内容: cantill produce almost the sameth
707	2017). However, an the experiments produce hearty the same height of the experiments	4	
788	content from 1700 to 2000 BJT on 1 July 2016 (Figure 9. b, d), in agreement with the	}	删除的内容: Rhe results of the simulations on the decart [145]
700	content from 1700 to 2000 BJT on 1 July 2010 (Figure 7. p. d.), in agreement with the	L	删除的内容: Figure 9. Figure 9
789	observations in the PBL. The effects of the sensible heat flux on the evolution of the PBL	1	删除的内容: SHensible heat flux on the evolution of the [146]
790	structures in the Taklimakan Desert during this period need to be examined further to		
791	determine why the simulations are insensitive to land surface processes at the end of the day.		
792	As reported by Stull (1988), the development of the CBL is mainly influenced by the effects		
793	of thermodynamic and turbulent entrainment if we do not consider factors such as large-scale		
794	advection or subsidence. In addition to the surface sensible heat, the intensity of the		

ĺ			
1881	entrainment process determines the increase in the CBL. Thus the entrainment rate w_e is a		制除的内容: ing in the rate ofCBL. Thus, tha
1882	valuable indicator of the development of the structure of the PBL. The rate of growth of the		
1883	CBL_{\bullet} is mainly determined by the entrainment rate w_{e} at the inversion layer without	/	
1884	considering large-scale vertical motion. w_{ε} usually has a positive correlation with the amount		
1885	of heat flux at the inversion layer $(w'\theta_v')_h$ and LES experiments show that $(w'\theta_v')_h$ is	< }_	制除的内容: large 域代码已更改
1886	about 0.2 times the surface flux of the buoyancy $(w'\theta_0')$. During the period from 1100 to	#	州除的内容:
1887	1400 BJT, a larger sensible heat flux is clearly correlated with stronger turbulent entrainment	<u> </u>	《代码已更改 [148] 制除的内容: larger SH larger sensible heat flux is [149]
1888	and warmer air from the free atmosphere entraining into the Mixing Layer (ML). As a result,	#	注 [LP9]: Please give 'ML' in full – no abbreviation.
1889	the CBL develops rapidly and warms too quickly in the early simulation phase due to the	THE STATE OF THE S	刚除的内容: isarms too fastuickly in the ear
1890	clear increase in temperature and strong vertical mixing in the model. The reduction in the		
1891	sensible heat flux reproduces the evolution of the desert PBL better in the early simulation		
1892	phase because the HFX-75% and Noah simulations produce the smallest simulation errors in		
1893	both temperature and moisture. However, the height of the CBL and the potential temperature		
1894	for HFX-75% and Noah reach \$5000 m and 323.2 K, respectively, at 1700 BJT (Figure 9. a).		州除的内容: Figure 9. Figure 9Figure
1895	For the rest of the day, the rate of increase in the height of the CBL slows due to the deep	1	制除的内容:). For the rest of the day, the increase ata [151]
1896	CBL (>5000 m), which requires more heat for the increase in the depth of the PBL, we		
1897	decreases with increasing intensity of the inversion, which inhibits the mixing and		
1898	entrainment processes. These two factors Jimit the growth of the CBL when the height	1	
1899	is \$5000 m in this deep desert event. Therefore increasing the sensible heat flux from 75 to	1 L	M除的内容: example
1900	125% significantly reduced the total time required for the increase in the CBL to a relatively	/ 4	制除的内容: ,increasing the SHensible heat [152]
1901	low altitude (<5000 m) at the middle and preliminary stages of the development of the CBL,	#	州除的内容 : k
1902	rather than produces a higher CBL at a later stage. When the height of the CBL over the	#	制除的内容: the

1974 Taklimakan Desert exceeds 5000 m, it may not change in proportion to the sensible heat flux 删除的内容: Figure 9. Figure 9 (Figure 9. d). As a result, the PBL is basically the same in the WRF simulations and is not 1975 删除的内容: ...). As a result, the PBL of WRF s 1976 sensitive to the sensible heat flux at the end of the day. 删除的内容: 1977 Summary 删除的内容: This paper assesses In this paper, we assessed the performance of the WRF, model LES, in an example of a 1978 删除的内容: W 1979 deep convective PBL over the Taklimakan Desert. The tests were performed with multiple 删除的内容: Weather Research and Forecasting [155] 980 configurations and sensitivity experiments. The sensitivity tests for the LBCs showed that the 981 model results are sensitive to changes in the size of the time resolution and domain of the 982 specified LBC. A larger domain size changes the distance of the area of interest from the LBC 删除的内容: Whereas, the more frequently updated LBC is 983 and is efficient in reducing the influence of the large forecast error near the LBC. desirable to inhibit model error near the LBC. Air variables (air temperature, relative humidity and 10m wind speed) are 984 The model reproduces the evolution of PBL processes reasonably well with the closer to measurements than at surface, but their values are relative higher than those observed. However, it is found that configuration used in this study. The model shows discrepancies between the main CBL 985 discrepancies of thermodynamic surface variables (the surface temperature, sensible and latent fluxes) between characteristics in the morning, including the thermal and moisture structures. The model 1986 model and observation are large during 12h simulation. 删除的内容: Consequently, with the configuration used in simulates the relatively colder and drier morning CBL, underestimating the temperature in the 1987 this study, t...he model reproduces reasonably well 删除的内容: well near-surface layer at Tazhong station by up to 1.5 K and the moisture content by 1 g kg⁻¹. The 1988 删除的内容: it ...he temperature in the near-surface last [157] 989 overestimation of the CBL profile may be caused by initial discrepancies between the model 删除的内容: t 删除的内容: y...es between the model and measy 990 and the observations. This indicates that the results are sensitive to the initial conditions of the 删除的内容: struggles to ...orrectly simulate [159] 991 model, although the simulation seems to be able to correct some of the bias due to the initial 删除的内容: more moist 删除的内容: er...than thos... observed [160] 1992 conditions. The model correctly reproduces the thermal structure in the afternoon, but the 删除的内容: Theta simulations are relatively warmer and moister than the observations. The potential 1993 删除的内容: P 删除的内容: which ...t the CBL appears warmer 994 temperature profile at the CBL appears warmer than the observations by about 0.4 K. The 删除的内容: by up to about 0.4K compared to...han th 1995 model seriously overestimates the moisture content in the afternoon and overestimates the 删除的内容: overestimate 删除的内容: afternoon ...oisture content in the aftern [163]

2103	vapor mixing ratio in the CBL by about 1-2 g kg ⁻¹ . The largest discrepancies are found in 0-3		删除的内容: by about 1 to 2 g/Kgn the CBL by about 1 to 1 g/Kgn the CBL by about 1
2104	km layer, where the model vapor mixing ratio is twice as moist as that of the observations (up	//	
2105	to about $3 g kg^{-1}$		删除的内容: above AGL
			删除的内容: as observed [165]
2106	Three additional simulations were realized to confirm whether the large differences in	7	删除的内容: Furthermore, two three additiona [166]
2107	the sensible heat flux lead to differences in growth of the CBL during the daytime relative to		批注 [LP11]: Please give 'ABL' in full (no abbreviation).
			删除的内容: A
2108	the CTRL experiment. The results suggest that the model results are sensitive to changes in	$\overline{}$	删除的内容: , based onelative to the CTRL [167]
2109	the sensible heat flux and different land surface models. The large difference between the		删除的内容: from
	me periode new ran parties in the pa		删除的内容:urface models. The large difference haturan
2110	model and observations may lead to differences in the growth of the CBL during the daytime.	//`	
2111	It was concluded the surface sensible heat flux is an important factor affecting the processes		删除的内容: then dominant [169]
4111	To was concluded the surface sensible heat that is an important factor affecting the processes		删除的内容: CBL
2112	of the CBL over the Taklimakan Desert during the daytime in summer. However, its peak		删除的内容: depth
2113	depth during the simulation was less sensitive to the sensible heat flux because y_{ν} had	\geq	删除的内容: summerhe dayime in summer [170]
2114	decreased by the end of the day. One should note that the CBL of Taklimakan need several		
2114	decreased by the cita of the day. One should not that the CDE of Taximinatan need several		
2115	days of favorable environment to reach its super depth (> 4000m), and sustained high		
2116	temperature and SH is the crucial factor for CBL to develop from shallow to deep CBL. The		
2117	SH is not dominant factor, but still an important factor affecting the deep CBL.		删除的内容: Thus, the large difference between the model
			and observation may lead to differences in CBL growth
2118	Future work will study several other examples of a deep CBL over the Taklimakan		during daytime and in its peak depth during the simulation.
2119	Desert to determine their common features. We hope to use high-resolution models and		删除的内容: The future work aimed toill study cavaral [171]
1113	beset to factorismo their common reatures. We hope to fise ingrifesoration models and		
2120	observations to describe the fine characteristics of a typical deep CBL over the Taklimakan		删除的内容: by,
2121	Desert, particularly the turbulent and vertical mixing and its impact on the regional weather		
2122	forecast. This research aims to improve our understanding of the deep CBL over the		删除的内容: is aimedims to improve the [172]
2123	Taklimakan <u>Desert</u> and its influence on <u>the regional</u> weather and climate.		
2124	Conflict of interests		删除的内容: Interests

2193	The authors declare that there is no conflict of interests regarding the publication of this paper.	and the same of th	删除的内容: s
2194	Acknowledgments		
2195	This study is supported by the National Natural Science Foundation of China (Grant no.	and the same of	删除的内容: the State Key Program of
2196	41575008 and 41775030). The author thanks the reviewers and editors for their professional		删除的内容: would like to 删除的内容: all
2197	advice in improving this paper.		删除的内容: to
2198		J. Same	删除的内容: e
		1	删除的内容: e

207	Captions:
208	Figure 1. Simulation domains used in the ARW model with (a) the terrain height (shaded,
209	units:m), (b) the land use categories for domains D03 and D04 and (c) photograph of the area
210	around Tazhong station,
211	Figure 2. Horizontal distribution of the geopotential height (solid lines, units: da gpm), wind
212	speed (shaded, units: knots) and wind barbs from the NCEP FNL analysis at 0800 BJT on 1
213	July 2016 at (a) 850, (b) 700, (c) 500 and (d) 100 hPa Figure 2. Horizontal distribution of the
214	geopotential height (solid lines, units: da gpm), wind speed (shaded, units: knots) and wind
215	barbs from the NCEP FNL analysis at 0800 BJT on 1 July 2016 at (a) 850, (b) 700, (c) 500
216	and (d) 100 hPa-
217	Figure 3. NCEP FNL 700 hPa potential temperature (colors) and mean sea level pressure
218	(white lines) at 0800 BJT on 1 July 2016. The black dot shows the location of Tazhong station
219	in Xingjiang province
220	Figure 4. Time series of the initial simulated surface variables from the innermost domain of
221	the simulations and the surface observations at Tazhong station (83.63° E, 39.03° N) at 0800
222	BJT on 1 July 2016: (a) sensible heat flux; (b) latent heat flux; (c) surface temperature; (d)
223	soil moisture content; (e) temperature at 2 m; (f) relative humidity at 2 m; (g) wind speed at
224	10 m; and (h) wind direction at 10 m _y
225	Figure 5. Vertical profiles of the potential temperature (solid line, units: K) and vapor mixing
226	ratio (dashed line, units: g kg ⁻¹) from the innermost domain of the simulations and the
227	observations from GPS sounding at Tazhong station (83.63° E, 39.03° N) at (a) 1100, (b)

删除的内容: Figure 1. Simulation domains used in the ARW model with (a) the terrain height (shaded, units:m), (b) the land use categories for domains D03 and D04 and (c) photograph of the area around Tazhong station.

删除的内容: Figure 2. Horizontal distribution of the geopotential height (solid lines, units: da gpm), wind speed (shaded, units: knots) and wind barbs from the NCEP FNL analysis at 0800 BJT on 1 July 2016 at (a) 850, (b) 700, (c) 500 and (d) 100 hPa.

删除的内容: Figure 2. Horizontal distribution of the geopotential height (solid lines, units: da gpm), wind speed (shaded, units: knots) and wind barbs from the NCEP FNL analysis at 0800 BJT on 1 July 2016 at (a) 850, (b) 700, (c) 500 and (d) 100 hPa.

带格式的: 字体:11 pt

删除的内容: Figure 3. NCEP FNL 700 hPa potential temperature (colors) and mean sea level pressure (white lines) at 0800 BJT on 1 July 2016. The black dot shows the location of Tazhong station in Xingjiang province.

带格式的: 字体:11 pt

删除的内容: Figure 4. Time series of the initial simulated surface variables from the innermost domain of the simulations and the surface observations at Tazhong station (83.63° E, 39.03° N) at 0800 BJT on 1 July 2016: (a) sensible heat flux; (b) latent heat flux; (c) surface temperature; (d) soil moisture content; (e) temperature at 2 m; (f) relative humidity at 2 m; (g) wind speed at 10 m; and (h) wind direction at 10

2254 1400, (c) 1700 and (d) 2000 BJT on 1 July 2016. The profiles of the model output are 2255 averaged over a radius of 3.5 km. 2256 Figure 6. Cross-sections along 39.03° N of the horizontal winds (barbs, units: m s⁻¹) at intervals of 5 m s⁻¹ superposed with theta (shaded, units: K) and the vapor mixing ratio 2257 (contours, units: g kg⁻¹) from the (a) BDY T1, (c) BDY T2 and (e) BDY T3 experiments at 2258 1400 BJT on 1 July 2016 and the (b) BDY T1, (d) BDY T2 and (f) BDY T3 experiments at 2259 2260 2000 BJT on 1 July 2016, Figure 7. Instantaneous vertical velocity fields (shading: m s⁻¹) at 3000 m for the (a) BDY T1 2261 2262 (CTRL), (b) BDY_T2, (c) BDY_T3 and (d) Noah experiments at 1400 BJT on 1 July 2016, 2263 Figure 8. Vertical cross-sections of the instantaneous vertical velocity fields (shading: m s⁻¹) 2264 along A1-A2 in for the (a) BDY_T1 (CTRL), (b) BDY_T2, (c) BDY_T3 and (d) Noah experiments at 1400 BJT on 1 July 2016, 2265 Figure 9. Vertical profiles of the potential temperature (solid line, units: K) and vapor mixing 2266 2267 ratio (dashed line, units: g kg⁻¹) for the sensible heat flux sensitivity and Noah land surface experiments at (a) 1100, (b) 1400, (c) 1700 and (d) 2000 BJT on 1 July 2016. The profiles of 2268 2269 the model output are averaged over a radius of 3.5 km. 270 Figure 10. Time series of the initial simulated surface variables for the sensible heat 2271 flux sensitivity and Noah land surface experiments: (a) sensible heat flux; (b) latent 2272 heat flux; (c) surface temperature; (d) soil moisture content; (e) temperature at 2 m; (f) relative humidity at 2 m; (g) wind speed at 10 m; and (h) wind direction at 10 m. 2273 2274 2275

删除的内容: Figure 5. Vertical profiles of the potential temperature (solid line, units: K) and vapor mixing ratio (dashed line, units: g kg⁻¹) from the innermost domain of the simulations and the observations from GPS sounding at Tazhong station (83.63° E, 39.03° N) at (a) 1100, (b) 1400, (c) 1700 and (d) 2000 BJT on 1 July 2016. The profiles of the model output are averaged over a radius of 3.5 km.

删除的内容: Figure 6. Cross-sections along 39.03° N of the horizontal winds (barbs, units: m s⁻¹) at intervals of 5 m s⁻¹ superposed with theta (shaded, units: K) and the vapor mixing ratio (contours, units: g kg⁻¹) from the (a) BDY_T1, (c) BDY_T2 and (e) BDY_T3 experiments at 1400 BJT on 1 July 2016 and the (b) BDY_T1, (d) BDY_T2 and (f) BDY_T3 experiments at 2000 BJT on 1 July 2016.

带格式的: 字体:11 pt

删除的内容: Figure 7. Instantaneous vertical velocity fields (shading: m s⁻¹) at 3000 m for the (a) BDY_T1 (CTRL), (b) BDY_T2, (c) BDY_T3 and (d) Noah experiments at 1400 BJT on 1 July 2016.

带格式的: 字体:11 pt **带格式的:** 字体:11 pt

删除的内容: Figure 8. Vertical cross-sections of the instantaneous vertical velocity fields (shading: m s⁻¹) along A1–A2 in for the (a) BDY_T1 (CTRL), (b) BDY_T2, (c) BDY_T3 and (d) Noah experiments at 1400 BJT on 1 July 2016.

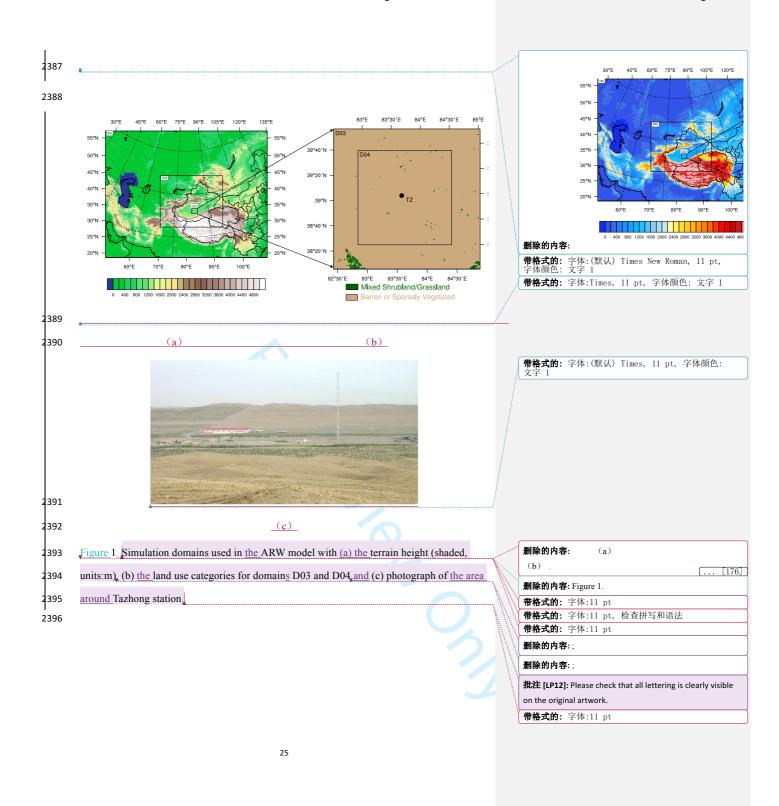
带格式的: 字体:11 pt **带格式的:** 字体:11 pt

删除的内容: Figure 9. Vertical profiles of the potential temperature (solid line, units: K) and vapor mixing ratio (dashed line, units: g kg⁻¹) for the sensible heat flux sensitivity and Noah land surface experiments at (a) 1100, (b) 1400, (c) 1700 and (d) 2000 BJT on 1 July 2016. The profiles of the model output are averaged over a radius of 3.5 km.

带格式的: 字体:11 pt **带格式的:** 字体:12 pt

删除的内容: Figure 10. Time series of the initial simulated surface variables for the sensible heat flux sensitivity and [... [173]]

带格式的: 字体:12 pt


删除的内容: Figure 1. Simulation domains used in the ARW model with (a) the terrain height (shaded unitem) [174]

带格式的: s1, 字体:(默认) +主题正文 (Calibri), 11 pt, 字体颜色: 自动

[175]

带格式的: 两端对齐

带格式的

407

2408

2409

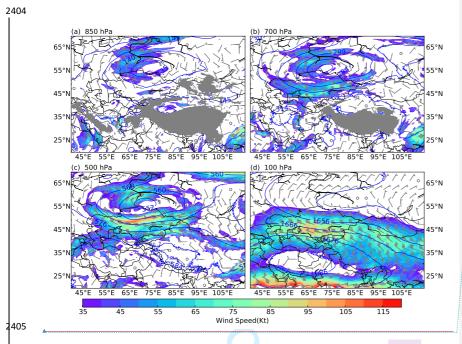


Figure 2_Horizontal distribution of the geopotential height (solid lines, units: da gpm), wind speed (shaded, units: knots), and wind barbs from the NCEP FNL analysis at 0800 BJT on 1 July 2016 at (a) 850, (b) 700, (c) 500 and (d) 100 hPa

带格式的: 字体:(默认) Times, 11 pt, 字体颜色:

批注 [LP13]: Are units for geopotential height correct?

删除的内容: Figure 2.

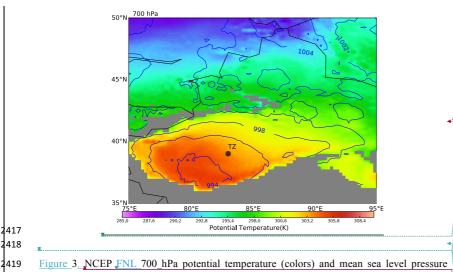
带格式的: 字体:11 pt

带格式的:字体:11 pt,检查拼写和语法

带格式的: 字体:11 pt **带格式的:** 字体:11 pt

删除的内容:,

删除的内容: hPa

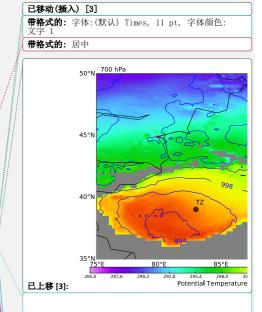

删除的内容: c

删除的内容: hPa

删除的内容: e

删除的内容: hPa,

带格式的: 字体:11 pt



(white lines) at 0800 BJT on 1 July 2016. The black dot shows the location of Tazhong station

in Xingjiang province.

2420

2421

删除的内容:

带格式的: 字体:(默认) Times, 11 pt, 字体颜色: 文字 1

[177]

[178]

带格式的: 字体:(默认) +主题正文 (Calibri), 字体颜色: 自动

带格式的:正文

删除的内容: Figure 3. 带格式的

删除的内容: fnl

批注 [LP14]: Is 'white lines' correct here?

带格式的

删除的内容: at

2433

434

435

436

2437

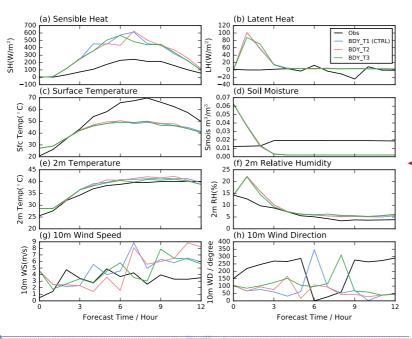


Figure 4. Time series of the initial simulated surface variables from the innermost domain of the simulations and the surface observations at Tazhong station (83.63° E, 39.03° N) at 0800 BJT on 1 July 2016; (a) sensible heat flux; (b) latent heat flux; (c) surface temperature; (d) soil moisture content; (e) temperature at 2 m; (f) relative humidity at 2 m; (g) wind speed at 10 m; and (h) wind direction at 10 m.

带格式的: 字体颜色: 文字 1 **带格式的:** 居中

删除的内容: Figure 4.

删除的内容: initial

删除的内容: 0

删除的内容: (W/m²),

删除的内容: (W/m²),

删除的内容: 2-m

删除的内容: (°C),

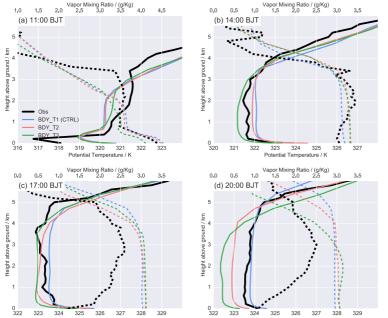
删除的内容: (°C),

删除的内容: e

删除的内容: 2-m

删除的内容: (%) and

删除的内容: (%) and


删除的内容: 10-m

删除的内容: 10-m

批注 [LP15]: The caption has been amended to match the graphs in Fig. 4 – please check and confirm that the parts are now labelled correctly Please also check all text citation of the parts of Fig. 4 and confirm that these are correct.

删除的内容: (m/s)

删除的内容: with corresponding observations

455 456

Figure 5. Vertical profiles of the potential temperature (solid line, units: K) and vapor mixing ratio (dashed line, units: g, kg⁻¹) from the innermost domain of the simulations and the observations from GPS sounding at Tazhong station (83.63° E, 39.03° N) at (a) 1100, (b)

458 2459

2460

2461

457

1400, (c) 1700 and (d) 2000 BJT on 1 July 2016. The profiles of the model output are

averaged over a radius of 3.5 km.

(a) 1100 BJT 01Ju|2016 my / km 4 Height above 3 2 (c) 1700 BJT 01Jul2016 Height above ground / km 316 318 320 322 324 326 328 33 Potential Temperature / h

删除的内容:

带格式的:字体:(默认) Times, 11 pt, 字体颜色:

字体:(默认) Times New Roman, 11 pt, 文字 1

带格式的: 行距: 1.5 倍行距

删除的内容: Figure 54.

删除的内容:/K

删除的内容: of

删除的内容:0

删除的内容: in

删除的内容:

分页. 删除的内容:

带格式的: 字体:11 pt, 字体颜色: 文字 1

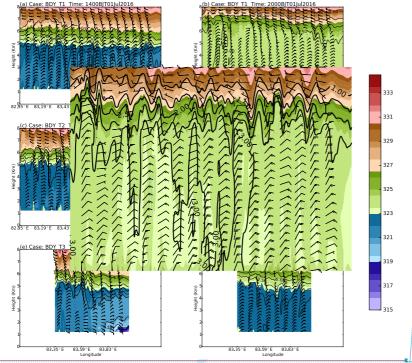
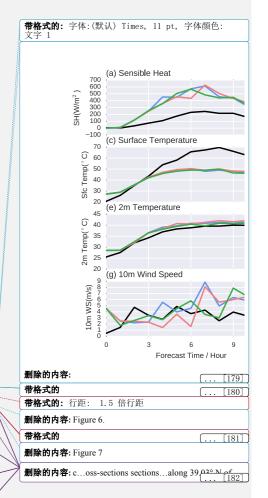
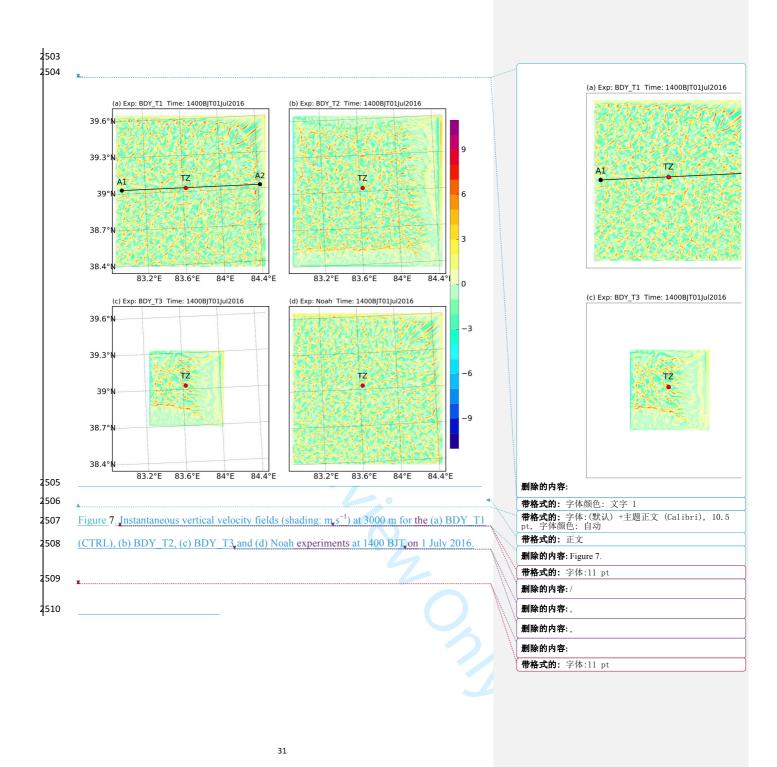




Figure 6. Cross-sections, along 39.03° N of the horizontal winds (barbs, units: $m_s s^{-1}$), at intervals of 5 m s⁻¹, superposed with theta (shaded, units: K) and the vapor mixing ratio (contours, units: $g_s k g^{-1}$), from the (a) BDY T1, (c) BDY T2, and (e) BDY T3 experiments at 1400 BJT on 1 July 2016, and the (b) BDY T1, (d) BDY T2, and (f) BDY T3 experiments at 2000 BJT on 1 July 2016,

2518

2519

2520

2521

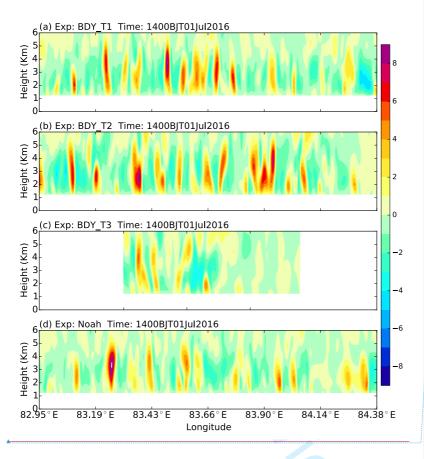


Figure 8. Vertical cross-sections of the instantaneous vertical velocity fields (shading: m,s⁻¹) along A1–A2 in for the (a) BDY T1 (CTRL), (b) BDY T2, (c) BDY T3, and (d) Noah experiments at 1400 BJT, on 1 July 2016,

 带格式的: 字体:11 pt

 带格式的: 行距: 1.5 倍行距

 删除的内容: Figure 8.

 带格式的: 字体:11 pt

 带格式的: 字体:11 pt

 删除的内容: /

 删除的内容:

 删除的内容: ,

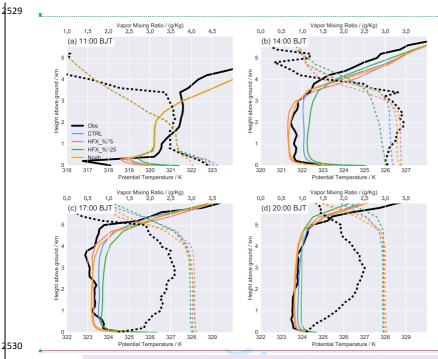
 删除的内容: ,

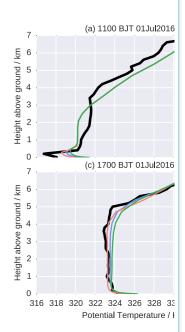
 删除的内容: ,

删除的内容:

带格式的: 字体:(默认) Times, 12 pt, 字体颜色: 文字 1

32




Figure 9. Vertical profiles of the potential temperature (solid line, units: K) and vapor mixing ratio (dashed line, units: g kg⁻¹) for the sensible heat flux sensitivity and Noah land surface experiments at (a) 1100, (b) 1400, (c) 1700 and (d) 2000 BJT on 1 July 2016. The profiles of the model output are averaged over a radius of 3.5 km.

2532

2533

2534

2535

删除的内容:

带格式的: 字体:(默认) Times New Roman, (中文) SimSun, 11 pt, 字体颜色: 文字 1

带格式的: 字体:(默认) Times, 11 pt, 字体颜色: 文字 1

删除的内容: Figure 98

带格式的: 字体:11 pt **带格式的:** 字体:11 pt

批注 [LP16]: This caption has been edited for clarity – please check and confirm meaning is now correct.

带格式的: 字体:11 pt

删除的内容: The same as Figure 5Figure 4, but for SH flux sensitive and Noah land-surface experiment

2541

542

2543

2544

2545

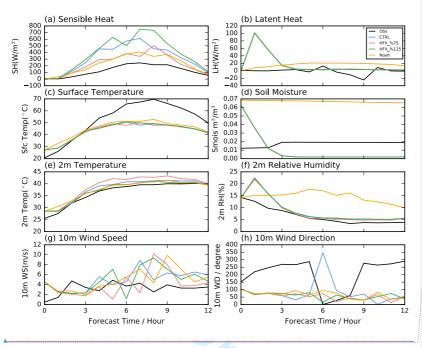
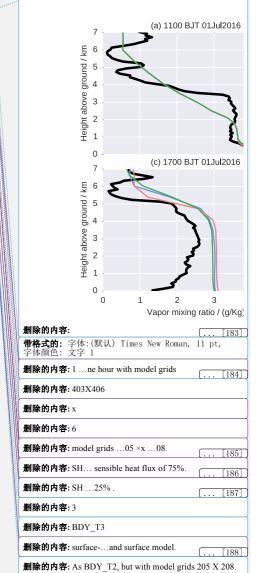


Figure 10. Time series of the initial simulated surface variables for the sensible heat flux sensitivity and Noah land surface experiments: (a) sensible heat flux; (b) latent heat flux; (c) surface temperature; (d) soil moisture content; (e) temperature at 2 m; (f) relative humidity at 2 m; (g) wind speed at 10 m; and (h) wind direction at 10 m.

带格式的:字体颜色:文字 1

删除的内容: Figure 108.
 带格式的: 字体:12 pt
 带格式的: 字体:12 pt, 检查拼写和语法
 带格式的: 字体:12 pt


批注 [LP17]: The caption has been amended to match the graphs in Fig. 10 – please check and confirm that the parts are now labelled correctly. Please also check all text citation of the parts of Fig. 10 and confirm that these are correct. This caption has been edited for clarity – please check and confirm meaning is now correct.

带格式的: 字体:12 pt **带格式的:** 字体:12 pt

删除的内容: The same as Figure 4, but for SH flux sensitive and Noah land-surface experiment.

34

Experiment	Name	Remarks
1	BDY_T1(CTRL)	LBC of D04 is provided by d03 every one hour with
		403 × 406 model grids
2	BDY_T2	As BDY_T1, but LBC of D04 is provided by d03
		every <u>six</u> hours
<u>3</u>	BDY T3	As BDY T2, but with 205 ×208 model grids
	HEN 0/55	A CUID TO LA SIL THE THE CONTROL
4	HFX %75	As CTRL T2, but with a sensible heat flux of 75%.
<u>5</u>	HFX %125	As CTRL T2, but with a sensible heat flux of 125%
6,	Noah,	As CTRL T2, but with the Noah Jand surface model

-	F O 4
	284

▼	Sensib	le heat flux	Latent	heat flux	Surface	emperature	Soil	oisture	Temper	ature at 2	Relative	humidity	₩ind sp	eed at 2 m
							<u>co</u> 1	ntent		<u>m</u>	at	<u>2 m</u>		
	RMSE	BIAS	RMSE	BIAS	RMSE	BIAS	RMSE	BIAS	RMSE	BIAS	RMSE	BIAS	RMSE	BIAS
Experiments														
CTRL	263.636	250.140▼	12.398	6.674	14.654	- 13.373 -	0.017	- 0.017 √	1.666	1.613	1.220	1.109	2.579	1.864
BDY T2	249.395	240.660	12.383	6.253	14.116	- 12.853	0.017	- 0.017 √	1.912	1.817	1.275	1.162	2.943	1.307ᢏ
BDY T3	241.681	232.705	12.251,	6.328	14.929	- 13.737	0.017	- 0.017 _▼	1.227	1.046	1.483	1.280	2.118	1.287
1														
HFX %75	151.119	134.594	12.544	6.354	14.740	-13.426	0.017	_0.017_	3.078	3.016	0.956	0.826	3.335	0.874
HFX %125	357.711	335.556	12.439	6.152	14.244	-13.043	0.017	- 0.017 -	1.026	0.860	1.303	1.231	3.265	2.052
Noah	125.695	120.313	23.350	20.664	12.757	− 11.502 √	0.048	0.048	1.046	0.983	10.116	9.904	2.788	1.795

Table 2. Summary of the verification of surface and air variables including the integration hours from 3 to 12 h for Tazhong station.

2586

36

	J
删除的内容: H	
删除的内容: Heat fluxt	([189])
删除的内容: T	
删除的内容: M	
删除的内容: 2m	
删除的内容: 2melative H	[[190]
删除的内容: 10mind S	([191])
删除的内容:	
删除的内容:63.636	([192])
删除的内容:	
删除的内容:	
删除的内容: 674	([193])
删除的内容:	
删除的内容: 13.373	([194])
删除的内容: 017	([195]
删除的内容: 0.017	([196]
删除的内容:666	([197])
删除的内容:613	([198])
删除的内容:220	[[199]
删除的内容:109	[[200]]
删除的内容: 579	[[201]
删除的内容:864	[202]
删除的内容:	
删除的内容:49.395	[203]
删除的内容:	
删除的内容:	
删除的内容:253	[[204]]
删除的内容:	
删除的内容: 12.853	[205]
删除的内容: 017	[206]
	[207]
	[208]
	[209]
	[210]
	[211]
	1

- 2853 Reference:
- Chen, F., and J. Dudhia, 2001a: Coupling an Advanced Land Surface-Hydrology Model with the Penn
- 2855 State-NCAR MM5 Modeling System. Part II: Preliminary Model Validation. Monthly Weather Review,
- **129,** 587-604.
- 2857 —, 2001b: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5
- 2858 modeling system. Part I: Model implementation and sensitivity. Monthly Weather Review, 129,
- 2859 569-585.
- 2860 Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment
- using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077-3107.
- Engelstaedter, S., R. Washington, C. Flamant, D. J. Parker, C. J. T. Allen, and M. C. Todd, 2015: The
- 2863 Saharan heat low and moisture transport pathways in the central Sahara—Multiaircraft observations
- and Africa-LAM evaluation. Journal of Geophysical Research: Atmospheres, 120, 2015JD023123.
- 2865 Garcia-Carreras, L., and Coauthors, 2015: The Turbulent Structure and Diurnal Growth of the Saharan
- 2866 Atmospheric Boundary Layer. Journal of the Atmospheric Sciences, 72, 693-713.
- 2867 Han, B., S. Lü, and Y. Ao, 2012: Development of the convective boundary layer capping with a thick
- 2868 neutral layer in Badanjilin: Observations and simulations. Adv. Atmos. Sci., 29, 177-192
- 2869 Heinold, B., P. Knippertz, and J. H. Marsham, 2013: Large Eddy Simulations of Nocturnal Low-Level
- 2870 Jets over Desert Regions and Implications for Dust Emission. EGU General Assembly Conference.
- 2871 Heinold, B., P. Knippertz, and R. J. Beare, 2015: Idealized large-eddy simulations of nocturnal
- 2872 low-level jets over subtropical desert regions and implications for dust-generating winds. Quarterly
- 2873 Journal of the Royal Meteorological Society, 141, 1740–1752.
- 2874 Heinze, R., D. Mironov, and S. Raasch, 2015: Second-moment budgets in cloud topped boundary
- 2875 layers: A large-eddy simulation study. Journal of Advances in Modeling Earth Systems, 7, 510-536.
- 2876 Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range
- forecast model. Monthly weather review, 124, 2322-2339.
- Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J.
- 2879 Korean Meteor, Soc. 42, 129-151.
- 2880 Hu, X.-M., J. W. Nielsen-Gammon, and F. Zhang, 2010: Evaluation of Three Planetary Boundary
- Layer Schemes in the WRF Model. *Journal of Applied Meteorology and Climatology*, **49**, 1831-1844.
- 2882 Kain, J. S., 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The
- representation of cumulus convection in numerical models, Meteor. Monogr, 46, 165-170
- 2884 Kain, J. S., 2004: The Kain–Fritsch Convective Parameterization: An Update. *JOURNAL OF APPLIED*
- 2885 *METEOROLOGY*, **43**, 170-181
- LeMone, M. A., M. Tewari, F. Chen, and J. Dudhia, 2013: Objectively Determined Fair-Weather CBL
- 2887 Depths in the ARW-WRF Model and Their Comparison to CASES-97 Observations. *Monthly Weather*
- 2888 Review, 141, 30-54
- 2889 Liu, Y., Q. He, H. Zhang, and A. Mamtimin, 2012: Improving the CoLM in Taklimakan Desert
- 2890 hinterland with accurate key parameters and an appropriate parameterization scheme. Adv. Atmos. Sci.,
- **2891 29,** 381-390.
- 2892 Liu, Y., and Coauthors, 2011: Simultaneous nested modeling from the synoptic scale to the LES scale
- for wind energy applications. Journal of Wind Engineering and Industrial Aerodynamics, 99, 308-319.
- Marsham, J. H., P. Knippertz, N. Dixon, D. J. Parker, and G. M. S. Lister, 2011: The importance of the
- 2895 representation of deep convection for modeled dust- generating winds over West Africa during summer.
- 2896 Geophysical Research Letters, 38

删除的内容:

... [257]

- 2899 Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for
- 2900 inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys.
- 2901 Res., 102, 16663-16682
- 2902 Moeng, C.-H., J. Dudhia, J. Klemp, and P. Sullivan, 2007: Examining Two-Way Grid Nesting for Large
- 2903 Eddy Simulation of the PBL Using the WRF Model. Monthly Weather Review, 135, 2295-2311.
- 2904 National Centers for Environmental Prediction, N. W. S. N. U. S. D. o. C., 2015: NCEP GDAS/FNL
- 2905 0.25 Degree Global Tropospheric Analyses and Forecast Grids. Research Data Archive at the National
- 2906 Center for Atmospheric Research, Computational and Information Systems Laboratory.
- 2907 Rai, R. K., L. K. Berg, B. Kosović, J. D. Mirocha, M. S. Pekour, and W. J. Shaw, 2017: Comparison of
- 2908 Measured and Numerically Simulated Turbulence Statistics in a Convective Boundary Layer Over
- 2909 Complex Terrain. Boundary-Layer Meteorology, 163, 69-89.
- 2910 Schicker, I., D. Arnold Arias, and P. Seibert, 2016: Influences of updated land-use datasets on WRF
- simulations for two Austrian regions. Meteorology and Atmospheric Physics, 128, 279-301.
- 2912 Shin, H. H., and S. Y. Hong, 2011: Intercomparison of Planetary Boundary-Layer Parametrizations in
- the WRF Model for a Single Day from CASES-99. Boundary-Layer Meteorology, 139, 261-281.
- 2914 Shin, H. H., and S.-Y. Hong, 2015: Representation of the Subgrid-Scale Turbulent Transport in
- 2915 Convective Boundary Layers at Gray-Zone Resolutions. Monthly Weather Review, 143, 250-271.
- 2916 Skamarock, W. C., and Coauthors, 2008: A Description of the Advanced Research WRF Version 3.
- 2917 NCAR/TN-475+STR, NCAR TECHNICAL NOTE.
- 2918 Smirnova Tatiana, G., M. Brown John, G. Benjamin Stanley, and D. Kim, 2000: Parameterization of
- 2919 cold- season processes in the MAPS land- surface scheme. Journal of Geophysical Research:
- 2920 Atmospheres, 105, 4077-4086.
- 2921 Smirnova, T. G., J. M. Brown, and S. G. Benjamin, 1997: Performance of Different Soil Model
- 2922 Configurations in Simulating Ground Surface Temperature and Surface Fluxes. Monthly Weather
- 2923 Review, 125, 1870-1884.
- 2924 Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Atmospheric Sciences Library, 8,
- 2925 89
- 2926 Sun, J., and Q. Xu, 2009: Parameterization of Sheared Convective Entrainment in the First-Order Jump
- 2927 Model: Evaluation Through Large-Eddy Simulation. Boundary-Layer Meteorology, 132, 279-288.
- 2928 Talbot, C., E. Bou-Zeid, and J. Smith, 2012: Nested Mesoscale Large-Eddy Simulations with WRF:
- 2929 Performance in Real Test Cases. Journal of Hydrometeorology, 13, 1421-1441.
- ter Maat, H. W., E. J. Moors, R. W. A. Hutjes, A. A. M. Holtslag, and A. J. Dolman, 2012: Exploring
- 2931 the Impact of Land Cover and Topography on Rainfall Maxima in the Netherlands. Journal of
- 2932 *Hydrometeorology*, **14**, 524-542
- 2933 WANG, and Coauthors, 2016a: Summer atmospheric boundary layer structure in the hinterland of
- 2934 Taklimakan Desert, China. Journal of Arid Land, 8, 846-860.
- 2935 Wang, M., X. Xu, and H. Xu: The possible influence of the summertime deep atmospheric boundary
- 2936 layer process over the Taklimakan Desert on the regional weather. (submitted to Quarterly Journal of
- 2937 the Royal Meteorological Society)
- 2938 Wang, M. Z., H. Lu, H. Ming, and J. Zhang, 2016b: Vertical structure of summer clear-sky atmospheric
- 2939 boundary layer over the hinterland and southern margin of Taklamakan Desert: The deep convective
- boundary layer of Taklamakan Desert. Meteorological Applications, 23, 438-447.
- Zhang, F., Z. Pu, and C. Wang, 2017: Effects of Boundary Layer Vertical Mixing on the Evolution of
- Hurricanes over Land. Monthly Weather Review, 145, 2343-2361,

删除的内容:

页 1: [1] 删除的内容	LucidPapers	2018/6/20 PM2:01:00
----------------	-------------	---------------------

页 1: [2] 删除的内容 LucidPapers 2018/6/20 PM2:00:00

页 1: [3] 删除的内容 Microsoft Office User 2018/4/14 AM10:39:00

页 2: [4] 删除的内容 LucidPapers 2018/6/19 PM3:49:00

During the summer season over Taklimakan Desert, the

页 2: [4] 删除的内容 LucidPapers 2018/6/19 PM3:49:00

During the summer season over Taklimakan Desert, the

页 2: [4] 删除的内容 LucidPapers 2018/6/19 PM3:49:00 http://www.cmsjournal.net/qxxb_en/ch/index.aspx

During the summer season over Taklimakan Desert, the

页 2: [4] 删除的内容 LucidPapers 2018/6/19 PM3:49:00

During the summer season over Taklimakan Desert, the

页 2: [4] 删除的内容 LucidPapers 2018/6/19 PM3:49:00

During the summer season over Taklimakan Desert, the

页 2: [4] 删除的内容 LucidPapers 2018/6/19 PM3:49:00

During the summer season over Taklimakan Desert, the

页 2: [4] 删除的内容 LucidPapers 2018/6/19 PM3:49:00

During the summer season over Taklimakan Desert, the

页 2: [4] 删除的内容 LucidPapers 2018/6/19 PM3:49:00

During the summer season over Taklimakan Desert, the

页 2: [4] 删除的内容 LucidPapers 2018/6/19 PM3:49:00

During the summer season over Taklimakan Desert, the

页 2: [4] 删除的内容 LucidPapers 2018/6/19 PM3:49:00

During the summer season over Taklimakan Desert, the

页 2: [4] 删除的内容 LucidPapers 2018/6/19 PM3:49:00

During the summer season over Taklimakan Desert, the

页 2: [4] 删除的内容 LucidPapers 2018/6/19 PM3:49:00

During the summer season over Taklimakan Desert, the

页 2: [4] 删除的内容 LucidPapers 2018/6/19 PM3:49:00

During the summer season over Taklimakan Desert, the

页 2: [4] 删除的内容 LucidPapers 2018/6/19 PM3:49:00

During the summer season over Taklimakan Desert, the

页 2: [4] 删除的内容 LucidPapers 2018/6/19 PM3:49:00

During the summer season over Taklimakan Desert, the

页 2: [5] 删除的内容 Microsoft Office 用户 2018/6/22 AM9:39:00

p

页 2: [5] 删除的内容 Microsoft Office 用户 2018/6/22 AM9:39:00

p

)

页 2: [6] 删除的内容 LucidPapers 2018/6/19 PM3:50:00

页 2: [6] 删	————————— 除的内容	LucidPapers	2018/6/19 PM3:50:00
)		·*	, -,
)			
页 2: [6] 删	除的内容	LucidPapers	2018/6/19 PM3:50:00
)			
页 2: [6] 删	除的内容	LucidPapers	2018/6/19 PM3:50:00
)			
页 2: [6] 删	———————— 除的内容	LucidPapers	2018/6/19 PM3:50:00
)		4	
F.3 mile	76 J.J. J. J.		
页 2: [6] 删	除的内容 ————————————————————————————————————	LucidPapers	2018/6/19 PM3:50:00
)			
页 2: [6] 删	除的内容	LucidPapers	2018/6/19 PM3:50:00
)			
	ma 11 1		
页 2: [6] 删	除的内容 ————————————————————————————————————	LucidPapers	2018/6/19 PM3:50:00
)			

LucidPapers

2018/6/19 PM3:50:00

页 2: [6] 删除的内容

 ${\tt LucidPapers}$

2018/6/19 PM3:50:00

2018/6/19 PM3:50:00

)

页 2: [6] 删除的内容

)			
页 2: [6] 删除	的内容 L	ucidPapers	2018/6/19 PM3:50:00
)			
页 2: [6] 删除	的内容 L	ucidPapers	2018/6/19 PM3:50:00
)		/	
页 2: [6] 删除	的内容 L	ucidPapers	2018/6/19 PM3:50:00
)			

)

页 2: [6] 删除的内容

页 2: [6] 删除的内容	LucidPapers	2018/6/19 PM3:50:00

LucidPapers

)

页 2: [6] 删除的内容	LucidPapers	2018/6/19 PM3:50:00

	_				
	2:	[6]	删除的内容	LucidPapers	2018/6/19 PM3:50:00
)					
页:	2:	[6]	删除的内容	LucidPapers	2018/6/19 PM3:50:00
)					
,					
页:	2:	[6]	删除的内容	LucidPapers	2018/6/19 PM3:50:00
`					
,					
页:	2:	[6]	删除的内容	LucidPapers	2018/6/19 PM3:50:00
`				4	
,					
页:	2:	[6]	删除的内容	LucidPapers	2018/6/19 PM3:50:00
,				4	
)					
页:	2:	[6]	删除的内容	LucidPapers	2018/6/19 PM3:50:00
)					
页:	2:	[6]	删除的内容	LucidPapers	2018/6/19 PM3:50:00
)					
新·	2.	[6]	删除的内容	LucidPapers	2018/6/19 PM3:50:00
Ж.	٠.	[0]	WIND THE TANK THE	Puctur abets	2010/0/13 1M3.30.00

)

页 2: [6] 删廢	余的内容	LucidPapers	2018/6/19 PM3:50:00
)			
页 2: [6] 删阅		LucidPapers	2018/6/19 PM3:50:00
火 2. [0] 加坡	NH313-11-	Luciui apers	2010/ 0/ 13 1 m3.00.00
)			
页 2: [6] 删阅	余的内容	LucidPapers	2018/6/19 PM3:50:00
)			
页 2: [6] 删阅		LucidDonora	2018/6/19 PM3:50:00
以 2: [0] 柳树	*的内谷	LucidPapers	2018/6/19 PM3:50:00
)			
页 2: [6] 删阅	余的内容	LucidPapers	2018/6/19 PM3:50:00
)		1	
页 2: [6] 删阅	条的内容	LucidPapers	2018/6/19 PM3:50:00
		•	, i
)			
页 2: [7] 删隊	余的内容	LucidPapers	2018/6/19 PM3:54:00
c			

LucidPapers
http://www.cmsjournal.net/qxxb_en/ch/index.aspx

2018/6/19 PM3:54:00

页 2: [7] 删除的内容

c

页 2: [7] 删除的内容	LucidPapers	2018/6/19 PM3:54:00
----------------	-------------	---------------------

c

页 2: [7] 删除的内容	LucidPapers	2018/6/19 PM3:54:00
----------------	-------------	---------------------

c

页 2: [7] 删除的内容	LucidPapers	2018/6/19 PM3:54:00

c

页 2: [7] 删除的内容 Lu	idPapers 2018/6/19 PM3:54:00
-------------------	------------------------------

c

页 2: [7] 删除的内容	LucidPapers	2018/6/19 PM3:54:00
----------------	-------------	---------------------

c

页 2: [8] 删除的内容	Microsoft Office User	2018/4/14 AM10:48:00
----------------	-----------------------	----------------------

a reduction(increment) in SH decreases(increases) maximum PBL by roughly 15% over desert.

页 2: [8] 删除的内容	Microsoft Office User	2018/4/14 AM10:48:00
N TO MINDINITIAL	MICIOSOIT OILICE USCI	2010/ 1/ 11 millo. 10.00

a reduction(increment) in SH decreases(increases) maximum PBL by roughly 15% over desert.

页 2: [9] 删除的内容	LucidPapers	2018/6/19 PM3:55:00
very		
页 2: [9] 删除的内容	LucidPapers	2018/6/19 PM3:55:00
very		
页 2: [9] 删除的内容	LucidPapers	2018/6/19 PM3:55:00
very	0.	
页 2: [9] 删除的内容	LucidPapers	2018/6/19 PM3:55:00
	<u></u>	
very		
	7	
页 2: [9] 删除的内容	LucidPapers	2018/6/19 PM3:55:00
very		
页 2: [9] 删除的内容	LucidPapers	2018/6/19 PM3:55:00
very		
页 2: [9] 删除的内容	LucidPapers	2018/6/19 PM3:55:00
very		
页 2: [10] 删除的内容	LucidPapers	2018/6/19 AM10:59:00

页 2: [10]	删除的内容	LucidPapers	2018/6/19	AM10:59:00
SH				
页 2: [10]	删除的内容	LucidPapers	2018/6/19	AM10:59:00
SH				
页 2: [10]	删除的内容	LucidPapers	2018/6/19	AM10:59:00
SH				
页 2: [10]	删除的内容	LucidPapers	2018/6/19	AM10:59:00
SH		4		
页 2: [10]	删除的内容	LucidPapers	2018/6/19	AM10:59:00
SH				
511				
TE 0 54.7	milyA Lt. 1 . 2		0040/5/2	
页 2: [10]	删除的内容	LucidPapers	2018/6/19	AM10:59:00
SH				
页 2: [10]	删除的内容	LucidPapers	2018/6/19	AM10:59:00

页 3: [11] 删除的内容 LucidPapers 2018/6/19 AM9:48:00

SH

页 3: [11] 删除的内容 LucidPapers 2018/6/19 AM9:48:00

,

页 3: [11] 删除的内容 LucidPapers 2018/6/19 AM9:48:00

页 3: [11] 删除的内容	LucidPapers	2018/6/19 AM9:48:00

,

页 3: [12] 删除的内容 LucidPapers	2018/6/19 AM9:58:00
-----------------------------	---------------------

making it probably

页 3: [12] 删除的内容	LucidPapers	2018/6/19 AM9:58:00
-----------------	-------------	---------------------

making it probably

页 3: [12] 删除的内容	LucidPapers	2018/6/19 AM9:58:00
-----------------	-------------	---------------------

making it probably

页 3: [12] 删除的内容	LucidPapers	2018/6/19 AM9:58:00
-----------------	-------------	---------------------

making it probably

页 3: [12] 删除的内容	LucidPapers	2018/6/19 AM9:58:00

making it probably

页 3: [12] 删除的内容	LucidPapers	2018/6/19 AM9:58:00
-----------------	-------------	---------------------

making it probably

页 3: [13] 删除的内容	LucidPapers	2018/6/19 AM9:59:00
-----------------	-------------	---------------------

0

页 3: [13] 删除的内容	LucidPapers	2018/6/19 AM9:59:00
-----------------	-------------	---------------------

o

页 3: [13] 删除的内容	LucidPapers	2018/6/19 AM9:59:00
-----------------	-------------	---------------------

o

页 3: [13] 删除的内容	LucidPapers	2018/6/19 AM9:59:00
-----------------	-------------	---------------------

o

页 3: [14] 删除的内容 LucidPapers 2018/6/19 AM10:13:00

,

页 3: [14] 删除的内容	LucidPapers	2018/6/19 AM10:13:00

,

页 3: [14] 删除的内容	LucidPapers	2018/6/19 AM10:13:00
-----------------	-------------	----------------------

,

页 3: [14] 删除的内容 LucidPapers 2018/6/19 AM10:13:00
--

,

页 3: [14] 删除的内容	LucidPapers	2018/6/19 AM10:13:00
-----------------	-------------	----------------------

,

页 3: [14] 删除的内容	LucidPapers	2018/6/19 AM10:13:00
-----------------	-------------	----------------------

页 3: [14] 删除的内容	LucidPapers	2018/6/19 AM10:13:00

,

,

页 3: [14] 删除的内容	LucidPapers	2018/6/19 AM10:13:00

,

贝 3: [14] 删除的内容	页 3: [14] 删除的内容	LucidPapers	2018/6/19 AM10:13:00
-----------------	-----------------	-------------	----------------------

,

页 3: [14] 删除的内容	LucidPapers	2018/6/19 AM10:13:00
-----------------	-------------	----------------------

,

页 3: [14] 删除的内容	LucidPapers	2018/6/19 AM10:13:00
-----------------	-------------	----------------------

页 3: [14] 删除的内容	LucidPapers	2018/6/19 AM10:13:00
-----------------	-------------	----------------------

,

页 3: [14] 删除的内容 LucidPapers	2018/6/19 AM10:13:00
-----------------------------	----------------------

,

页 3: [14] 删除的内容	LucidPapers	2018/6/19 AM10:13:00
-----------------	-------------	----------------------

,

页 3: [14] 删除的内容	页 3: [14] 删除的内容	LucidPapers	2018/6/19 AM10:13:00
-----------------	-----------------	-------------	----------------------

,

页 3: [14] 删除的内容	LucidPapers	2018/6/19 AM10:13:00
N or [14] Willy Hillia.	Luciui apera	2010/0/13 Mm10.13.00

,

页 3: [15] 删除的内容 LucidPapers 2018/6/19 AM10:18:00

fundamentally

页 3: [15] 删除的内容 LucidPapers 2018/6/19 AM10:18:00

fundamentally http://www.cmsjournal.net/qxxb_en/ch/index.aspx

页 3: [15] 删除的内容	LucidPapers	2018/6/19	AM10:18:00
fundamentally			
页 3: [15] 删除的内容	LucidPapers	2018/6/19	AM10:18:00
fundamentally			
页 3: [15] 删除的内容	LucidPapers	2018/6/19	AM10:18:00
fundamentally			
·			
页 3: [15] 删除的内容	LucidPapers	2018/6/19	AM10:18:00
fundamentally			
页 3: [15] 删除的内容	LucidPapers	2018/6/19	AM10:18:00
fundamentally			

fundamentally

页 3: [15] 删除的内容

 ${\tt LucidPapers}$

2018/6/19 AM10:18:00

页 3: [16] 删除的内容	LucidPapers	2018/6/20 PM2:13:00
-----------------	-------------	---------------------

页 3: [16] 删除的内容	LucidPapers	2018/6/20 PM2:13:00
-----------------	-------------	---------------------

页 3: [16] 删除的内容	LucidPapers	2018/6/20 PM2:13:00
-----------------	-------------	---------------------

页 3: [16] 删除的内容	LucidPapers	2018/6/20 PM2:13:00
-----------------	-------------	---------------------

页 3: [16] 删除的内容	LucidPapers	2018/6/20 PM2:13:00
-----------------	-------------	---------------------

页 3: [16] 删除的内容	LucidPapers	2018/6/20 PM2:13:00
以 3; 10 删除的内存	Luciurapers	2010/0/20 FM2:13:00

页 3: [16] 删除的内容 LucidPapers 2018/6/20 PM2:13:00

页 3: [16] 删除的内容	LucidPapers	2018/6/20 PM2:13:00

l	页 3: [17] 删除的内容	LucidPapers	2018/6/19 AM10:22:00

页 3: [17] 删除的内容 LucidPapers 2018/6/19 AM10:22:00

页 3: [17] 删除的内容 LucidPapers 2018/6/19 AM10:22:00

页 4: [18] 删除的内容	LucidPapers	2018/6/19 AM10:23:00
(CMA)		

页 4: [18] 删除	的内容	LucidPapers	2018/6/19 AM10:23:00
(CMA)			

页 4: [18] 删除的内容	LucidPapers	2018/6/19 AM10:23:00
(CMA)		

页 4: [18] 册	 除的内容	LucidPapers		2018/6/19 AM10:23:00
(CMA)			1/	

页 4: [18] 删除的内容	LucidPapers	2018/6/19 AM10:23:00
(CMA)		

页 4: [19] 删除的内容 LucidPapers 2018/6/19 AM10:24:00
--

On the other hand, a

页 4: [19] 删除的内容	LucidPapers	2018/6/19 AM10:24:00
-----------------	-------------	----------------------

On the other hand, a

页 4: [19] 删除的内容	LucidPapers	2018/6/19 AM10:24:00
-----------------	-------------	----------------------

On the other hand, a

页 4: [19] 删除的内容	LucidPapers	2018/6/19 AM10:24:00
-----------------	-------------	----------------------

On the other hand, a

页 4: [19] 删除的内容	LucidPapers	2018/6/19 AM10:24:00
-----------------	-------------	----------------------

On the other hand, a

页 4: [19] 删除的内容	页 4: [19] 删除的内容	LucidPapers	2018/6/19 AM10:24:00
-----------------	-----------------	-------------	----------------------

On the other hand, a

页 4: [19] 删除的内容	LucidPapers	2018/6/19 AM10:24:00
N at [12] Willy Hillia.	Luciui apers	2010/0/13 MM10.24.00

On the other hand, a

On the other hand, a

On the other hand, a

页 4: [20] 删除的内容	LucidPapers	2018/6/19 AM10:26:00
-----------------	-------------	----------------------

explicitly

页 4: [20] 删除的内容	LucidPapers	2018/6/19 AM10:26:00

explicitly

explicitly

explicitly

页 4: [20] 删除的内容	LucidPapers	2018/6/19 AM10:26:00
-----------------	-------------	----------------------

explicitly http://www.cm

页 4: [20] 删除的内容	LucidPapers	2018/6/19 AM10:26:00
explicitly		

页 4: [20] 删除的	I内容	LucidPapers	2018/6/19 AM10:26:00
explicitly			

页 4: [20] 删除的内容	LucidPapers	2018/6/19 AM10:26:00
explicitly	7	

页 4: [20] 删除的内容	LucidPapers	2018/6/19 AM10:26:00
explicitly		

页 4: [20] 删除的内容	LucidPapers	2018/6/19 AM10:26:00
explicitly		

页 4: [21] 删除的内容 Microsoft Office User 2018/4/16 AM	18:00
--	-------

planetary boundary layer (

页 4: [21] 删除的内容 2018/4/16 AM9:18:00 Microsoft Office User

planetary boundary layer (

页 4: [22] 删除的内容 2018/6/19 AM10:28:00 LucidPapers

heavily

页 4: [22] 删除的内容 2018/6/19 AM10:28:00 LucidPapers

heavily

页 4: [22] 删除的内容 LucidPapers 2018/6/19 AM10:28:00

heavily

页 4: [22] 删除的内容 2018/6/19 AM10:28:00 LucidPapers

heavily

页 4: [23] 删除的内容 2018/6/19 AM10:28:00 LucidPapers

One way to tackle c

LucidPapers http://www.cmsjournal.net/gxxb_en/ch/index.aspx 2018/6/19 AM10:28:00 页 4: [23] 删除的内容

One way to tackle c

页 4: [23] 删除的内容 LucidPapers 2018/6/19 AM10:28:00

One way to tackle c

页 4: [23] 删除的内容 LucidPapers 2018/6/19 AM10:28:00

One way to tackle c

页 4: [23] 删除的内容 LucidPapers 2018/6/19 AM10:28:00

One way to tackle c

页 4: [23] 删除的内容 LucidPapers 2018/6/19 AM10:28:00

One way to tackle c

页 4: [23] 删除的内容 LucidPapers 2018/6/19 AM10:28:00

One way to tackle c

页 4: [23] 删除的内容 LucidPapers 2018/6/19 AM10:28:00

One way to tackle c http://www.cmsjournal.net/qxxb_en/ch/index.aspx

页 4: [23] 删除的内容	LucidPapers	2018/6/19 AM10:28:00
-----------------	-------------	----------------------

One way to tackle c

页 4: [23] 删除的内容	LucidPapers	2018/6/19 AM10:28:00

One way to tackle c

One way to tackle c

One way to tackle c

页 4: [23] 删除的内容	LucidPapers	2018/6/19 AM10:28:00

One way to tackle c

页 4: [23] 删除的内容	LucidPapers	2018/6/19 AM10:28:00
-----------------	-------------	----------------------

One way to tackle c

One way to tackle c

One way to tackle c

页 4: [24] 删除的内容	LucidPapers	2018/6/19 AM10:31:00
-----------------	-------------	----------------------

LES

页 4: [24] 删除的内容	LucidPapers	2018/6/19 AM10:31:00
-----------------	-------------	----------------------

LES

页 4: [24] 删除的内容	LucidPapers	2018/6/19 AM10:31:00
-----------------	-------------	----------------------

LES

页 4: [24] 删除的内容	LucidPapers	2018/6/19 AM10:31:00

LES

LES

LES

页 4: [24] 删除的内容	LucidPapers	2018/6/19 AM10:31:00
-----------------	-------------	----------------------

LES

页 4: [24] 删除的内容	LucidPapers	2018/6/19 AM10:31:00
-----------------	-------------	----------------------

LES

页 4: [24] 删除的内容	LucidPapers	2018/6/19 AM10:31:00

LES

页 4: [25] 删除的内容	LucidPapers	2018/6/20 PM2:16:00
-----------------	-------------	---------------------

LES

页 4: [25] 删除的内容	LucidPapers	2018/6/20 PM2:16:00
-----------------	-------------	---------------------

页 4: [25] 删除的内容

LES

页 4: [25] 删除的内容	LucidPapers	2018/6/20 PM2:16:00

LES

LES

页 4: [25] 删除的内容 LucidPapers	2018/6/20 PM2:16:00
-----------------------------	---------------------

LES

页 4: [25] 删除的内容	LucidPapers	2018/6/20 PM2:16:00

LES

LES

页 5: [26] 删除的内容	LucidPapers	2018/6/19 AM9:41:00

_

页 5: [26] 删除的内容	LucidPapers	2018/6/19 AM9:41:00
-----------------	-------------	---------------------

_

页 5: [26] 删除的内容 LucidPapers 2018/6/19 AM9	:41:00
---	--------

_

页 5: [26] 删除的内容	LucidPapers	2018/6/19 AM9:41:00
-----------------	-------------	---------------------

_

页 5: [26] 删除的内容	LucidPapers	2018/6/19 AM9:41:00
-----------------	-------------	---------------------

-

页 5: [26] 删除的内容	LucidPapers	2018/6/19 AM9:41:00

-

_

页 5: [26] 删除的内容 LucidPapers 2018/6/19 AM9:41:00

_

页 5: [27] 删除的内容 LucidPapers 2018/6/19 AM10:34:00

of

页 5: [27] 删除的内容 LucidPapers 2018/6/19 AM10:34:00

of

页 5: [28] 删除的内容 Microsoft Office User 2018/4/14 AM11:09:00

WRF land-surface model

页 5: [28] 删除的内容 Microsoft Office User 2018/4/14 AM11:09:00

WRF land-surface model

页 5: [29] 删除的内容 LucidPapers 2018/6/20 PM2:17:00

However, m http://www.cmsjournal.net/qxxb_en/ch/index.aspx

However, m

页 5: [29] 删除的内容	LucidPapers	2018/6/20 PM2:17:00
	·	

However, m

is the first attempt to

Fool milyA 44 よっと	7 1 15	0010/0/10 11510 05 00
页 5: [30] 删除的内容	LucidPapers	2018/6/19 AM10:35:00

is the first attempt to

页 5:	[30] 删除的内容	LucidPapers	2018/6/19 AM10:35:00

is the first attempt to

is the first attempt to

AM10:36:00
١

the ongoing

页 5: [31] 删除的内容	LucidPapers	2018/6/19 AM10:36:00
-----------------	-------------	----------------------

the ongoing

页 5: [32] 删除的内容	LucidPapers	2018/6/19 AM10:37:00
-----------------	-------------	----------------------

cases

页 5: [32] 删除的内容 L	ucidPapers 2	2018/6/19 AM10:37:00
-------------------	--------------	----------------------

cases

页 5: [33] 删除的内容	LucidPapers	2018/6/19 AM10:38:00
-----------------	-------------	----------------------

First w

First w

First w

页 5: [33] 删除的内容 LucidPapers	2018/6/19 AM10:38:00
-----------------------------	----------------------

First w

页 5: [33] 删除的内容 LucidPapers 2018/6/19 AM10:38:0

First w

页 5: [33] 删除的内容	LucidPapers	2018/6/19 AM10:38:00
-----------------	-------------	----------------------

First w

First w

页 5: [33] 删除的内容	LucidPapers	2018/6/19 AM10:38:00
-----------------	-------------	----------------------

First w

页 5: [34] 删除的内容

页 5: [34] 删除的内容	LucidPapers	2018/6/19 AM10:40:00
-----------------	-------------	----------------------

the

页 5: [34] 删除的内容	LucidPapers	2018/6/19 AM10:40:00
-----------------	-------------	----------------------

the

页 5: [34] 删除的内容 LucidPapers 2018/6/19 AM10:40:0	00
---	----

the

页 5: [34] 删除的内容 LucidPapers 2018/6/19 AM10:40:0

the

页 5: [34] 删除的内容	LucidPapers	2018/6/19 AM10:40:00

the

页 5: [35] 删除的内容	LucidPapers	2018/6/19 AM10:41:00
-----------------	-------------	----------------------

,

页 5: [35] 删除的内容	LucidPapers	2018/6/19 AM10:41:00

,

页 5: [35] 删除的内容	LucidPapers	2018/6/19 AM10:41:00
-----------------	-------------	----------------------

,

页 5: [35] 删除的内容	LucidPapers	2018/6/19 AM10:41:00
-----------------	-------------	----------------------

,

页 5: [35] 删除的内容	LucidPapers	2018/6/19 AM10:41:00
-----------------	-------------	----------------------

,

页 5: [35] 删除的内容	LucidPapers	2018/6/19 AM10:41:00
-----------------	-------------	----------------------

,

页 5: [35] 删除的内容	LucidPapers	2018/6/19 AM10:41:00

,

.

页 5: [36] 删除的内容 LucidPapers 2018/6/19 AM10:42:00

页 5: [37] 删除的内容 Microsoft Office User 2018/4/7 AM9:10:00

Data

In this study, model simulations compared for 12 hours from the Tazhong field experiment, from 0800 BJT 01 July to 2000 BJT 01 July 2016. The field observation http://www.cmsjournal.net/qxxb_en/ch/index.aspx experiment was held during the month of July 2016 in Tazhong, by the Institute of Desert Meteorology (IDM), Chinese Meteorological Administration (CMA), Urumqi. The main station was located at 86.63°E, 39.03°N. The location is relatively flat with few hills and covered by sand combined with grass (Figure 1), and the 12-h period of our simulation was under a cloudless sky and dry environment. We conducted one way nest WRF from mesoscale(12km) down to LES-scales(0.33km) and compare its results to various instruments including:

- 1) surface fluxes: The eddy correlation system was a R3-50 supersonic anemometer developed by Gill Company, UK, deployed at a height of 10 m. The data acquisition frequency was 20 Hz, and the surface sensible heat flux was calculated by the eddy-covariance method.
- 2) vertical profiles measured using soundings: Upper air soundings of temperature, pressure, humidity, and wind speed and direction were conducted 3-6 times per day with the GPS sounding system developed by No. 23 Institute of China Aerospace Science & Industry Corp. (CASIC23). The sounding times were 01:15, 07:15, 10:15, 13:15, 16:15 and 19:15 respectively.

S

页 6: [38] 删除的内容	LucidPapers	2018/6/19 AM11:00:00
-----------------	-------------	----------------------

S

页 6: [39] 删除的内容	LucidPapers	2018/6/20 PM2:19:00
-----------------	-------------	---------------------

event in

页 6: [39] 删除的内容	LucidPapers	2018/6/20 PM2:19:00
-----------------	-------------	---------------------

event in

页 6: [39] 删除的内容	LucidPapers	2018/6/20 PM2:19:00
-----------------	-------------	---------------------

event in

页 6: [40] 删除的内容	LucidPapers	2018/6/19 AM11:02:00
>/ ~ W41W/W414 H	2002020	

 \mathbf{A}

A

A

页 6: [40] 删除的内容	LucidPapers	2018/6/19 AM11:02:00

A

页 6: [40] 删除的内容	LucidPapers	2018/6/19 AM11:02:00
-----------------	-------------	----------------------

A

页 6: [40] 删除的内容	LucidPapers	2018/6/19 AM11:02:00

A

页 6: [40] 删除的内容	LucidPapers	2018/6/19 AM11:02:00
-----------------	-------------	----------------------

A

页 6: [40] 删除的内容	LucidPapers	2018/6/19 AM11:02:00
-----------------	-------------	----------------------

A

页 6: [40] 删除的内容	LucidPapers	2018/6/19 AM11:02:00

A

页 6: [40] 删除的内容	LucidPapers	2018/6/19 AM11:02:00

A

页 6: [40] 删除的内容 LucidPapers 2018/6/1	19 AM11:02:00
--------------------------------------	---------------

A

页 6: [40] 删除的内容	LucidPapers	2018/6/19 AM11:02:00

A

页 6: [40] 删除的内容	LucidPapers	2018/6/19 AM11:02:00
-----------------	-------------	----------------------

A

页 6: [40] 删除的内容	LucidPapers	2018/6/19 AM11:02:00

A

页 6: [41] 删除的内容	LucidPapers	2018/6/19 AM11:05:00
-----------------	-------------	----------------------

for

页 6: [41] 删除的内容	LucidPapers	2018/6/19 AM11:05:00
-----------------	-------------	----------------------

for

页 6: [41] 删除的内容 LucidPapers	2018/6/19 AM11:05:00
-----------------------------	----------------------

for

页 6: [41] 删除的内容	LucidPapers	2018/6/19 AM11:05:00
-----------------	-------------	----------------------

for

页 6: [41] 删除的内容	LucidPapers	2018/6/19 AM11:05:00

for

页 6: [42] 删除的内容 LucidPapers 2018/6/20 PM2:22:00 http://www.cmsjournal.net/qxxb en/ch/index.aspx

ized condition

页 6: [42] 删除的内容 LucidPapers 2018/6/20 PM2:22:00

ized condition

页 6: [42] 删除的内容 LucidPapers 2018/6/20 PM2:22:00

ized condition

页 6: [42] 删除的内容 LucidPapers 2018/6/20 PM2:22:00

ized condition

页 6: [43] 删除的内容 LucidPapers 2018/6/19 AM11:07:00

-degree by

页 6: [43] 删除的内容 LucidPapers 2018/6/19 AM11:07:00

-degree by

页 6: [43] 删除的内容 LucidPapers 2018/6/19 AM11:07:00

-degree by http://www.cmsjournal.net/qxxb_en/ch/index.aspx

页 6: [43] 删除的内容	LucidPapers	2018/6/19 AM11:07:00
-degree by		
页 6: [44] 删除的内容	LucidPapers	2018/6/19 AM11:07:00
millibars		
页 6: [44] 删除的内容	LucidPapers	2018/6/19 AM11:07:00
millibars		
页 6: [44] 删除的内容	LucidPapers	2018/6/19 AM11:07:00
millibars	1	
页 6: [45] 删除的内容	LucidPapers	2018/6/19 AM11:08:00
model		
页 6: [45] 删除的内容	LucidPapers	2018/6/19 AM11:08:00

model

及 6. [45] 加除的符合 Lucturapers 2010/0/19 Ami1.00.00	页 6: [45] 删除的内容	LucidPapers	2018/6/19 AM11:08:00
--	-----------------	-------------	----------------------

model

页 6: [45] 删除的内容	LucidPapers	2018/6/19 AM11:08:00
-----------------	-------------	----------------------

model

页 6: [45] 删除的内容	LucidPapers	2018/6/19 AM11:08:00
-----------------	-------------	----------------------

model

页 6: [45] 删除的内容	LucidPapers	2018/6/19 AM11:08:00
-----------------	-------------	----------------------

model

)	页 6: [45] 删除的内容	LucidPapers	2018/6/19 AM11:08:00
---	-----------------	-------------	----------------------

model

页 7: [46] 删除的内容	LucidPapers	2018/6/19 AM11:09:00

.

.

页 7: [46] 删除的内容 LucidPapers 2018/6/19 AM11:09:00

.

页 7: [46] 删除的内容 LucidPapers 2018/6/19 AM11:09:00

.

页 7: [47] 删除的内容 LucidPapers 2018/6/19 AM11:10:00

shows the

页 7: [47] 删除的内容 LucidPapers 2018/6/19 AM11:10:00

shows the

页 7: [47] 删除的内容 LucidPapers 2018/6/19 AM11:10:00

shows the

页 7: [47] 删除的内容 LucidPapers 2018/6/19 AM11:10:00

shows the http://www.cmsjournal.net/qxxb_en/ch/index.aspx

shows the

页 7: [47] 删除的内容	LucidPapers	2018/6/19 AM11:10:00
-----------------	-------------	----------------------

shows the

页 7: [47] 删除的内容	LucidPapers	2018/6/19 AM11:10:00
-----------------	-------------	----------------------

shows the

页 7: [47] 删除的内容	LucidPapers	2018/6/19 AM11:10:00
>1	zaciai apeis	=010, 0, 10 1221111000

shows the

页 7: [47] 删除的内容	LucidPapers	2018/6/19 AM11:10:00

shows the

页 7: [47] 删除的内容	LucidPapers	2018/6/19 AM11:10:00
-----------------	-------------	----------------------

shows the

页 7: [47] 删除的内容	LucidPapers	2018/6/19 AM11:10:00
shows the		
页 7: [47] 删除的内容	LucidPapers	2018/6/19 AM11:10:00
shows the		
页 7: [47] 删除的内容	LucidPapers	2018/6/19 AM11:10:00
shows the	70	

页 7: [47] 删除的内容 LucidPapers 2018/6/19 AM11:10:00

shows the

页 7: [47] 删除的内容 LucidPapers 2018/6/19 AM11:10:00

shows the

页 7: [47] 删除的内容 LucidPapers 2018/6/19 AM11:10:00

shows the

页 7: [47] 删除的内容 LucidPapers 2018/6/19 AM11:10:00 http://www.cmsjournal.net/gxxb en/ch/index.aspx

shows the

页 7: [47] 删除的内容 2018/6/19 AM11:10:00 LucidPapers

shows the

页 7: [47] 删除的内容 2018/6/19 AM11:10:00 LucidPapers

shows the

页 7: [47] 删除的内容 LucidPapers 2018/6/19 AM11:10:00

shows the

页 7: [47] 删除的内容 2018/6/19 AM11:10:00 LucidPapers

shows the

页 7: [47] 删除的内容 2018/6/19 AM11:10:00 LucidPapers

shows the

页 7: [47] 删除的内容 2018/6/19 AM11:10:00 LucidPapers

http://www.cmsjournal.net/qxxb_en/ch/index.aspx

shows the

久 7: [48] 删除的内容	页 7: [48] 删除的内容	LucidPapers	2018/6/19 PM12:14:00
-----------------	-----------------	-------------	----------------------

to

页 7: [48] 删除的内容 LucidPapers	2018/6/19 PM12:14:00
-----------------------------	----------------------

to

页 7: [48] 删除的内容	LucidPapers	2018/6/19 PM12:14:00
-----------------	-------------	----------------------

to

页 7: [48] 删除的内容	LucidPapers	2018/6/19 PM12:14:00

to

页 7: [48] 删除的内容	LucidPapers	2018/6/19 PM12:14:00
-----------------	-------------	----------------------

to

页 7: [48] 删除的内容	LucidPapers	2018/6/19 PM12:14:00
-----------------	-------------	----------------------

to

页 7: [48] 删除的内容	LucidPapers	2018/6/19 PM12:14:00
-----------------	-------------	----------------------

to

页 7: [48] 删除的内容	LucidPapers	2018/6/19 PM12:14:00
-----------------	-------------	----------------------

to

页 7: [49] 删除的内容 LucidPapers	2018/6/19 PM12:16:00
-----------------------------	----------------------

,

久 7: [49] 删除的内容	页 7: [49] 删除的内容	LucidPapers	2018/6/19 PM12:16:00
-----------------	-----------------	-------------	----------------------

,

页 7: [49] 删除的内容	LucidPapers	2018/6/19 PM12:16:00

,

,

页 7: [49] 删除的内容 LucidPapers 2018/6/19 PM12:16:00

,

页 7: [50] 删除的内容	LucidPapers	2018/6/19 PM12:16:00
-----------------	-------------	----------------------

1)

页 7: [50] 删除的内容	LucidPapers	2018/6/19 PM12:16:00
-----------------	-------------	----------------------

1)

1)

页 7: [50] 删除的内容	LucidPapers	2018/6/19 PM12:16:00
-----------------	-------------	----------------------

1)

页 7: [50] 删除的内容	LucidPapers	2018/6/19 PM12:16:00
-----------------	-------------	----------------------

页 7: [50] 删除的内容	LucidPapers	2018/6/19 PM12:16:00
-----------------	-------------	----------------------

1)

页 7: [50] 删除的内容	LucidPapers	2018/6/19 PM12:16:00
-----------------	-------------	----------------------

1)

页 7: [50] 删除的内容	LucidPapers	2018/6/19 PM12:16:00

1)

1)

页 7: [50] 删除的内容	LucidPapers	2018/6/19 PM12:16:00

1)

2

页 8: [51] 删除的内容	LucidPapers	2018/6/19 PM12:17:00
-----------------	-------------	----------------------

页 8: [51] 删除的内容	LucidPapers	2018/6/19 PM12:17:00
-----------------	-------------	----------------------

页 8: [51] 删除的内容	LucidPapers	2018/6/19 PM12:17:00
-----------------	-------------	----------------------

页 8: [51] 删除的内容	LucidPapers	2018/6/19 PM12:17:00
-----------------	-------------	----------------------

页 8: [51] 删除的内容 LucidPape	rs 2018/6/19 PM12:17:00
---------------------------	-------------------------

页 8: [51] 删除的内容 LucidPape	rs 2018/6/19 PM12:17:00
---------------------------	-------------------------

页 8: [51] 删除的内容 LucidPapers 2018/6/19 PM12:17:00 http://www.cmsjournal.net/gxxb en/ch/index.aspx

2

从 8: [52] 刺除的內谷	页 8: [52] 删除的内容	LucidPapers	2018/6/19 PM12:20:00
-----------------	-----------------	-------------	----------------------

页 8: [52] 删除的内容	LucidPapers	2018/6/19 PM12:20:00

页 8: [53] 删除的内容 LucidPapers 2018/6/19 PM12:21:00

页 8: [54] 删除的内容 LucidPapers 2018/6/19 PM12:21:00

which is

页 8: [54] 删除的内容 LucidPapers 2018/6/19 PM12:21:00

which is

页 8: [55] 删除的内容 LucidPapers 2018/6/19 PM12:21:00

area of

页 8: [55] 删除的内容 LucidPapers 2018/6/19 PM12:21:00

area of

页 8: [55] 删除的内容 LucidPapers 2018/6/19 PM12:21:00

area of

Page 148 of 297

页 8: [55] 删除的内容	LucidPapers	2018/6/19 PM12:21:00
-----------------	-------------	----------------------

area of

页 8: [56] 删除的内容	Microsoft Office User	2018/4/14 AM11:37:00
-----------------	-----------------------	----------------------

Simulated d

页 8: [56] 删除的内容 Microsoft Office User	2018/4/14 AM11:37:00
---------------------------------------	----------------------

Simulated d

页 8: [57] 删除的内容 LucidPapers 2018/6/19 PM12:22:00	页 8: [57] 删除的内容	LucidPapers	2018/6/19 PM12:22:00
--	-----------------	-------------	----------------------

.

页 8: [57] 删除的内容 LucidPapers 2018/6/19 PM12:22:0

,

页 8: [57] 删除的内容 LucidPapers 2018/6/19 PM12:22:00
--

,

,

页 8: [57] 删除的内容	页 8: [57] 删除的内容	LucidPapers	2018/6/19 PM12:22:00
-----------------	-----------------	-------------	----------------------

,

页 8: [57] 删除的内容 LucidPapers 2018/6/19 PM12:22:00	页 8: [57] 删除的内容	LucidPapers	2018/6/19 PM12:22:00
--	-----------------	-------------	----------------------

,

页 8: [57] 删除的内容	LucidPapers	2018/6/19 PM12:22:00
-----------------	-------------	----------------------

,

页 8: [57] 删除的内容	LucidPapers	2018/6/19 PM12:22:00

,

页 9: [58] 删除的内容	LucidPapers	2018/6/19 PM12:24:00

less

页 9: [58] 删除的内容	LucidPapers	2018/6/19 PM12:24:00
-----------------	-------------	----------------------

页 9: [58] 删除的内容	LucidPapers	2018/6/19 PM12:24:00
-----------------	-------------	----------------------

less

页 9: [58] 删除的内容	LucidPapers	2018/6/19 PM12:24:00
-----------------	-------------	----------------------

less

页 9: [58] 删除的内容	LucidPapers	2018/6/19 PM12:24:00
-----------------	-------------	----------------------

less

页 9: [58] 删除的内容	LucidPapers	2018/6/19 PM12:24:00

less

页 9: [58] 删除的内容	LucidPapers	2018/6/19 PM12:24:00
-----------------	-------------	----------------------

less

页 9: [58] 删除的内容 LucidPapers	2018/6/19 PM12:24:00
-----------------------------	----------------------

页 9: [58] 删除的内容	LucidPapers	2018/6/19 PM12:24:00
-----------------	-------------	----------------------

less

页 9: [58] 删除的内容	LucidPapers	2018/6/19 PM12:24:00
-----------------	-------------	----------------------

less

页 9: [58] 删除的内容 Lu	ucidPapers	2018/6/19 PM12:24:00
--------------------	------------	----------------------

less

页 9: [58] 删除的内容	LucidPapers	2018/6/19 PM12:24:00
-----------------	-------------	----------------------

less

页 9: [58] 删除的内容	LucidPapers	2018/6/19 PM12:24:00

less

页 9: [58] 删除的内容 LucidPapers 2018/6/19 PM12:24:00 http://www.cmsjournal.net/qxxb en/ch/index.aspx

页 9: [58] 删除的内容	LucidPapers	2018/6/19 PM12:24:00
-----------------	-------------	----------------------

less

页 9: [58] 删除的内容	页 9: [58] 删除的内容	LucidPapers	2018/6/19 PM12:24:00
-----------------	-----------------	-------------	----------------------

less

页 9: [58] 删除的内容	LucidPapers	2018/6/19 PM12:24:00
-----------------	-------------	----------------------

less

页 9: [58] 删除的内容	LucidPapers	2018/6/19 PM12:24:00
24 0. FOOT WILLY HALL 1.11	Euorur aporb	2010, 0, 10 1 1112.21.00

less

页 9: [58] 删除的内容	LucidPapers	2018/6/19 PM12:24:00
-----------------	-------------	----------------------

less

页 9: [58] 删除的内容	LucidPapers	2018/6/19 PM12:24:00
-----------------	-------------	----------------------

页 9: [58] 删除的内容	LucidPapers	2018/6/19 PM12:24:00
-----------------	-------------	----------------------

页 9: [58] 删除的内容	LucidPapers	2018/6/19 PM12:24:00

less

in

页 9: [59] 删除的内容	LucidPapers	2018/6/19 PM12:26:00
-----------------	-------------	----------------------

in

页 9: [59] 删除的内容	LucidPapers	2018/6/19 PM12:26:00

in

页 9: [59] 删除的内容	LucidPapers	2018/6/19 PM12:26:00
-----------------	-------------	----------------------

in

页 9: [59] 删除的内容	LucidPapers	2018/6/19 PM12:26:00
	-	

in

页 9: [59] 删除的内容	LucidPapers	2018/6/19 PM12:26:00
-----------------	-------------	----------------------

in

页 9: [59] 删除的内容	LucidPapers	2018/6/19 PM12:26:00
-----------------	-------------	----------------------

in

页 9: [59] 删除的内容	LucidPapers	2018/6/19 PM12:26:00
-----------------	-------------	----------------------

in

页 9: [59] 删除的内容	LucidPapers	2018/6/19 PM12:26:00
-----------------	-------------	----------------------

in

页 9: [59] 删除的内容 LucidPapers 2018/6/19 PM12:26:00
--

in

in

页 9: [59] 删除的内容 LucidPapers 2018/6/19	PM12:26:00
---------------------------------------	------------

in

页 9: [59] 删除的内容 LucidPapers 2018/6/19 PM12:26:0

in

页 9: [59] 删除的内容	LucidPapers	2018/6/19 PM12:26:00
-----------------	-------------	----------------------

in

result in

页 9: [60] 删除的内容	LucidPapers	2018/6/19 PM12:28:00
-----------------	-------------	----------------------

result in

页 9: [60] 删除的内容	LucidPapers	2018/6/19 PM12:28:00
-----------------	-------------	----------------------

result in

(1)) Tthe

(1)) Tthe

of

页 9: [62] 删除的内容	LucidPapers	2018/6/20 PM2:26:00

of

页 9:	[62] 删除的内容	LucidPapers	2018/6/20 PM2:26:00

of

of

页 9: [62] 删除的内容	LucidPapers	2018/6/20 PM2:26:00

of

页 9: [62] 删除的内容	LucidPapers	2018/6/20 PM2:26:00
-----------------	-------------	---------------------

of

页 9: [62] 删除的内容	LucidPapers	2018/6/20 PM2:26:00
-----------------	-------------	---------------------

of

页 9: [62] 删除的内容	LucidPapers	2018/6/20 PM2:26:00
-----------------	-------------	---------------------

of

页 9: [62] 删除的内容	LucidPapers	2018/6/20 PM2:26:00
-----------------	-------------	---------------------

of

of

页 9: [62] 删除的内容 L	LucidPapers	2018/6/20 PM2:26:00
-------------------	-------------	---------------------

of

页 9: [63] 删除的内容	LucidPapers	2018/6/19 PM12:29:00

,

页 9: [63] 删除的内容	LucidPapers	2018/6/19 PM12:29:00
-----------------	-------------	----------------------

,

页 9: [63] 删除的内容	LucidPapers	2018/6/19 PM12:29:00

,

页 9: [63] 删除的内容 LucidPapers 2018/6/19 PM12:29:
--

,

页 9: [63] 删除的内容	LucidPapers	2018/6/19 PM12:29:00
-----------------	-------------	----------------------

页 9: [63] 删除的内容	LucidPapers	2018/6/19 PM12:29:00

,

页 9: [63] 删除的内容	LucidPapers	2018/6/19 PM12:29:00
-----------------	-------------	----------------------

,

页 9: [63] 删除的内容	LucidPapers	2018/6/19 PM12:29:00
-----------------	-------------	----------------------

,

页 9: [63] 删除的内容	LucidPapers	2018/6/19 PM12:29:00
		, -,

,

页 9: [63] 删除的内容	LucidPapers	2018/6/19 PM12:29:00

,

页 9: [63] 删除的内容	LucidPapers	2018/6/19 PM12:29:00
-----------------	-------------	----------------------

,

页 9: [64] 删除的内容	LucidPapers	2018/6/19 PM12:30:00
(2) Iit is should be noted that		
页 9: [64] 删除的内容	LucidPapers	2018/6/19 PM12:30:00
(2) Iit is should be noted that		
页 9: [64] 删除的内容	LucidPapers	2018/6/19 PM12:30:00
(2) Iit is should be noted that		
	<u> </u>	
页 9: [64] 删除的内容 	LucidPapers	2018/6/19 PM12:30:00
(2) Iit is should be noted that		
页 9: [64] 删除的内容	LucidPapers	2018/6/19 PM12:30:00
(2) Iit is should be noted that		
页 9: [64] 删除的内容	LucidPapers	2018/6/19 PM12:30:00

(2) Iit is should be noted that

(2) Iit is should be noted that

(2) Iit is should be noted that

页 9: [64] 删除的内容	LucidPapers	2018/6/19 PM12:30:00
-----------------	-------------	----------------------

(2) Iit is should be noted that

Н

页 9: [65] 删除的内容	Microsoft Office 用户	2018/6/22 AM9:57:00

Н

页 9: [65] 删除的内容	Microsoft Office 用户	2018/6/22 AM9:57:00
-----------------	---------------------	---------------------

Н

页 9: [66] 删除的内容	LucidPapers	2018/6/19 PM12:32:00
-----------------	-------------	----------------------

equal to an

页 9: [67] 删除的内容	LucidPapers	2018/6/19 PM12:32:00
N 0. [0.] William 11.1.1	Duorar aporb	2010/ 0/ 10 1 1112:02:00

what would be

页 9: [67] 删除的内容	LucidPapers	2018/6/19 PM12:32:00
-----------------	-------------	----------------------

what would be

页 9: [67] 删除的内容	LucidPapers	2018/6/19 PM12:32:00
-----------------	-------------	----------------------

what would be

页 10: [68] 删除的内容	LucidPapers	2018/6/19 PM12:33:00

o

o

页 10: [69] 删除的内容	LucidPapers	2018/6/19 PM12:33:00
------------------	-------------	----------------------

以 10. [03] 删除的内存 Lucturapers 2010/0/13 rmiz.55.00	页 10: [69] 删除的内容	LucidPapers	2018/6/19 PM12:33:00
---	------------------	-------------	----------------------

页 10: [69] 删除的内容	LucidPapers	2018/6/19 PM12:33:00
------------------	-------------	----------------------

页 10: [69] 删除的内容	LucidPapers	2018/6/19 PM12:33:00
------------------	-------------	----------------------

页 10: [70] 删除的内容	LucidPapers	2018/6/19 PM12:35:00
------------------	-------------	----------------------

:

页 10: [70] 删除的内容	LucidPapers	2018/6/19 PM12:35:00

:

页 10: [70] 删除的内容 LucidPapers 2018/6/19 PM12:35:00 http://www.cmsjournal.net/qxxb en/ch/index.aspx

:

页 10: [70] 删除的内容 LucidPapers 2018/6/19 PM12:35:00

.

页 10: [70] 删除的内容 LucidPapers 2018/6/19 PM12:35:00

:

页 10: [70] 删除的内容 LucidPapers 2018/6/19 PM12:35:00

:

页 10: [70] 删除的内容 LucidPapers 2018/6/19 PM12:35:00

.

页 10: [70] 删除的内容 LucidPapers 2018/6/19 PM12:35:00

٠

页 10: [70] 删除的内容 LucidPapers 2018/6/19 PM12:35:00

页 10: [71] 删除的内容	LucidPapers	2018/6/19 PM12:36:00

Results

Results

页 10: [71] 删除的内容	LucidPapers	2018/6/19 PM12:36:00
------------------	-------------	----------------------

Results

页 10: [71] 删除的内容 LucidPapers 2018/6/19 PM12

Results

页 10: [72] 删除的内	容 LucidPapers	2018/6/19 PM12:36:00

from

from

from

页 10: [72] 删除的内容	LucidPapers	2018/6/19 PM12:36:00
------------------	-------------	----------------------

from

页 10: [72] 删除的内容	LucidPapers	2018/6/19 PM12:36:00
------------------	-------------	----------------------

from

页 10: [72] 删除的内容	LucidPapers	2018/6/19 PM12:36:00
------------------	-------------	----------------------

from

页 10: [72] 删除的内容	LucidPapers	2018/6/19 PM12:36:00
------------------	-------------	----------------------

from

页 10: [72] 删除的内容 LucidPapers 2018/6/19 PM12:36:00

from

页 10: [72] 删除的内容 LucidPapers http://www.cmsjournal.net/gxxb en/ch/index.aspx 2018/6/19 PM12:36:00 from

页 10: [72] 删除的内容 LucidPapers 2018/6/19 PM12:36:00

from

页 10: [73] 删除的内容 LucidPapers 2018/6/19 PM12:37:00

:

页 10: [73] 删除的内容 LucidPapers 2018/6/19 PM12:37:00

:

页 10: [73] 删除的内容 LucidPapers 2018/6/19 PM12:37:00

:

页 10: [73] 删除的内容 LucidPapers 2018/6/19 PM12:37:00

٠

页 10: [73] 删除的内容 LucidPapers 2018/6/19 PM12:37:00

e

页 10: [74] 删除的内容	LucidPapers	2018/6/19 PM12:38:00
------------------	-------------	----------------------

e

页 10: [74] 删除的内容	LucidPapers	2018/6/19 PM12:38:00
------------------	-------------	----------------------

e

页 10: [74] 删除的内容	LucidPapers	2018/6/19 PM12:38:00
------------------	-------------	----------------------

e

页 10: [74] 删除的内容	LucidPapers	2018/6/19 PM12:38:00

e

e

页 10: [74] 删除的内容	LucidPapers	2018/6/19 PM12:38:00
------------------	-------------	----------------------

e

页 10: [74] 删除的内容	LucidPapers	2018/6/19 PM12:38:00
------------------	-------------	----------------------

页 10: [74] 删除的内容	LucidPapers	2018/6/19 PM12:38:00
------------------	-------------	----------------------

e

页 10: [74] 删除的内容	LucidPapers	2018/6/19 PM12:38:00
------------------	-------------	----------------------

e

页 10: [75] 删除的内容	LucidPapers	2018/6/19 PM12:39:00
------------------	-------------	----------------------

the

页 10: [75] 删除的内容	LucidPapers	2018/6/19 PM12:39:00
	-	

the

页 10: [75] 删除的内容 LucidPapers
http://www.cmsjournal.net/gxxb en/ch/index.aspx 2018/6/19 PM12:39:00 the

页 10: [75] 删除的内容 LucidPapers 2018/6/19 PM12:39:00

the

页 10: [75] 删除的内容 LucidPapers 2018/6/19 PM12:39:00

the

页 10: [75] 删除的内容 LucidPapers 2018/6/19 PM12:39:00

the

页 10: [75] 删除的内容 LucidPapers 2018/6/19 PM12:39:00

the

页 10: [75] 删除的内容 LucidPapers 2018/6/19 PM12:39:00

the

页 10: [75] 删除的内容 LucidPapers 2018/6/19 PM12:39:00

页 10: [75] 删除的内容	LucidPapers	2018/6/19 PM12:39:00

the

the

the

the

页 10: [75] 删除的内容	LucidPapers	2018/6/19 PM12:39:00

the

页 10: [76] 删除的内容	LucidPapers	2018/6/20 PM2:29:00
------------------	-------------	---------------------

页 10: [76] 删除的内容	LucidPapers	2018/6/20 PM2:29:00
------------------	-------------	---------------------

页 10: [77] 删除的内容	LucidPapers	2018/6/19 PM12:43:00
------------------	-------------	----------------------

页 10: [77] 删除的内容	LucidPapers	2018/6/19 PM12:43:00
------------------	-------------	----------------------

页 10: [77] 删除的内容

页 11: [78] 删除的内容 2018/6/19 PM12:44:00 LucidPapers

abilities

页 11: [78] 删除的内容 LucidPapers 2018/6/19 PM12:44:00

abilities

页 11: [78] 删除的内容 LucidPapers 2018/6/19 PM12:44:00

abilities

页 11: [79] 删除的内容 2018/6/19 PM12:44:00 LucidPapers

observation

页 11: [79] 删除的内容 2018/6/19 PM12:44:00 LucidPapers

observation

页 11: [79] 删除的内容 2018/6/19 PM12:44:00 LucidPapers

页 11: [79] 删除的内容	LucidPapers	2018/6/19 PM12:44:00
------------------	-------------	----------------------

observation

页 11: [80] 删除的内容	LucidPapers	2018/6/19 PM12:53:00
------------------	-------------	----------------------

The model simulated

页 11: [80] 删除的内容	LucidPapers	2018/6/19 PM12:53:00
------------------	-------------	----------------------

The model simulated

页 11: [80] 删除的内容	LucidPapers	2018/6/19 PM12:53:00
------------------	-------------	----------------------

The model simulated

页 11: [80] 删除的内容	LucidPapers	2018/6/19 PM12:53:00

The model simulated

页 11: [80] 删除的内容	LucidPapers	2018/6/19 PM12:53:00
------------------	-------------	----------------------

The model simulated

页 11: [80] 删除的内容 2018/6/19 PM12:53:00 LucidPapers

The model simulated

页 11: [80] 删除的内容 2018/6/19 PM12:53:00 LucidPapers

The model simulated

页 11: [80] 删除的内容 2018/6/19 PM12:53:00 LucidPapers

The model simulated

页 11: [80] 删除的内容 LucidPapers 2018/6/19 PM12:53:00

The model simulated

页 11: [80] 删除的内容 LucidPapers 2018/6/19 PM12:53:00

The model simulated

页 11: [80] 删除的内容 LucidPapers 2018/6/19 PM12:53:00

The model simulated

LucidPapers http://www.cmsjournal.net/gxxb_en/ch/index.aspx 2018/6/19 PM12:53:00 页 11: [80] 删除的内容

The model simulated

页 11: [80] 删除的内容 LucidPapers 2018/6/19 PM12:53:00

The model simulated

页 11: [80] 删除的内容 LucidPapers 2018/6/19 PM12:53:00

The model simulated

页 11: [80] 删除的内容 LucidPapers 2018/6/19 PM12:53:00

The model simulated

页 11: [80] 删除的内容 LucidPapers 2018/6/19 PM12:53:00

The model simulated

页 11: [80] 删除的内容 LucidPapers 2018/6/19 PM12:53:00

The model simulated

页 11: [80] 删除的内容 LucidPapers 2018/6/19 PM12:53:00

The model simulated http://www.cmsjournal.net/qxxb_en/ch/index.aspx

The model simulated

页 11: [80] 删除的内容	LucidPapers	2018/6/19 PM12:53:00
------------------	-------------	----------------------

The model simulated

页 11: [80] 删除的内容	LucidPapers	2018/6/19 PM12:53:00
------------------	-------------	----------------------

The model simulated

页 11: [81] 删除的内容	LucidPapers	2018/6/19 PM12:55:00
------------------	-------------	----------------------

页 11: [81] 删除的内容 LucidPapers 2018/6/19 PM12:55:00

页 11: [81] 删除的内容 LucidPapers 2018/6/19 PM12:55:00

页 11: [82] 删除的内容 2018/6/19 PM12:56:00 LucidPapers

At 1700 BJT (Figure 5Figure c),, t

页 11: [82] 删除的内容 2018/6/19 PM12:56:00 LucidPapers

At 1700 BJT (Figure 5Figure c),, t

页 11: [83] 删除的内容 2018/6/19 PM12:56:00 LucidPapers

grows

页 11: [83] 删除的内容 LucidPapers 2018/6/19 PM12:56:00

grows

页 11: [83] 删除的内容 LucidPapers2018/6/19 PM12:56:00

grows

页 11: [83] 删除的内容 2018/6/19 PM12:56:00 LucidPapers

grows

LucidPapers http://www.cmsjournal.net/gxxb_en/ch/index.aspx 2018/6/19 PM12:56:00 grows

页 11: [83] 删除的内容 LucidPapers 2018/6/19 PM12:56:00

grows

页 11: [83] 删除的内容 LucidPapers 2018/6/19 PM12:56:00

grows

页 11: [83] 删除的内容 LucidPapers 2018/6/19 PM12:56:00

grows

页 11: [84] 删除的内容 LucidPapers 2018/6/19 PM12:57:00

One possible minor reason is

页 11: [84] 删除的内容 LucidPapers 2018/6/19 PM12:57:00

One possible minor reason is

页 11: [84] 删除的内容 LucidPapers 2018/6/19 PM12:57:00

One possible minor reastin://www.cmsjournal.net/qxxb_en/ch/index.aspx

页 11: [85] 删除的内容	Microsoft Office User	2018/4/10 PM3:47:00
------------------	-----------------------	---------------------

,

页 11: [85] 删除的内容 Microsoft Office User 2018/4/10 P
--

,

页 11: [86] 删除的内容	LucidPapers	2018/6/19 PM12:58:00
------------------	-------------	----------------------

Simulated

页 11: [86] 删除的内容	LucidPapers	2018/6/19 PM12:58:00
------------------	-------------	----------------------

Simulated

页 11: [86]	删除的内容	LucidPapers	2018/6/19 PM12:58:00

Simulated

ed

页 12: [87] 删除的内容	LucidPapers	2018/6/19 PM12:59:00
------------------	-------------	----------------------

ed

页 12: [87] 删除的内容	LucidPapers	2018/6/19 PM12:59:00
------------------	-------------	----------------------

ed

2010/0/10 1m12.00.00	页 12: [88] 删除的内容	LucidPapers	2018/6/19 PM12:59:00
----------------------	------------------	-------------	----------------------

to

页 12: [88] 删除的内容	LucidPapers	2018/6/19 PM12:59:00
------------------	-------------	----------------------

to

页 12: [88] 删除的内容	LucidPapers	2018/6/19 PM12:59:00
------------------	-------------	----------------------

to

页 12: [88] 删除的内容	LucidPapers	2018/6/19 PM12:59:00

to

页 12: [88] 删除的内容 LucidPapers 2018/6/19 PM12:59:00 http://www.cmsjournal.net/qxxb en/ch/index.aspx

to

页 12: [88] 删除的内容 LucidPapers	2018/6/19 PM12:59:00
------------------------------	----------------------

to

页 12: [88] 删除的内容 LucidPapers 2018/6/19 PM12:59:00	页 12: [88] 删除的内	J容 LucidPapers	2018/6/19 PM12:59:00
---	-----------------	----------------	----------------------

to

页 12: [88] 删除的内容	LucidPapers	2018/6/19 PM12:59:00
> \ :		

to

页 12: [88] 删除的内容 LucidPapers 2018/6/19 PM1
--

to

页 12: [88] 删除的内容 LucidPapers	2018/6/19 PM12:59:00
------------------------------	----------------------

to

页 12: [89] 删除的内容	LucidPapers	2018/6/19 PM1:01:00
------------------	-------------	---------------------

页 12: [89] 删除的内容 LucidPapers 2018/6/19 PM1:01:00

was about 300 m

页 12: [89] 删除的内容 LucidPapers 2018/6/19 PM1:01:00

was about 300 m

页 12: [89] 删除的内容 LucidPapers 2018/6/19 PM1:01:00

was about 300 m

页 12: [89] 删除的内容 LucidPapers 2018/6/19 PM1:01:00

was about 300 m

页 12: [89] 删除的内容 LucidPapers 2018/6/19 PM1:01:00

was about 300 m

页 12: [89] 删除的内容 LucidPapers 2018/6/19 PM1:01:00

was about 300 m

页 12: [89] 删除的内容 2018/6/19 PM1:01:00 LucidPapers

was about 300 m

页 12: [89] 删除的内容 2018/6/19 PM1:01:00 LucidPapers

was about 300 m

页 12: [89] 删除的内容 2018/6/19 PM1:01:00 LucidPapers

was about 300 m

页 12: [89] 删除的内容 LucidPapers 2018/6/19 PM1:01:00

was about 300 m

页 12: [89] 删除的内容 LucidPapers 2018/6/19 PM1:01:00

was about 300 m

页 12: [89] 删除的内容 2018/6/19 PM1:01:00 LucidPapers

was about 300 m

LucidPapers http://www.cmsjournal.net/gxxb_en/ch/index.aspx 2018/6/19 PM1:01:00 was about 300 m

页 12: [89] 删除的内容 2018/6/19 PM1:01:00 LucidPapers

was about 300 m

页 12: [89] 删除的内容 2018/6/19 PM1:01:00 LucidPapers

was about 300 m

页 12: [89] 删除的内容 2018/6/19 PM1:01:00 LucidPapers

was about 300 m

页 12: [89] 删除的内容 2018/6/19 PM1:01:00 LucidPapers

was about 300 m

2018/6/19 PM1:01:00 页 12: [89] 删除的内容 LucidPapers

was about 300 m

页 12: [89] 删除的内容 LucidPapers 2018/6/19 PM1:01:00 页 12: [89] 删除的内容 LucidPapers 2018/6/19 PM1:01:00

was about 300 m

页 12: [89] 删除的内容 LucidPapers 2018/6/19 PM1:01:00

was about 300 m

页 12: [89] 删除的内容 LucidPapers 2018/6/19 PM1:01:00

was about 300 m

页 12: [90] 删除的内容 Microsoft Office User 2018/4/14 PM11:06:00

has

页 12: [90] 删除的内容 Microsoft Office User 2018/4/14 PM11:06:00

has

页 12: [91] 删除的内容 LucidPapers 2018/6/19 PM1:03:00

is

页 12: [91] 删除的内容	LucidPapers	2018/6/19 PM1:03:00
------------------	-------------	---------------------

is

页 12: [91] 删除的内容	LucidPapers	2018/6/19 PM1:03:00
------------------	-------------	---------------------

is

页 12: [91] 删除的内容	LucidPapers	2018/6/19 PM1:03:00
------------------	-------------	---------------------

is

页 12: [91] 删除的内容	LucidPapers	2018/6/19 PM1:03:00
------------------	-------------	---------------------

is

页 12: [91] 删除的内容	LucidPapers	2018/6/19 PM1:03:00
------------------	-------------	---------------------

is

页 12: [91] 删除的内容	LucidPapers	2018/6/19 PM1:03:00

is

页 12: [92] 删除的内容 LucidPapers 2018/6/19 PM1:04:00 http://www.cmsjournal.net/qxxb en/ch/index.aspx

Н

页 12: [92] 删除的内容	LucidPapers	2018/6/19 PM1:04:00
------------------	-------------	---------------------

Н

页 12: [92] 删除的内容 LucidPapers 2018/6/19	PM1:04:00
--	-----------

Н

页 12: [93] 删除的内容	Microsoft Office User	2018/4/14 PM11:08:00
------------------	-----------------------	----------------------

,

页 12: [93] 删除的内容	Microsoft Office User	2018/4/14 PM11:08:00

,

页 12: [94] 删除的内容	LucidPapers	2018/6/19 PM1:04:00
------------------	-------------	---------------------

of approximately

页 12: [94] 删除的内容 LucidPapers 2018/6/19	PM1:04:00
--	-----------

页 12: [94] 删除的内容	LucidPapers	2018/6/19 PM1:04:00
of approximately		
页 12: [94] 删除的内容	LucidPapers	2018/6/19 PM1:04:00
of approximately		
页 12: [94] 删除的内容	LucidPapers	2018/6/19 PM1:04:00
of approximately	70/2	
页 12: [94] 删除的内容	LucidPapers	2018/6/19 PM1:04:00
of approximately		
页 12: [94] 删除的内容	LucidPapers	2018/6/19 PM1:04:00
of approximately		
页 12: [94] 删除的内容	LucidPapers	2018/6/19 PM1:04:00

of approximately

页 12: [94] 删除的内容 LucidPapers 2018/6/19 PM1:04:00

of approximately

页 12: [94] 删除的内容 LucidPapers 2018/6/19 PM1:04:00

of approximately

页 12: [94] 删除的内容 LucidPapers 2018/6/19 PM1:04:00

of approximately

页 12: [94] 删除的内容 LucidPapers 2018/6/19 PM1:04:00

of approximately

页 12: [94] 删除的内容 LucidPapers 2018/6/19 PM1:04:00

of approximately

页 12: [94] 删除的内容 LucidPapers 2018/6/19 PM1:04:00

of approximately

页 12: [94] 删除的内容 LucidPapers 2018/6/19 PM1:04:00 http://www.cmsjournal.net/qxxb en/ch/index.aspx

of approximately

of approximately

页 13: [95] 删除的内容 LucidPapers	2018/6/19 PM1:06:00
------------------------------	---------------------

he

页 13: [95] 删除的内容	LucidPapers	2018/6/19 PM1:06:00
------------------	-------------	---------------------

he

he

,

页 13: [96] 删除的内容	LucidPapers	2018/6/19 PM1:07:00
------------------	-------------	---------------------

,

页 13: [96] 删除的内容	页 13: [96] 删除的内容	LucidPapers	2018/6/19 PM1:07:00
-------------------------	------------------	-------------	---------------------

,

页 13: [97] 删除的内容	LucidPapers	2018/6/19 PM1:07:00
------------------	-------------	---------------------

also

页 13: [97]	删除的内容	LucidPapers	2018/6/19 PM1:07:00
J 10. [01]	W121/21/11/11	Edoldi dpolb	2010/0/10 1111:01:00

also

页 13: [97] 删除的内容	LucidPapers	2018/6/19 PM1:07:00

also

also

页 13: [97] 删除的内容	LucidPapers	2018/6/19 PM1:07:00
------------------	-------------	---------------------

页 13: [97] 删除的内容	LucidPapers	2018/6/19 PM1:07:00
------------------	-------------	---------------------

also

页 13: [97] 删除的内容	LucidPapers	2018/6/19 PM1:07:00
------------------	-------------	---------------------

also

页 13: [97] 删除的内容	LucidPapers	2018/6/19 PM1:07:00
------------------	-------------	---------------------

also

页 13: [97] 删除的内容	LucidPapers	2018/6/19 PM1:07:00
------------------	-------------	---------------------

also

2018/6/19 PM1:07:00 页 13: [97] 删除的内容 LucidPapers

also

页 13: [97] 删除的内容 LucidPapers http://www.cmsjournal.net/gxxb en/ch/index.aspx 2018/6/19 PM1:07:00

页 13: [97] 删除的内容 LucidPapers 2018/6/19 PM1:07:00

also

页 13: [97] 删除的内容 LucidPapers 2018/6/19 PM1:07:00

页 13: [97] 删除的内容	LucidPapers	2018/6/19 PM1:07:00
------------------	-------------	---------------------

also

页 13: [97] 删除的内容	LucidPapers	2018/6/19 PM1:07:00
------------------	-------------	---------------------

also

五 10 [07] mil/A44 上 de	T 1 1D	0010 /0 /10 DM1 07 00
页 13: [97] 删除的内容	LucidPapers	2018/6/19 PM1:07:00

also

贝 13: [97] 删除的内容	LucidPapers	2018/6/19 PM1:07:00
------------------	-------------	---------------------

also

页 13: [97] 删除的内容	LucidPapers	2018/6/19 PM1:07:00
------------------	-------------	---------------------

also

页 13: [97] 删除的内容 2018/6/19 PM1:07:00 LucidPapers

also

LucidPapers http://www.cmsjournal.net/gxxb_en/ch/index.aspx 2018/6/19 PM1:07:00 页 13: [97] 删除的内容

页 13: [97] 删除的内容 2018/6/19 PM1:07:00 LucidPapers

also

页 13: [97] 删除的内容 2018/6/19 PM1:07:00 LucidPapers

also

页 13: [98] 删除的内容 Microsoft Office User 2018/4/14 PM11:13:00

with no

页 13: [98] 删除的内容 Microsoft Office User 2018/4/14 PM11:13:00

with no

页 13: [99] 删除的内容 2018/6/19 PM2:03:00 LucidPapers

Inverse

页 13: [99] 删除的内容 LucidPapers 2018/6/19 PM2:03:00

页 13: [99] 删除的内容	LucidPapers	2018/6/19 PM2:03:00
------------------	-------------	---------------------

Inverse

页 13: [99] 删除的内容	LucidPapers	2018/6/19 PM2:03:00
------------------	-------------	---------------------

Inverse

页 13: [99] 删除的内容	LucidPapers	2018/6/19 PM2:03:00
------------------	-------------	---------------------

Inverse

Inverse

页 13: [99]	删除的内容	LucidPapers	2018/6/19 PM2:03:00

Inverse

Inverse

页 13: [99] 删除的内容 LucidPapers 2018/6/19 PM2:03:00

Inverse

页 13: [99] 删除的内容 LucidPapers 2018/6/19 PM2:03:00 http://www.cmsjournal.net/gxxb en/ch/index.aspx

Inverse

页 13: [99] 删除的内容 LucidPapers 2018/6/19 PM2:03:00

Inverse

页 14: [100] 删除的内容 LucidPapers 2018/6/19 AM9:39:00

-

页 14: [100] 删除的内容 LucidPapers 2018/6/19 AM9:39:00

页 14: [100] 删除的内容	LucidPapers	2018/6/19 AM9:39:00
-------------------	-------------	---------------------

_

-

页 14:	[100] 删除的内容	LucidPapers	2018/6/19 AM9:39:00

_

页 14: [100] 删除的内容 L	LucidPapers	2018/6/19 AM9:39:00
---------------------	-------------	---------------------

-

页 14: [100] 删除的内容	LucidPapers	2018/6/19 AM9:39:00

-

-

页 14: [100] 删除的内容 LucidPapers 2018/6/19 AM9:39:00

-

页 14: [100] 删除的内容 LucidPapers 2018/6/19 AM9:39:00

_

页 14: [100] 删除的内容 LucidPapers 2018/6/19 AM9:39:00

_

页 14: [100] 删除的内容 LucidPapers 2018/6/19 AM9:39:00

-

页 14: [100] 删除的内容 LucidPapers 2018/6/19 AM9:39:00

-

页 14: [100] 删除的内容 LucidPapers 2018/6/19 AM9:39:00

-

-

页 14: [100] 删除的内容 LucidPapers 2018/6/19 AM9:39:00

_

页 14: [100] 删除的内容 LucidPapers 2018/6/19 AM9:39:00

-

页 14: [101] 删除的内容 LucidPapers 2018/6/19 PM2:08:00

moisture

页 14: [101] 删除的内容 LucidPapers 2018/6/19 PM2:08:00

moisture

页 14: [101] 删除的内容 LucidPapers 2018/6/19 PM2:08:00

moisture

页 14: [101] 删除的内容 LucidPapers 2018/6/19 PM2:08:00

页 14: [102] 删除的内容	LucidPapers	2018/6/19 PM2:10:00
-------------------	-------------	---------------------

页 14: [102] 删除的内容	LucidPapers	2018/6/19 PM2:10:00
-------------------	-------------	---------------------

页 14: [102] 删除的内容	LucidPapers	2018/6/19 PM2:10:00
-------------------	-------------	---------------------

页 14: [102] 删除的内容	LucidPapers	2018/6/19 PM2:10:00

页 14: [102] 删除的内容 LucidPapers 2018/6/19 PM2:10:00

页 14: [102] 删除的内容	LucidPapers	2018/6/19 PM2:10:00
-------------------	-------------	---------------------

页 14: [102] 删除的内容	LucidPapers	2018/6/19 PM2:10:00
-------------------	-------------	---------------------

页 14: [102] 删除的内容 LucidPapers	2018/6/19 PM2:10:00
-------------------------------	---------------------

页 14: [102] 删除的内容	LucidPapers	2018/6/19 PM2:10:00
-------------------	-------------	---------------------

页 14: [102] 删除的内容	LucidPapers	2018/6/19 PM2:10:00
-------------------	-------------	---------------------

贞 14: [103] 删除的内容	LucidPapers	2018/6/19 PM2:11:00
-------------------	-------------	---------------------

e

1.1

 e

1.2

页 14: [104] 删除的内容	Microsoft Office 用户	2018/7/14 AM10:58:00
-------------------	---------------------	----------------------

simulation

页 14: [104] 删除的内容 Microsoft Office 用户 2018/7/14 AM10:58:00
--

simulation

页 14: [105] 删除的内容	LucidPapers	2018/6/19 PM2:12:00
-------------------	-------------	---------------------

LES

页 14: [105] 删除的内容	LucidPapers	2018/6/19 PM2:12:00

LES

LES

页 14: [105] 删除的内容	LucidPapers	2018/6/19 PM2:12:00
-------------------	-------------	---------------------

页 14: [105] 删除的内容	LucidPapers	2018/6/19 PM2:12:00
-------------------	-------------	---------------------

LES

页 14: [105] 删除的内容	LucidPapers	2018/6/19 PM2:12:00

LES

LES

LES

页 14: [105] 删除的内容	LucidPapers	2018/6/19 PM2:12:00

LES

页 14: [106] 删除的内容	LucidPapers	2018/6/19 PM2:12:00
-------------------	-------------	---------------------

PBL

PBL

页 14: [106] 删除的内容	LucidPapers	2018/6/19 PM2:12:00
-------------------	-------------	---------------------

PBL

页 14: [106] 删除的内容	LucidPapers	2018/6/19 PM2:12:00
-------------------	-------------	---------------------

PBL

页 14: [107] 删除的内容	LucidPapers	2018/6/19 PM2:13:00
-------------------	-------------	---------------------

S

页 14: [107] 删除的内容	LucidPapers	2018/6/19 PM2:13:00
-------------------	-------------	---------------------

S

页 14: [107] 删除的内容	LucidPapers	2018/6/19 PM2:13:00

S

S

R

Д 15: [108]	页 15: [108] 删除的内容	LucidPapers	2018/6/19 PM2:14:00
-------------	-------------------	-------------	---------------------

R

页 15: [108] 删除的内容	LucidPapers	2018/6/19 PM2:14:00
-------------------	-------------	---------------------

R

页 15: [108] 删除的内容 LucidPapers 2018/6/19 PM2:14:00

R

页 15: [108] 删除的内容	LucidPapers	2018/6/19 PM2:14:00
-------------------	-------------	---------------------

R

页 15: [108] 删除的内容	LucidPapers	2018/6/19 PM2:14:00
-------------------	-------------	---------------------

页 15: [108] 删除的内容	LucidPapers	2018/6/19 PM2:14:00
-------------------	-------------	---------------------

R

页 15: [108] 删除的内容	LucidPapers	2018/6/19 PM2:14:00

R

页 15:	[108] 删除的内容	LucidPapers	2018/6/19 PM2:14:00

R

页 15: [108] 删除的内容	LucidPapers	2018/6/19 PM2:14:00
-------------------	-------------	---------------------

R

页 15: [108] 删除的内容	LucidPapers	2018/6/19 PM2:14:00

R

页 15: [109] 删除的内容	LucidPapers	2018/6/19 PM2:16:00
-------------------	-------------	---------------------

er

页 15: [109] 删除的内容 LucidPapers 2018/6/19 PM2:16:00

er

页 15: [110] 删除的内容 LucidPapers 2018/6/19 PM2:17:00

Furthermore, in

页 15: [110] 删除的内容 LucidPapers 2018/6/19 PM2:17:00

Furthermore, in

页 15: [110] 删除的内容 LucidPapers 2018/6/19 PM2:17:00

Furthermore, in

页 15: [110] 删除的内容 LucidPapers 2018/6/19 PM2:17:00

Furthermore, in

页 15: [110] 删除的内容 LucidPapers 2018/6/19 PM2:17:00

Furthermore, in

页 15: [111] 删除的内容 LucidPapers 2018/6/19 PM2:17:00 http://www.cmsjournal.net/qxxb en/ch/index.aspx

页 15: [111] 删除的内容 LucidPapers 2018/6/19 PM2:17
--

页 15: [111] 删除的内容	LucidPapers	2018/6/19 PM2:17:00
-------------------	-------------	---------------------

页 15: [111] 删除的内容	LucidPapers	2018/6/19 PM2:17:00

页 15: [112] 删除的内容	LucidPapers	2018/6/19 PM2:17:00
-------------------	-------------	---------------------

页 15: [112] 删除的内容 LucidPapers 2018/6/19 PM2:17:00

〔15: [112] 删除的内容	LucidPapers	2018/6/19 PM2:17:00
------------------	-------------	---------------------

页 15: [113] 删除的内容	LucidPapers	2018/6/19 PM2:18:00
-------------------	-------------	---------------------

页 15: [113] 删除的内容	LucidPapers	2018/6/19 PM2:18:00
-------------------	-------------	---------------------

页 15: [113] 删除的内容	LucidPapers	2018/6/19 PM2:18:00

页 15: [113] 删除的内容 LucidPapers 2018/6/19 PM2:18:00

页 15: [114] 删除的内容 2018/6/19 AM9:39:00 LucidPapers

sections

页 15: [114] 删除的内容 2018/6/19 AM9:39:00 LucidPapers

sections

页 15: [114] 删除的内容 2018/6/19 AM9:39:00 LucidPapers

sections

页 15: [114] 删除的内容 LucidPapers 2018/6/19 AM9:39:00

sections

页 15: [114] 删除的内容 LucidPapers2018/6/19 AM9:39:00

sections

页 15: [114] 删除的内容 2018/6/19 AM9:39:00 LucidPapers

sections

页 15: [114] 删除的内容 LucidPapers
http://www.cmsjournal.net/qxxb en/ch/index.aspx 2018/6/19 AM9:39:00 sections

页 15: [114] 删除的内容 LucidPapers 2018/6/19 AM9:39:00

sections

页 15: [115] 删除的内容 LucidPapers 2018/6/19 PM2:19:00

页 15: [115] 删除的内容	LucidPapers	2018/6/19 PM2:19:00
-------------------	-------------	---------------------

页	15: [115] 删除的内容	LucidPapers	2018/6/19 PM2:19:00

页 15: [116] 删除的内容	LucidPapers	2018/6/19 PM2:21:00
-------------------	-------------	---------------------

S

页 15: [116] 删除的内容	LucidPapers	2018/6/19 PM2:21:00
-------------------	-------------	---------------------

S

页 15:	[116] 删除的内容	LucidPapers	2018/6/19 PM2:21:00

S

页 15: [116] 删除的内容	LucidPapers	2018/6/19 PM2:21:00
-------------------	-------------	---------------------

S

页 15: [116] 删除的内容	LucidPapers	2018/6/19 PM2:21:00
-------------------	-------------	---------------------

S

页 16: [117] 删除的内容	LucidPapers	2018/6/19 PM2:24:00
-------------------	-------------	---------------------

页 16: [117] 删除的内容 LucidPapers 2018/6/19 PM2:24:00

页 16: [117] 删除的内容 LucidPapers 2018/6/19 PM2:24:00 http://www.cmsjournal.net/qxxb en/ch/index.aspx

	页 16: [118] 删除的内容	LucidPapers	2018/6/19 PM2:25:00
--	-------------------	-------------	---------------------

页 16: [118] 删除的内容	LucidPapers	2018/6/19 PM2:25:00

页 16: [118] 删除的内容	LucidPapers	2018/6/19 PM2:25:00
-------------------	-------------	---------------------

页 16: [118] 删除的内容 LucidPapers 2018/6/19 PM2:25:00

页 16: [118] 删除的内容	LucidPapers	2018/6/19 PM2:25:00
火 10. [110] 删除的约合	Lucturapers	2010/0/19 FM2.25.00

页 16: [118] 删除的内容	LucidPapers	2018/6/19 PM2:25:00
-------------------	-------------	---------------------

页 16: [118] 删除的内容	LucidPapers	2018/6/19 PM2:25:00

页 16: [119] 删除的内容	LucidPapers	2018/6/19 PM2:26:00
-------------------	-------------	---------------------

页 16: [119]	〕删除的内容	LucidPapers	2018/6/19 PM2:26:00

页 16: [119] 删除的内容 LucidPapers 2018/6/19 PM2:26:00

页 16: [119] 删除的内容	LucidPapers	2018/6/19 PM2:26:00
-------------------	-------------	---------------------

页 16: [119] 删除的内容	LucidPapers	2018/6/19 PM2:26:00
-------------------	-------------	---------------------

页 16: [119] 删除的内容	LucidPapers	2018/6/19 PM2:26:00
-------------------	-------------	---------------------

页 16: [119] 删除的内容	LucidPapers	2018/6/19 PM2:26:00
'X	Luciui abei s	2010/0/13 1112.20.00

页 16: [119] 删除的内容	LucidPapers	2018/6/19 PM2:26:00
-------------------	-------------	---------------------

页	16:	[119]	删除的内容	LucidPapers	2018/6/19 PM2:26:00

页 16: [119] 删除的内容	LucidPapers	2018/6/19 PM2:26:00

页 16: [119] 删除的内容	LucidPapers	2018/6/19 PM2:26:00
-------------------	-------------	---------------------

页 16: [119] 删除的内容 LucidPapers 2018/6/19 PM2:26:00

页 16: [120] 删除的内容	LucidPapers	2018/6/19 PM2:29:00
-------------------	-------------	---------------------

页 16: [120] 删除的内容	LucidPapers	2018/6/19 PM2:29:00
-------------------	-------------	---------------------

页 16: [120] 删除的内容	LucidPapers	2018/6/19 PM2:29:00
-------------------	-------------	---------------------

页 16: [120] 删除的内容 LucidPapers 2018/6/19 PM2:29:00

页 16: [120] 删除的内容	LucidPapers	2018/6/19 PM2:29:00
-------------------	-------------	---------------------

页 16: [120] 删除的内容	LucidPapers	2018/6/19 PM2:29:00
-------------------	-------------	---------------------

页 16: [120] 删除的内容	LucidPapers	2018/6/19 PM2:29:00
-------------------	-------------	---------------------

页 16: [121] 删除的内容	LucidPapers	2018/6/19 PM2:30:00
-------------------	-------------	---------------------

│ 贞 16: [121] 删除的内容	LucidPapers	2018/6/19 PM2:30:00
---------------------	-------------	---------------------

页 16: [121] 删除的内容	LucidPapers	2018/6/19 PM2:30:00
-------------------	-------------	---------------------

页 16: [121] 删除的内容	LucidPapers	2018/6/19 PM2:30:00
-------------------	-------------	---------------------

页 16: [121] 删除的内容	LucidPapers	2018/6/19 PM2:30:00

页 16: [121] 删除的内容	LucidPapers	2018/6/19 PM2:30:00
-------------------	-------------	---------------------

页 16: [121] 删除的内容	LucidPapers	2018/6/19 PM2:30:00

页 16: [121] 删除的内容 LucidPapers 2018/6/19 PM2:30:00

页 16: [121] 删除的内容	LucidPapers	2018/6/19 PM2:30:00
-------------------	-------------	---------------------

页 16: [121] 删除的内容	LucidPapers	2018/6/19 PM2:30:00
-------------------	-------------	---------------------

贞 17: [122] 删除的内容	LucidPapers	2018/6/19 AM10:57:00
(SH)	7/	

1.3

页 17: [122] 删除的内容	LucidPapers	2018/6/19 AM10:57:00

(SH)

1.4

页 17: [123] 删除的内容	LucidPapers	2018/6/19 PM2:33:00
-------------------	-------------	---------------------

PBL

PBL

页 17: [123] 删除的内容	LucidPapers	2018/6/19 PM2:33:00
-------------------	-------------	---------------------

PBL

页 17: [124] 删除的内容	LucidPapers	2018/6/19 AM10:58:00
-------------------	-------------	----------------------

SH

页 17: [124] 删除的内容	LucidPapers	2018/6/19 AM10:58:00
-------------------	-------------	----------------------

SH

页 17: [125] 删除的内容	LucidPapers	2018/6/19 AM10:58:00
-------------------	-------------	----------------------

SH

SH

summer

页 17: [126] 删除的内容 LucidPapers 2018/6/19 PM2:34:00

summer

页 17: [126] 删除的内容 LucidPapers 2018/6/19 PM2:34:00

summer

页 17: [127] 删除的内容 LucidPapers 2018/6/19 PM2:35:00

PB

页 17: [127] 删除的内容 LucidPapers 2018/6/19 PM2:35:00

PB

页 17: [127] 删除的内容 LucidPapers 2018/6/19 PM2:35:00

PB

页 17: [128] 删除的内容 LucidPapers 2018/6/19 PM2:35:00

页 17: [128] 删除的内容	LucidPapers	2018/6/19 PM2:35:00
-------------------	-------------	---------------------

;

页 17: [129] 删除的内容	LucidPapers	2018/6/19 PM2:35:00
-------------------	-------------	---------------------

For Noah experiment

页 17: [129] 删除的内容 LucidPapers 2	2018/6/19 PM2:35:00
---------------------------------	---------------------

For Noah experiment

页 17: [129] 删除的内容	LucidPapers	2018/6/19 PM2:35:00
V. 11 • [143] MINNIN [17]	Luciui apei s	2010/ 0/ 13 1 M2.33.00

For Noah experiment

页 17: [129] 删除的内容	LucidPapers	2018/6/19 PM2:35:00
-------------------	-------------	---------------------

For Noah experiment

For Noah experiment

页 17: [130] 删除的内容	LucidPapers	2018/6/19 PM2:36:00
-------------------	-------------	---------------------

,

页 17: [130] 删除的内容	LucidPapers	2018/6/19 PM2:36:00
-------------------	-------------	---------------------

,

页 17: [130] 删除的内容	LucidPapers	2018/6/19 PM2:36:00
-------------------	-------------	---------------------

,

页 17: [130] 删除的内容	LucidPapers	2018/6/19 PM2:36:00
-------------------	-------------	---------------------

,

页 17: [130] 删除的内容	LucidPapers	2018/6/19 PM2:36:00
-------------------	-------------	---------------------

,

页 17: [131] 删除的内容	LucidPapers	2018/6/19 PM2:36:00

,

页 17: [131] 删除的内容 LucidPapers 2018/6/19 PM2:36:00 http://www.cmsjournal.net/gxxb en/ch/index.aspx

,

页 17: [132] 删除的内容 LucidPapers 2018/6/19 PM2:37:00

ed

页 17: [132] 删除的内容	LucidPapers	2018/6/19 PM2:37:00
-------------------	-------------	---------------------

ed

ed

页 17: [132] 删除的内容 Lu	ucidPapers	2018/6/19 PM2:37:00
----------------------	------------	---------------------

ed

ed

页 17: [132] 删除的内容	LucidPapers	2018/6/19 PM2:37:00
-------------------	-------------	---------------------

ed

ed

页 17: [132] 删除的内容	LucidPapers	2018/6/19 PM2:37:00
-------------------	-------------	---------------------

ed

页 17: [132] 删除的内容	LucidPapers	2018/6/19 PM2:37:00
-------------------	-------------	---------------------

ed

页 17: [132] 删除的内容	LucidPapers	2018/6/19 PM2:37:00
-------------------	-------------	---------------------

ed

页 17: [132] 删除的内容

ed

页 17: [132] 删除的内容	LucidPapers	2018/6/19 PM2:37:00
-------------------	-------------	---------------------

ed

页 17: [132] 删除的内容 LucidPapers http://www.cmsjournal.net/qxxb en/ch/index.aspx 2018/6/19 PM2:37:00 ed

页 17: [133] 删除的内容 LucidPapers 2018/6/19 PM2:48:00

F

页 17: [133] 删除的内容 LucidPapers 2018/6/19 PM2:48:00

F

页 17: [134] 删除的内容 Microsoft Office User 2018/4/7 PM4:34:00

The results

页 17: [134] 删除的内容 Microsoft Office User 2018/4/7 PM4:34:00

The results

页 17: [135] 删除的内容 LucidPapers 2018/6/19 PM2:49:00

with

页 17: [135] 删除的内容 LucidPapers 2018/6/19 PM2:49:00

and

页 18: [136] 删除的内容	Microsoft Office User	2018/4/15 AM9:25:00

and

页 18: [137] 删除的内容	页 18: [137] 删除的内容	LucidPapers	2018/6/19 PM2:49:00
-------------------	-------------------	-------------	---------------------

Such

页 18: [137] 删除的内容	LucidPapers	2018/6/19 PM2:49:00
-------------------	-------------	---------------------

Such

页 18: [137] 删除的内容	LucidPapers	2018/6/19 PM2:49:00

Such

页 18: [137] 删除的内容	LucidPapers	2018/6/19 PM2:49:00
-------------------	-------------	---------------------

Such

页 18: [138] 删除的内容 Microsoft Office User 2018/4/7 PM4:35:00

determined

页 18: [138] 删除的内容 Microsoft Office User 2018/4/7 PM4:35:00

determined

determined

页 18: [139] 删除的内容 LucidPapers 2018/6/19 PM2:49:00

页 18: [139] 删除的内容 LucidPapers 2018/6/19 PM2:49:00

页 18: [139] 删除的内容 LucidPapers 2018/6/19 PM2:49:00

页 18: [139] 删除的内容 LucidPapers 2018/6/19 PM2:49:00 http://www.cmsjournal.net/gxxb en/ch/index.aspx

(

页 18: [139] 删除的内容 LucidPapers 2018/6/19 PM2:49:00

(

页 18: [140] 删除的内容 Microsoft Office User 2018/4/7 PM4:36:00

CTRL

页 18: [140] 删除的内容 Microsoft Office User 2018/4/7 PM4:36:00

CTRL

页 18: [140] 删除的内容 Microsoft Office User 2018/4/7 PM4:36:00

CTRL

页 18: [141] 删除的内容 LucidPapers 2018/6/19 PM2:50:00

while

页 18: [141] 删除的内容 LucidPapers 2018/6/19 PM2:50:00

页 18: [142] 删除的内容 LucidPapers 2018/6/19 PM2:50:00

results are

页 18: [142] 删除的内容 LucidPapers 2018/6/19 PM2:50:00

results are

页 18: [142] 删除的内容 LucidPapers 2018/6/19 PM2:50:00

results are

页 18: [142] 删除的内容 LucidPapers 2018/6/19 PM2:50:00

results are

页 18: [143] 删除的内容 Microsoft Office User 2018/4/15 AM9:26:00

S

页 18: [143] 删除的内容 Microsoft Office User 2018/4/15 AM9:26:00

S

页 18: [144] 删除的内容 2018/6/19 PM2:51:00 LucidPapers

can

页 18: [144] 删除的内容 2018/6/19 PM2:51:00 LucidPapers

can

页 18: [144] 删除的内容 2018/6/19 PM2:51:00 LucidPapers

can

页 18: [144] 删除的内容 LucidPapers 2018/6/19 PM2:51:00

can

页 18: [144] 删除的内容 LucidPapers 2018/6/19 PM2:51:00

can

页 18: [144] 删除的内容 2018/6/19 PM2:51:00 LucidPapers

can

页 18: [145] 删除的内容 LucidPapers
http://www.cmsjournal.net/qxxb en/ch/index.aspx 2018/6/19 PM2:52:00 R

页 18: [145] 删除的内容	LucidPapers	2018/6/19 PM2:52:00
-------------------	-------------	---------------------

R

页 18: [145] 删除的内容 LucidPapers 2018/6/19 PM2:52:00	页 18: [145] 删除的内容
---	-------------------

R

页 18: [145] 删除的内容	LucidPapers	2018/6/19 PM2:52:00
-------------------	-------------	---------------------

R

页 18: [145	i] 删除的内容	LucidPapers	2018/6/19 PM2:52:00

R

页 18: [145] 删除的内容	LucidPapers	2018/6/19 PM2:52:00
-------------------	-------------	---------------------

R

页 18: [145] 删除的内容	LucidPapers	2018/6/19 PM2:52:00
-------------------	-------------	---------------------

SH

页 18: [146] 删除的内容	LucidPapers	2018/6/19 AM10:58:00
-------------------	-------------	----------------------

SH

页 18: [146] 删除的内容	LucidPapers	2018/6/19 AM10:58:00

SH

页 18: [146] 删除的内容 Lu	idPapers 2018/6/19 AM10:58:00
----------------------	-------------------------------

SH

页 18: [146] 删除的内容	LucidPapers	2018/6/19 AM10:58:00

SH

SH

页 18: [146] 删除的内容	LucidPapers	2018/6/19 AM10:58:00
-------------------	-------------	----------------------

SH

页 18: [146] 删除的内容	LucidPapers	2018/6/19 AM10:58:00
-------------------	-------------	----------------------

SH

SH

页 18: [146] 删除的内容 LucidPapers 2018/6	6/19 AM10:58:00
--------------------------------------	-----------------

SH

页 18: [146] 删除的内容	LucidPapers	2018/6/19 AM10:58:00
-------------------	-------------	----------------------

SH

SH

页 18: [146] 删除的内容 LucidPapers http://www.cmsjournal.net/qxxb en/ch/index.aspx 2018/6/19 AM10:58:00 SH

页 18: [146] 删除的内容	LucidPapers	2018/6/19 AM10:58:00
-------------------	-------------	----------------------

SH

页 18: [146] 删除的内容 LucidPapers	2018/6/19 AM10:58:00
-------------------------------	----------------------

SH

页 18: [146] 删除的内容	LucidPapers	2018/6/19 AM10:58:00

SH

ing

页 19: [147] 删除的内容 LucidPapers 2018/6/19 PM2	:55:00
---	--------

ing

页 19: [147] 删除的内容	LucidPapers	2018/6/19 PM2:55:00
-------------------	-------------	---------------------

页 19: [147] 删除的内容 LucidPapers 2018/6/19 PM2:55:00

ing

页 19: [147] 删除的内容	LucidPapers	2018/6/19 PM2:55:00

ing

页 19: [147] 删除的内容	LucidPapers	2018/6/19 PM2:55:00
-------------------	-------------	---------------------

ing

页 19: [147] 删除的内容	LucidPapers	2018/6/19 PM2:55:00
-------------------	-------------	---------------------

ing

页 19: [147] 删除的	I内容 Luci	dPapers	2018/6/19 PM2:55:00

ing

页 19: [147] 删除的内容	LucidPapers	2018/6/19 PM2:55:00
-------------------	-------------	---------------------

ing

页 19: [147] 删除的内容 LucidPapers 2018/6/19 PM2:55:00

ing

页 19: [148] 修订 Unknown

域代码已更改

页 19: [148] 修订 Unknown

域代码已更改

页 19: [149] 删除的内容 LucidPapers 2018/6/20 PM2:45:00

larger SH

页 19: [149] 删除的内容 LucidPapers 2018/6/20 PM2:45:00

larger SH

页 19: [149] 删除的内容 LucidPapers 2018/6/20 PM2:45:00

larger SH

页 19: [150] 删除的内容 LucidPapers 2018/6/19 PM2:59:00

页 19: [150] 删除的内容	LucidPapers	2018/6/19 PM2:59:00

is

页 19: [150] 删除的内容	LucidPapers	2018/6/19 PM2:59:00
-------------------	-------------	---------------------

is

页 19: [150] 删除的内容	LucidPapers	2018/6/19 PM2:59:00
-------------------	-------------	---------------------

is

页 19: [150] 删除的内容	LucidPapers	2018/6/19 PM2:59:00
-------------------	-------------	---------------------

is

页 19: [150] 删除的内容	LucidPapers	2018/6/19 PM2:59:00

is

页 19: [150] 删除的内容 LucidPapers
http://www.cmsjournal.net/gxxb en/ch/index.aspx 2018/6/19 PM2:59:00

页 19: [150] 删除的内容	LucidPapers	2018/6/19 PM2:59:00
-------------------	-------------	---------------------

is

页 19: [150] 删除的内容	LucidPapers	2018/6/19 PM2:59:00
-------------------	-------------	---------------------

is

页 19:	[150] 删除的内容	LucidPapers	2018/6/19 PM2:59:00

is

页 19: [150] 删除的内容 LucidPa	apers 2018/6/19 PM2:59:00
---------------------------	---------------------------

is

页 19: [150] 删除的内容 LucidPapers 2018/6/19 PM2:5	9:00
---	------

页 19: [150] 删除的内容	LucidPapers	2018/6/19 PM2:59:00
-------------------	-------------	---------------------

页 19: [150] 删除的内容	LucidPapers	2018/6/19 PM2:59:00

is

贝 19: [150] 删除的内容	页 19:	[150] 删除的内容	LucidPapers	2018/6/19 PM2:59:00
-------------------	-------	-------------	-------------	---------------------

is

页 19: [150] 删除的内容 LucidPapers 2018/6/19 PM2:59	00
--	----

is

页 19: [150] 删除的内容	LucidPapers	2018/6/19 PM2:59:00

is

页 19: [150] 删除的内容	LucidPapers	2018/6/19 PM2:59:00
-------------------	-------------	---------------------

页 19: [150] 删除的内容	LucidPapers	2018/6/19 PM2:59:00
-------------------	-------------	---------------------

页 19: [150] 删除的内容	LucidPapers	2018/6/19 PM2:59:00
-------------------	-------------	---------------------

页 19: [151] 删除的内容	LucidPapers	2018/6/19 PM3:01:00
-------------------	-------------	---------------------

页 19: [151] 删除的内容	LucidPapers	2018/6/19 PM3:01:00
-------------------	-------------	---------------------

页 19: [151] 删除的内容 Lucid	Papers 2018/6/19 PM3:01:00
-------------------------	----------------------------

页 19: [151] 删除的内容	LucidPapers	2018/6/19 PM3:01:00

页 19: [151] 删除的内容	LucidPapers	2018/6/19 PM3:01:00
-------------------	-------------	---------------------

页 19: [151] 删除的内容	LucidPapers	2018/6/19 PM3:01:00
-------------------	-------------	---------------------

页 19: [151] 删除的内容	LucidPapers	2018/6/19 PM3:01:00
-------------------	-------------	---------------------

页 19: [151] 删除的内容	LucidPapers	2018/6/19 PM3:01:00

页 19: [151] 删除的内容 LucidPapers 2018/6/19 PM3:01:00

页 19: [151] 删除的内容 L	ucidPapers	2018/6/19 PM3:01:00
---------------------	------------	---------------------

页 19: [151] 删除的内容	LucidPapers	2018/6/19 PM3:01:00
-------------------	-------------	---------------------

页 19: [152] 删除的内容	LucidPapers	2018/6/19 PM3:02:00

页 19: [152] **删除的内容** LucidPapers 2018/6/19 PM3:02:00

页 19: [152] 删除的内容 LucidPapers 2018/6/19 PM3:02:00

,

页 19: [152] 删除的内容	LucidPapers	2018/6/19 PM3:02:00

页 19: [152] 删除的内容	LucidPapers	2018/6/19 PM3:02:00
-------------------	-------------	---------------------

页 19: [152] 删除的内容	LucidPapers	2018/6/19 PM3:02:00
-------------------	-------------	---------------------

页 20: [153] 删除的内容	LucidPapers	2018/6/19 AM9:45:00
-------------------	-------------	---------------------

desert

页 20: [153] 删除的内容	LucidPapers	2018/6/19 AM9:45:00
-------------------	-------------	---------------------

desert

页 20: [153] 删除的内容 LucidPapers 2018/6/19 AM9:45:00

desert

页 20: [153] 删除的内容 LucidPapers http://www.cmsjournal.net/gxxb en/ch/index.aspx 2018/6/19 AM9:45:00 desert

页 20: [153] 删除的内容 LucidPapers 2018/6/19 AM9:45:00

desert

页 20: [154] 删除的内容 LucidPapers 2018/6/19 PM3:04:00

页 20: [155] 删除的内容 LucidPapers 2018/6/19 PM3:05:00

Weather Research and Forecasting Model (

页 20: [155] 删除的内容 LucidPapers 2018/6/19 PM3:05:00

Weather Research and Forecasting Model (

页 20: [155] 删除的内容 LucidPapers 2018/6/19 PM3:05:00

Weather Research and Forecasting Model (

页 20: [155] 删除的内容 LucidPapers 2018/6/19 PM3:05:00

Weather Research and Forecasting Model (

页 20: [155] 删除的内容 LucidPapers 2018/6/19 PM3:05:00

Weather Research and Forecasting Model (

页 20: [155] 删除的内容 LucidPapers 2018/6/19 PM3:05:00

Weather Research and Forecasting Model (

页 20: [155] 删除的内容 LucidPapers 2018/6/19 PM3:05:00

Weather Research and Forecasting Model (

页 20: [155] 删除的内容 LucidPapers 2018/6/19 PM3:05:00

Weather Research and Forecasting Model (

页 20: [155] 删除的内容 LucidPapers 2018/6/19 PM3:05:00

Weather Research and Forecasting Model (

页 20: [155] 删除的内容 LucidPapers 2018/6/19 PM3:05:00

Weather Research and Forecasting Model (

页 20: [155] 删除的内容 LucidPapers 2018/6/19 PM3:05:00

Weather Research and Forecasting Model (

页 20: [155] 删除的内容 LucidPapers 2018/6/19 PM3:05:00

Weather Research and Forecasting Model (

Weather Research and Forecasting Model (

页 20: [155] 删除的内容 LucidPapers 2018/6/19 PM3:05:00

Weather Research and Forecasting Model (

页 20: [155] 删除的内容 LucidPapers 2018/6/19 PM3:05:00

Weather Research and Forecasting Model (

页 20: [155] 删除的内容 LucidPapers 2018/6/19 PM3:05:00

Weather Research and Forecasting Model (

页 20: [155] 删除的内容 LucidPapers 2018/6/19 PM3:05:00

Weather Research and Forecasting Model (

页 20: [155] 删除的内容 LucidPapers 2018/6/19 PM3:05:00

Weather Research and Forecasting Model (

页 20: [155] 删除的内容 LucidPapers 2018/6/19 PM3:05:00

页 20: [155] 删除的内容 LucidPapers 2018/6/19 PM3:05:00

Weather Research and Forecasting Model (

页 20: [156] 删除的内容 LucidPapers 2018/6/19 PM3:07:00

Consequently, with the configuration used in this study, t

页 20: [156] 删除的内容 LucidPapers 2018/6/19 PM3:07:00

Consequently, with the configuration used in this study, t

页 20: [157] 删除的内容 LucidPapers 2018/6/19 PM3:08:00

it

页 20: [157] 删除的内容 LucidPapers 2018/6/19 PM3:08:00

it

页 20: [157] 删除的内容 LucidPapers 2018/6/19 PM3:08:00

it

页 20: [158] 删除的内容	LucidPapers	2018/6/19 PM3:09:00
-------------------	-------------	---------------------

y

页 20: [158] 删除的内容	LucidPapers	2018/6/19 PM3:09:00
-------------------	-------------	---------------------

y

页 20: [158] 删除的内容	LucidPapers	2018/6/19 PM3:09:00
20. [100] William H1111-H	Duorus apers	2010/ 0/ 10 1 110.00.00

y

页 20: [158] 删除的内容	LucidPapers	2018/6/19 PM3:09:00
-------------------	-------------	---------------------

y

页 20: [158] 删除的内容	LucidPapers	2018/6/19 PM3:09:00
-------------------	-------------	---------------------

y

页 20: [158] 删除的内容	LucidPapers	2018/6/19 PM3:09:00

y

页 20: [158] 删除的内容 LucidPapers
http://www.cmsjournal.net/gxxb en/ch/index.aspx 2018/6/19 PM3:09:00 У

页 20: [159] 删除的内容 Microsoft Office User 2018/4/7 PM4:50:00

struggles to

页 20: [159] 删除的内容 Microsoft Office User 2018/4/7 PM4:50:00

struggles to

页 20: [160] 删除的内容 LucidPapers 2018/6/19 PM3:10:00

er

页 20: [160] 删除的内容 LucidPapers 2018/6/19 PM3:10:00

er

页 20: [160] 删除的内容 LucidPapers 2018/6/19 PM3:10:00

er

页 20: [161] 删除的内容 Microsoft Office User 2018/4/7 PM4:50:00

页 20: [161] 删除的内容 Microsoft Office User 2018/4/7 PM4:50:00

which

页 20: [162] 删除的内容 LucidPapers 2018/6/20 PM2:47:00

by up to about 0.4K compared to

页 20: [162] 删除的内容 LucidPapers 2018/6/20 PM2:47:00

by up to about 0.4K compared to

页 20: [162] 删除的内容 LucidPapers 2018/6/20 PM2:47:00

by up to about 0.4K compared to

页 20: [163] 删除的内容 LucidPapers 2018/6/19 PM3:11:00

afternoon

页 20: [163] 删除的内容 LucidPapers 2018/6/19 PM3:11:00

afternoon

页 20: [163] 删除的内容 LucidPapers 2018/6/19 PM3:11:00

afternoon

页 21: [164] 删除的内容 2018/6/19 PM3:12:00 LucidPapers

by about 1 to 2 g/Kg

页 21: [164] 删除的内容 2018/6/19 PM3:12:00 LucidPapers

by about 1 to 2 g/Kg

页 21: [164] 删除的内容 2018/6/19 PM3:12:00 LucidPapers

by about 1 to 2 g/Kg

页 21: [164] 删除的内容 2018/6/19 PM3:12:00 LucidPapers

by about 1 to 2 g/Kg

页 21: [164] 删除的内容 2018/6/19 PM3:12:00 LucidPapers

by about 1 to 2 g/Kg

页 21: [164] 删除的内容 LucidPapers
http://www.cmsjournal.net/qxxb en/ch/index.aspx 2018/6/19 PM3:12:00 by about 1 to 2 g/Kg

页 21: [165] 删除的内容 LucidPapers 2018/6/19 PM3:13:00

as observed

页 21: [165] 删除的内容 LucidPapers 2018/6/19 PM3:13:00

as observed

页 21: [166] 删除的内容 LucidPapers 2018/6/19 PM3:13:00

Furthermore, two t

页 21: [166] 删除的内容 LucidPapers 2018/6/19 PM3:13:00

Furthermore, two t

页 21: [166] 删除的内容 LucidPapers 2018/6/19 PM3:13:00

Furthermore, two t

页 21: [166] 删除的内容 LucidPapers 2018/6/19 PM3:13:00

Furthermore, two t http://www.cmsjournal.net/qxxb_en/ch/index.aspx

页 21: [166] 删除的内容 LucidPapers 2018/6/19 PM3:13:00

Furthermore, two t

页 21: [166] 删除的内容 LucidPapers 2018/6/19 PM3:13:00

Furthermore, two t

页 21: [167] 删除的内容 LucidPapers 2018/6/19 PM3:14:00

,

页 21: [168] 删除的内容 LucidPapers 2018/6/19 AM9:39:00

-

页 21: [168] 删除的内容 LucidPapers 2018/6/19 AM9:39:00

_

页 21: [168] 删除的内容 LucidPapers 2018/6/19 AM9:39:00

_

页 21: [169] 删除的内容 Microsoft Office User 2018/4/12 PM6:00:00

the

页 21: [169] 删除的内容 Microsoft Office User 2018/4/12 PM6:00:00

the

页 21: [170] 删除的内容 LucidPapers 2018/6/19 PM3:15:00

summer

页 21: [170] 删除的内容 LucidPapers 2018/6/19 PM3:15:00 http://www.cmsjournal.net/gxxb en/ch/index.aspx

summer

页 21: [170] 删除的内容 2018/6/19 PM3:15:00 LucidPapers

summer

页 21: [170] 删除的内容 2018/6/19 PM3:15:00 LucidPapers

summer

页 21: [170] 删除的内容 LucidPapers 2018/6/19 PM3:15:00

summer

页 21: [170] 删除的内容 2018/6/19 PM3:15:00 LucidPapers

summer

页 21: [171] 删除的内容 2018/6/19 PM3:16:00 LucidPapers

The f

页 21: [171] 删除的内容 LucidPapers 2018/6/19 PM3:16:00

页 21: [171] 删除的内容	LucidPapers	2018/6/19 PM3:16:00
-------------------	-------------	---------------------

The f

页 21: [171] 删除的内容	LucidPapers	2018/6/19 PM3:16:00

The f

页 21: [171] 删除的内容	LucidPapers	2018/6/19 PM3:16:00
-------------------	-------------	---------------------

The f

页 21: [171] 删除的内容	LucidPapers	2018/6/19 PM3:16:00
-------------------	-------------	---------------------

The f

页 21: [171] 删除的内容	LucidPapers	2018/6/19 PM3:16:00

The f

页 21: [171] 删除的内容	LucidPapers	2018/6/19 PM3:16:00
-------------------	-------------	---------------------

The f

is aimed

页 21: [172] 删除的内容 LucidPapers 2018/6/19 PM3:17:00

is aimed

页 24: [173] 删除的内容 Microsoft Office 用户 2018/7/15 AM9:14:00

Figure 10. Time series of the initial simulated surface variables for the sensible heat flux sensitivity and Noah land surface experiments: (a) sensible heat flux; (b) latent heat flux; (c) surface temperature; (d) soil moisture content; (e) temperature at 2 m; (f)

relative humidity at 2 m; (g) wind speed at 10 m; and (h) wind direction at 10 m.

页 24: [174] 删除的内容	soderb5314	2018/7/14 PM4:56:00
-------------------	------------	---------------------

Figure 1. Simulation domains used in the ARW model with (a) the terrain height (shaded, units:m), (b) the land use categories for domains D03 and D04 and (c) photograph of the area around Tazhong station.

Figure 1 Simulation domains used in ARW model with terrain height (shaded, units:m); (b)

ARW model with terrain height (shaded, units:m); (b) land use categories for domain D03 and D04.

Figure 2. Horizontal distribution of the geopotential height (solid lines, units: da gpm), wind speed (shaded, units: knots) and wind barbs from the NCEP FNL analysis at 0800 BJT on 1 July 2016 at (a) 850, (b) 700, (c) 500 and (d) 100 hPa.Figure 2 Horizontal distribution of geopotential height (solid, units: dagpm), wind speed (shaded, units: knot), and wind barbs from the NCEP FNL analysis at 0800 BJT 1 Jul 2016 at (a) 850 hPa, (c) 700 hPa, (e) 500 hPa, and (d) 100hPa.Figure 2 Horizontal distribution of geopotential height (solid, units: dagpm), wind speed (shaded, units: knot), and wind barbs from the NCEP FNL analysis at 0800 BJT 1 Jul 2016 at (a) 850 hPa, (c) 700 hPa, (e) 500 hPa, and (d) 100hPa.

Figure 3. NCEP FNL 700 hPa potential temperature (colors) and mean sea level pressure (white lines) at 0800 BJT on 1 July 2016. The black dot shows the location of Tazhong station in Xingjiang province. Figure 3 NCEP FNL 700 hPa potential temperature (colors) and mean sea level pressure (white lines) at 0800 BJT 1 Jul 2016. The black dot shows the location of Tazhong station at Xingjiang

http://www.cmsjournal.net/qxxb_en/ch/index.aspx

province. Figure 3 NCEP fnl 700hPa potential temperature (colors) and mean sea level pressure (white lines) at 0800 BJT 1 Jul 2016. The black dot shows the location of Tazhong station at Xingjiang province.

Figure 4. Time series of the initial simulated surface variables from the innermost domain of the simulations and the surface observations at Tazhong station (83.63° E, 39.03° N) at 0800 BJT on 1 July 2016: (a) sensible heat flux; (b) latent heat flux; (c) surface temperature; (d) soil moisture content; (e) temperature at 2 m; (f) relative humidity at 2 m; (g) wind speed at 10 m; and (h) wind direction at 10 m. Figure 4 Time series of simulated surface variables from innermost domain of simulations and surface observations at Tazhong station (83.63°E, 39.03°N) initial at 0800 BJT 01July 2016 (a) sensible heat flux (W/m²), (b) latent heat flux(W/m²), (c) 2-m temperature (°C), (d) surface temperature (°C), (e) 2-m Relative Humidity(%) and (f) 10-m wind speed (m/s) with corresponding observations.

Figure 5. Vertical profiles of the potential temperature (solid line, units: K) and vapor mixing ratio (dashed line, units: $g \ kg^{-1}$) from the innermost domain of the simulations and the observations from GPS sounding at Tazhong station (83.63° E, 39.03° N) at (a)

1100, (b) 1400, (c) 1700 and (d) 2000 BJT on 1 July 2016. The profiles of the model output are averaged over a radius of 3.5 km. Figure 5 Vertical profiles of potential temperature (solid line, units: K) and vapor mixing ratio(dash line, units: g/Kg) from innermost domain of simulations and observation of GPS sounding at Tazhong station (83.63°E, 39.03°N) at (a)1100 (b) 1400 (c) 1700 (d) 2000 BJT 01 Jul2016 Figure 4 Vertical profiles of potential temperature (units: K) at (a)1100 (b) 1400 (c) 1700 (d) 2000 BJT 01 Jul2016.

Figure 6. Cross-sections along 39.03° N of the horizontal winds (barbs, units: m s⁻¹) at intervals of 5 m s⁻¹ superposed with theta (shaded, units: K) and the vapor mixing ratio (contours, units: g kg⁻¹) from the (a) BDY_T1, (c) BDY_T2 and (e) BDY_T3 experiments at 1400 BJT on 1 July 2016 and the (b) BDY_T1, (d) BDY_T2 and (f) BDY_T3 experiments at 2000 BJT on 1 July 2016. Figure 6 cross sections along 39.03°N of horizontal winds (barbs, units: m/s), at intervals of 5 m/s, superposed with theta (shaded, units: K) and vapor mixing ratio(contour, units: g/Kg), from (a)

BDY T1, (c) BDY T2, (e) BDY T3 experiments at 1400 BJT 01JUL2016, (b), (d), (f) are the same as (a), (c), (e), but for 2000 BJT 01JUL2016. Figure 7 cross sections along 39.03°N of horizontal winds (barbs, units: m/s), at intervals of 5 m/s, superposed with theta (shaded, units: K) and vapor mixing ratio(contour, units: g/Kg), from (a) BDY_T1, (c) BDY_T2, (e) BDY_T3 experiments at1400 BJT 01JUL2016, (b), (d), (f) are the same as (a), (c), (e), but for 2000 BJT 01JUL2016. Figure 7. Instantaneous vertical velocity fields (shading: m s-1) at 3000 m for the (a) BDY_T1 (CTRL), (b) BDY_T2, (c) BDY_T3 and (d) Noah experiments at 1400 BJT on 1 July 2016. Figure 7 Instantaneous vertical velocity fields (shading: m/s) at 3000 m for (a) BDY T1 (CTRL), (b) BDY T2, (c) BDY T3, and (d) Noah at 1400

Figure 8. Vertical cross-sections of the instantaneous vertical velocity fields (shading: m s⁻¹) along A1–A2 in for the (a) BDY_T1 (CTRL), (b) BDY_T2, (c) BDY_T3 and (d) Noah experiments at 1400 BJT on 1 July 2016. Figure 8 Vertical cross-section of instantaneous vertical velocity fields (shading: m/s) along A1-A2 in for for (a)

BJT, 1 July 2016.

BDY_T1 (CTRL), (b) BDY_T2, (c) BDY_T3, and (d) Noah at 1400 BJT, 1 July 2016.

Figure 9 Vertical profiles of the potential temperature (solid line, units: K) and vapor mixing ratio (dashed line, units: g kg⁻¹) for the sensible heat flux sensitivity and Noah land surface experiments at (a) 1100, (b) 1400, (c) 1700 and (d) 2000 BJT on 1 July 2016.

The profiles of the model output are averaged over a radius of 3.5 km.Figure 9 The same as Figure 5, but for SH flux sensitive and Noah land-surface experimentFigure 8 The same as Figure 4, but for SH flux sensitive experiment.

Figure 10. Time series of the initial simulated surface variables for the sensible heat flux sensitivity and Noah land surface experiments: (a) sensible heat flux; (b) latent heat flux; (c) surface temperature; (d) soil moisture content; (e) temperature at 2 m; (f) relative humidity at 2 m; (g) wind speed at 10 m; and (h) wind direction at 10 m. Figure 10 The same as Figure 4, but for SH flux sensitive and Noah land-surface experiment.

页 24: [175] 带格式的	Microsoft Office 用户	2018/6/22 AM9:37:00

字体:11 pt

页 24: [175] 带格式的	Microsoft Office 用户	2018/6/22 AM9:37:00
------------------	---------------------	---------------------

字体:11 pt

页 24: [175] 带格式的 Microsoft Office 用户 2018/6/22 AM9:37:00

页 24: [175]	带格式的	Microsoft	Office	用户		2018/6/22	AM9:37:00
字体: 11 pt							
页 24: [175]	带格式的	Microsoft	Office	用户		2018/6/22	AM9:37:00
字体: 11 pt							
页 24: [175]	带格式的	Microsoft	Office	用户		2018/6/22	AM9:37:00
字体: 11 pt							
页 24: [175]	带格式的	Microsoft	Office	用户		2018/6/22	AM9:37:00
字体:11 pt		7					
页 24: [175]	带格式的	Microsoft	Office	用户		2018/6/22	AM9:37:00
字体:11 pt							
			7				
页 24: [175]	带格式的	Microsoft	Office	用户		2018/6/22	AM9:37:00
字体:11 pt					70.		
页 24: [175]	带格式的	Microsoft	Office	用户		2018/6/22	AM9:37:00
字体:11 pt							
页 24: [175]	带格式的	Microsoft	Office	用户		2018/6/22	AM9:37:00
字体:11 pt							
页 24: [175]	带格式的	Microsoft	Office	用户		2018/6/22	AM9:37:00
字体:11 pt							

页 24: [175] 带格:	式的 Microsof	: Office 用户	2018/6/22 AM9:37:00
字体:11 pt			
页 24: [175] 带格:	式的 Microsof	: Office 用户	2018/6/22 AM9:37:00
字体:11 pt			
页 24: [175] 带格:	式的 Microsof	: Office 用户	2018/6/22 AM9:37:00
字体:11 pt			
页 24: [175] 带格:	式的 Microsof	Office 用户	2018/6/22 AM9:37:00
字体:11 pt			
页 24: [175] 带格	式的 Microsof	; Office 用户	2018/6/22 AM9:37:00
字体:11 pt			
页 24: [175] 带格:	式的 Microsof	: Office 用户	2018/6/22 AM9:37:00
字体:11 pt			
		5	•
页 24: [175] 带格:	式的 Microsof	: Office 用户	2018/6/22 AM9:37:00
字体:11 pt			
页 24: [175] 带格	式的 Microsof	: Office 用户	2018/6/22 AM9:37:00
字体:11 pt			
页 24: [175] 带格:	式的 Microsof	: Office 用户	2018/6/22 AM9:37:00
字体:11 pt			
页 24: [175] 带格:	式的 Microsof	: Office 用户	2018/6/22 AM9:37:00
字体:11 pt			

字体:11 pt

页 24: [175] 带	格式的	Microsoft	Office	用户	2018/6/22 AM9:37:00
字体:11 pt					
页 24: [175] 带	格式的	Microsoft	Office	用户	2018/6/22 AM9:37:00
字体:11 pt					
页 24: [175] 带	格式的	Microsoft	Office	用户	2018/6/22 AM9:37:00
字体:11 pt					
页 24: [175] 带	格式的	Microsoft	Office	用户	2018/6/22 AM9:37:00
字体:11 pt					
页 24: [175] 带	格式的	Microsoft	Office	用户	2018/6/22 AM9:37:00
字体:11 pt					
页 24: [175] 带	格式的	Microsoft	Office	用户	2018/6/22 AM9:37:00
字体:11 pt					
页 24: [175] 带	格式的	Microsoft	Office	用户	2018/6/22 AM9:37:00
字体:11 pt					
页 24: [175] 带	格式的	Microsoft	Office	用户	2018/6/22 AM9:37:00
字体:11 pt					
页 24: [175] 带	格式的	Microsoft	Office	用户	2018/6/22 AM9:37:00
字体:11 pt					
页 24: [175] 带	格式的	Microsoft	Office	用户	2018/6/22 AM9:37:00

字体:11 pt

页 24:	[175]	带格式的	Microsoft	Office	用户	2018/6/22 AM9:37:00
字体:1	.1 pt					
页 24:	[175]	带格式的	Microsoft	Office	用户	2018/6/22 AM9:37:00
字体:1	.1 pt					
页 24:	[175]	带格式的	Microsoft	Office	用户	2018/6/22 AM9:37:00
字体:1	.1 pt					
页 24:	[175]	带格式的	Microsoft	Office	用户	2018/6/22 AM9:37:00
字体:1	.1 pt					
			<u>X</u>			
页 24:	[175]	带格式的	Microsoft	Office	用户	2018/6/22 AM9:37:00
字体:1	.1 pt					
页 24:	[175]	带格式的	Microsoft	Office	用户	2018/6/22 AM9:37:00
字体:1	.1 pt					
					7	
页 24:	[175]	带格式的	Microsoft	Office	用户	2018/6/22 AM9:37:00
字体:1	.1 pt					
页 25:	[176]	删除的内容	Microsoft	Office	用户	2018/6/22 AM9:29:00
	(a)				(b)	
(c)						
页 27:	[177]	带格式的	Microsoft	Office	用户	2018/6/22 AM9:36:00

字体:11 pt

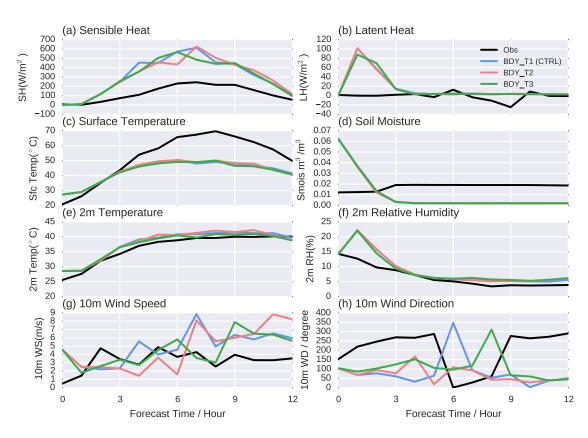
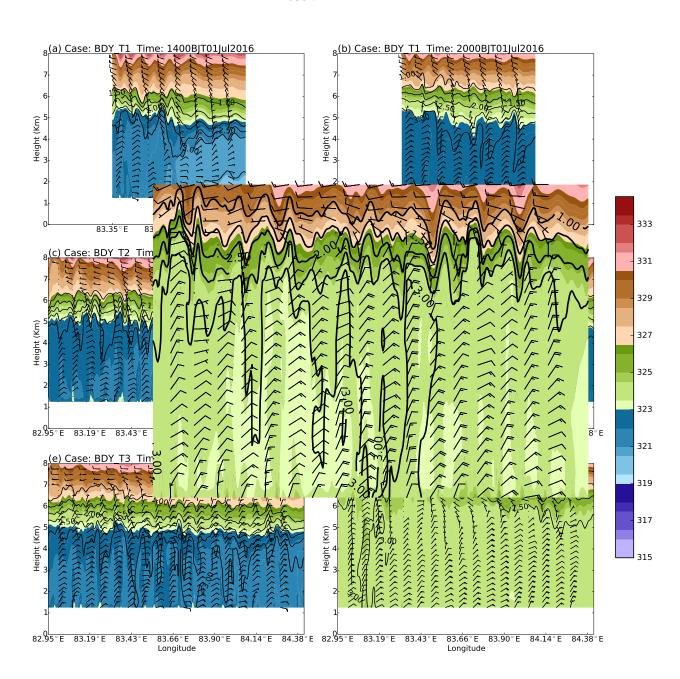



Figure 6 Time series of simulated surface initial at 0800 BJT 01July 2016 (a) sensible heat

flux (W/m^2) , (b) latent heat flux (W/m^2) , (c) 2-m temperature (°C), (d) surface temperature (°C), (e) 2-m Relative Humidity(%) and (f) 10-m wind speed (m/s) with corresponding observations.

页 30: [180] 带格式的 Unknown

字体:(默认) Times New Roman,字体颜色:文字 1

页 30: [180] 带格式的 Unknown

字体:(默认) Times New Roman, 字体颜色: 文字 1

页 30: [181] 带格式的 Microsoft Office 用户 2018/6/22 AM9:35:00

字体:11 pt

页 30: [181] 带格式的 Microsoft Office 用户 2018/6/22 AM9:35:00

字体:11 pt

页 30: [181] 带格式的 Microsoft Office 用户 2018/6/22 AM9:35:00

字体:11 pt

页 30: [182] 删除的内容 LucidPapers 2018/6/19 PM3:33:00

c

页 30:	[182]	删除的内容	LucidPapers	2018/6/19 PM3:33:00
c				
页 30:	[182]	删除的内容	LucidPapers	2018/6/19 PM3:33:00
С				
页 30:	[182]	删除的内容	LucidPapers	2018/6/19 PM3:33:00
С				
页 30:	[182]	删除的内容	LucidPapers	2018/6/19 PM3:33:00
			<u></u>	
С				
页 30:	[182]	删除的内容	LucidPapers	2018/6/19 PM3:33:00
c				
页 30:	[182]	删除的内容	LucidPapers	2018/6/19 PM3:33:00
С				
页 30:	[182]	删除的内容	LucidPapers	2018/6/19 PM3:33:00
c				
页 30:	[182]	删除的内容	LucidPapers	2018/6/19 PM3:33:00

页 30: [182] 删除的内容	LucidPapers	2018/6/19 PM3:33:00
-------------------	-------------	---------------------

c

页 30: [182] 删除的内容	LucidPapers	2018/6/19 PM3:33:00
-------------------	-------------	---------------------

c

页 30: [182] 删除的内容	LucidPapers	2018/6/19 PM3:33:00
-------------------	-------------	---------------------

c

页 30: [182] 删除的内容	LucidPapers	2018/6/19 PM3:33:00
-------------------	-------------	---------------------

 \mathbf{c}

页 35: [183] 删除的内容 Microsoft Office User 2018/4/8 PM6:22:00



Figure 9 The same as Figure 8, but for vapor mixing ratio (units: g/Kg)

页 35: [184] 删除的内容	LucidPapers	2018/6/19 PM3:43:00
1		
页 35: [184] 删除的内容	LucidPapers	2018/6/19 PM3:43:00
1		
页 35: [185] 删除的内容	LuaidDanana	2018/6/19 PM3:44:00
	LucidPapers	2018/0/19 PM3:44:00
model grids		
页 35: [185] 删除的内容	LucidPapers	2018/6/19 PM3:44:00
model grids		
model grids		
页 35: [185] 删除的内容	LucidPapers	2018/6/19 PM3:44:00
model grids		
	7	
页 35: [186] 删除的内容	LucidPapers	2018/6/19 PM3:44:00
SH		
页 35: [186] 删除的内容	LucidPapers	2018/6/19 PM3:44:00
SH		
页 35: [187] 删除的内容	LucidPapers	2018/6/19 PM3:44:00
SH		
页 35: [187] 删除的内容	LucidPapers	2018/6/19 PM3:44:00
SH		
页 35: [188] 删除的内容	LucidPapers	2018/6/19 PM3:44:00

页 35:	[188] 删	除的内容	LucidPapers	2018/6/19 PM3:44:00
surface	-			
页 36:	[189] 删	除的内容	LucidPapers	2018/6/19 PM3:45:00
			Н	
页 36:	[189] 删	除的内容	LucidPapers	2018/6/19 PM3:45:00
			Н	
页 36:	[190] 删	除的内容	LucidPapers	2018/6/19 PM3:46:00
			2m	
页 36:	[190] 删	除的内容	LucidPapers	2018/6/19 PM3:46:00
			2m	
页 36:	[191] 删	除的内容	LucidPapers	2018/6/19 PM3:46:00
			10m	
页 36:	[191] 删	除的内容	LucidPapers	2018/6/19 PM3:46:00
			10m	
页 36:	[192] 删	除的内容	LucidPapers	2018/6/19 PM3:46:00
页 36:	[192] 删	除的内容	LucidPapers	2018/6/19 PM3:46:00
页 36:	[193] 删	除的内容	LucidPapers	2018/6/19 PM3:46:00

页 36: [193] 删除的内容	LucidPapers	2018/6/19 PM3:46:00
页 36: [194] 删除的内容	LucidPapers	2018/6/19 PM3:48:00
× 00. [101] Million HJ [1-1]	Zaorai aporb	2010, 0, 15 1 1.00.10.00
-		
页 36: [194] 删除的内容	LucidPapers	2018/6/19 PM3:48:00
-		
页 36: [195] 删除的内容	LucidPapers	2018/6/19 PM3:46:00
> co. Frod MilwH113.H.	Zaorai aporo	
	<u> </u>	
页 36: [195] 删除的内容	LucidPapers	2018/6/19 PM3:46:00
页 36: [196] 删除的内容	LucidPapers	2018/6/19 PM3:48:00
-		
页 36: [196] 删除的内容	LucidPapers	2018/6/19 PM3:48:00
-		
页 36: [197] 删除的内容	LucidPapers	2018/6/19 PM3:46:00
		, , ==========
页 36: [197] 删除的内容	LucidPapers	2018/6/19 PM3:46:00
页 36: [198] 删除的内容	LucidPapers	2018/6/19 PM3:46:00
72 00. F1003 William H11.1.1.	naora apers	2010/ 0/ 10 1 10. 10. 00

页 36:	[198]	删除的内容	LucidPapers	2018/6/19 PM3:46:00
= 00	[100]	mi 17A J. 44	v - 110	2010/0/10 790 47 20
贝 36:	[199]	删除的内容	LucidPapers	2018/6/19 PM3:47:00
页 36:	[199]	删除的内容	LucidPapers	2018/6/19 PM3:47:00
页 36:	[200]	删除的内容	LucidPapers	2018/6/19 PM3:47:00
研 26.	[200]	删除的内容	LucidDonous	2018/6/19 PM3:47:00
贝 30:	[200]	则除的内谷	LucidPapers	2016/6/19 FM3:47:00
页 36:	[201]	删除的内容	LucidPapers	2018/6/19 PM3:47:00
页 36:	[201]	删除的内容	LucidPapers	2018/6/19 PM3:47:00
页 36:	[202]	删除的内容	LucidPapers	2018/6/19 PM3:47:00
页 36:	[202]	删除的内容	LucidPapers	2018/6/19 PM3:47:00
页 36:	[203]	删除的内容	LucidPapers	2018/6/19 PM3:47:00

页 36: [203] 删除的内容	LucidPapers	2018/6/19 PM3:47:00
页 36: [204] 删除的内容	LucidPapers	2018/6/19 PM3:47:00
页 36: [204] 删除的内容	LucidPapers	2018/6/19 PM3:47:00
页 50. [204] 删除的内存	Lucturapers	2010/0/13 FM3.47.00
页 36: [205] 删除的内容	LucidPapers	2018/6/19 PM3:48:00
-		
页 36: [205] 删除的内容	LucidPapers	2018/6/19 PM3:48:00
-		
页 36: [206] 删除的内容	LucidPapers	2018/6/19 PM3:47:00
五 26. [206] 删吸始由效	Luci IDecure	9019 /C /10 DW9 . 47 . 00
页 36: [206] 删除的内容	LucidPapers	2018/6/19 PM3:47:00
页 36: [207] 删除的内容	LucidPapers	2018/6/19 PM3:48:00
-		
页 36: [207] 删除的内容	LucidPapers	2018/6/19 PM3:48:00
_		
哥 oc. [cool milyAsks上心	T 15	0010 /0 /10 70/0 /7 00
页 36: [208] 删除的内容	LucidPapers	2018/6/19 PM3:47:00

页 36:	[208]	删除的内容	Li	ucidPapers	2018/6/19	PM3:47:00
页 36: [[209]	删除的内容	Lı	ucidPapers	2018/6/19	PM3:47:00
页 36:	[209]	删除的内容	Li	ucidPapers	2018/6/19	PM3:47:00
				•		
页 36:	[210]	删除的内容	Li	ucidPapers	2018/6/19	PM3:47:00
页 36:	[210]	删除的内容	Lı	ucidPapers	2018/6/19	PM3:47:00
			<u> </u>			
页 36: [[211]	删除的内容	Lı	ucidPapers	2018/6/19	PM3:47:00
页 36:	[211]	删除的内容	Li	ucidPapers	2018/6/19	PM3:47:00
页 36:	[212]	删除的内容	Li	ucidPapers	2018/6/19	PM3:47:00
页 36: [[212]	删除的内容	Lı	ucidPapers	2018/6/19	PM3:47:00
页 36:	[213]	删除的内容	Lı	ucidPapers	2018/6/19	PM3:47:00

页 36: [213] 删除的内容	LucidPapers	2018/6/19 PM3:47:00
页 36: [214] 删除的内容	LucidPapers	2018/6/19 PM3:47:00
页 36: [214] 删除的内容	LucidPapers	2018/6/19 PM3:47:00
	<u> </u>	
页 36: [215] 删除的内容	LucidPapers	2018/6/19 PM3:47:00
	7	
页 36: [215] 删除的内容	LucidPapers	2018/6/19 PM3:47:00
页 36: [216] 删除的内容	LucidPapers	2018/6/19 PM3:48:00
-		
页 36: [216] 删除的内容	LucidPapers	2018/6/19 PM3:48:00
-	•	
页 36: [217] 删除的内容	LucidPapers	2018/6/19 PM3:47:00
页 36: [217] 删除的内容	LucidPapers	2018/6/19 PM3:47:00
页 36: [218] 删除的内容	LucidPapers	2018/6/19 PM3:48:00
The state of the s		

页 36: [2]	18] 删除的内容	LucidPapers	2018/6/19 PM3:48:00
-			
页 36: [2]	 19] 删除的内容	LucidPapers	2018/6/19 PM3:47:00
而 36、「2 [·]		LucidPapers	2018/6/19 PM3:47:00
页 30. [2.	12] 附12年17月4	Luciui apers	2016/ 0/ 17 1 m3.47.00
页 36: [22	20] 删除的内容	LucidPapers	2018/6/19 PM3:47:00
页 36: [22	20] 删除的内容	LucidPapers	2018/6/19 PM3:47:00
页 36: [22		LucidPapers	2018/6/19 PM3:47:00
	- ,,,,,,,,		
Fai	=	<u> </u>	
	21] 删除的内容 ————————————————————————————————————	LucidPapers	2018/6/19 PM3:47:00
页 36: [22	22] 删除的内容	LucidPapers	2018/6/19 PM3:47:00
页 36: [22		LucidPapers	2018/6/19 PM3:47:00
新 26. 「06		LucidDonora	2018/6/19 PM3:47:00
火 30: [22	40」柳树的竹谷	LucidPapers	2010/0/19 PM3:47:00

页 36: [223] 删除的内容	LucidPapers	2018/6/19 PM3:47:00
页 36: [224] 删除的内容	LucidPapers	2018/6/19 PM3:47:00
 页 36: [224] 删除的内容	LucidPapers	2018/6/19 PM3:47:00
页 36: [225] 删除的内容	LucidPapers	2018/6/19 PM3:47:00
7 001 [220] Willy H1111	David apoil	2010/ 0/ 10 1110.11.00
页 36: [225] 删除的内容	LucidDonona	2018/6/19 PM3:47:00
贝 30: [225] 厕除的內谷	LucidPapers	2016/6/19 PM3:47:00
页 36: [226] 删除的内容	LucidPapers	2018/6/19 PM3:47:00
页 36: [226] 删除的内容	LucidPapers	2018/6/19 PM3:47:00
页 36: [227] 删除的内容	LucidPapers	2018/6/19 PM3:48:00
-		
页 36: [227] 删除的内容	LucidPapers	2018/6/19 PM3:48:00
-		
页 36: [228] 删除的内容	LucidPapers	2018/6/19 PM3:47:00
77 00. [220] Wilky Hilliau	Daorai apers	2010/ 0/ 13 1 MO. TI. 00

页 36:	[228]	删除的内容	LucidPapers	2018/6/19 PM3:47:00
页 36:	[229]	删除的内容	LucidPapers	2018/6/19 PM3:48:00
-				
页 36:	[229]	删除的内容	LucidPapers	2018/6/19 PM3:48:00
-				
页 36:	[230]	删除的内容	LucidPapers	2018/6/19 PM3:47:00
T	Faca 7	moderA J.F. T. ala.	- 7	
页 36:	[230]	删除的内容	LucidPapers	2018/6/19 PM3:47:00
页 36:	[231]	删除的内容	LucidPapers	2018/6/19 PM3:47:00
而 36.	[231]	删除的内容	LucidPapers	2018/6/19 PM3:47:00
Д 50.	[201]		Luciu apers	2010/0/13 1 110.41.00
页 36:	[232]	删除的内容	LucidPapers	2018/6/19 PM3:47:00
# 00	[0003]	mid ty A. L A		2010/0/10 70/0/17
贞 36:	[232]	删除的内容	LucidPapers	2018/6/19 PM3:47:00
页 36:	[233]	删除的内容	LucidPapers	2018/6/19 PM3:47:00
	_			

页 36:	[233] 删除的内容	LucidPapers	2018/6/19 PM3:47:00
页 36:	[234] 删除的内容	LucidPapers	2018/6/19 PM3:47:00
页 36:	[234] 删除的内容	LucidPapers	2018/6/19 PM3:47:00
页 36:	[235] 删除的内容	LucidPapers	2018/6/19 PM3:47:00
页 36:	[235] 删除的内容	LucidPapers	2018/6/19 PM3:47:00
页 36:	[236] 删除的内容	LucidPapers	2018/6/19 PM3:47:00
页 36:	[236] 删除的内容	LucidPapers	2018/6/19 PM3:47:00
页 36:	[237] 删除的内容	LucidPapers	2018/6/19 PM3:47:00
页 36:	[237] 删除的内容	LucidPapers	2018/6/19 PM3:47:00
页 36:	[238] 删除的内容	LucidPapers	2018/6/19 PM3:48:00

王 0.2 「0.0.0」 開北八十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十	T . ID	0010 /2 /10 PMO 40 00
页 36: [238] 删除的内容 	LucidPapers	2018/6/19 PM3:48:00
-		
页 36: [239] 删除的内容	LucidPapers	2018/6/19 PM3:47:00
× 60. [200] Million 11/1-1	DuoTur aports	2010/ 0/ 10 TMO. 11.00
页 36: [239] 删除的内容	LucidPapers	2018/6/19 PM3:47:00
页 36: [240] 删除的内容	LucidPapers	2018/6/19 PM3:48:00
_		
-		
	<u> </u>	
页 36: [240] 删除的内容	LucidPapers	2018/6/19 PM3:48:00
-		
页 36: [241] 删除的内容	LucidPapers	2018/6/19 PM3:47:00
五 0C. [041] 删版 始 中 宏	I: ID	2018/6/19 PM3:47:00
页 36: [241] 删除的内容	LucidPapers	2018/6/19 PM3:47:00
页 36: [242] 删除的内容	LucidPapers	2018/6/19 PM3:48:00
> W41W.H414.H		2020, 0, 10 1 1120 10 10 10
页 36: [242] 删除的内容	LucidPapers	2018/6/19 PM3:48:00
页 36: [243] 删除的内容	LucidPapers	2018/6/19 PM3:48:00

页 36: [243] 删除的内容	LucidPapers	2018/6/19 PM3:48:00
页 36: [244] 删除的内容	LucidPapers	2018/6/19 PM3:48:00
页 36: [244] 删除的内容	LucidPapers	2018/6/19 PM3:48:00
页 36: [245] 删除的内容	LucidPapers	2018/6/19 PM3:48:00
	7	
页 36: [245] 删除的内容	LucidPapers	2018/6/19 PM3:48:00
页 36: [246] 删除的内容	LucidPapers	2018/6/19 PM3:48:00
	0	
页 36: [246] 删除的内容	LucidPapers	2018/6/19 PM3:48:00
页 36: [247] 删除的内容	LucidPapers	2018/6/19 PM3:48:00
页 36: [247] 删除的内容	LucidPapers	2018/6/19 PM3:48:00
页 36: [248] 删除的内容	LucidPapers	2018/6/19 PM3:48:00

页 36: [248] 删除的内容	LucidPapers	2018/6/19 PM3:48:00
-		
页 36: [249] 删除的内容	LucidPapers	2018/6/19 PM3:48:00
页 50. [2 15] 刷标的内存	Lucturapers	2010/0/19 FM3.40.00
页 36: [249] 删除的内容	LucidPapers	2018/6/19 PM3:48:00
	·	
页 36: [250] 删除的内容	LucidPapers	2018/6/19 PM3:48:00
王 0.2 「0.50」 開	T 1 ID	0010/0/10 TWO 40 00
页 36: [250] 删除的内容	LucidPapers	2018/6/19 PM3:48:00
页 36: [251] 删除的内容	LucidPapers	2018/6/19 PM3:48:00
页 36: [251] 删除的内容	LucidPapers	2018/6/19 PM3:48:00
TO OO FORGI MINATALI, N		2010/0/22 707 12 12
页 36: [252] 删除的内容 	LucidPapers	2018/6/19 PM3:48:00
页 36: [252] 删除的内容	LucidPapers	2018/6/19 PM3:48:00
S F		, _, _,
页 36: [253] 删除的内容	LucidPapers	2018/6/19 PM3:48:00

页 36: [28	53] 删除的内容	LucidPapers	2018/6/19 PM3:48:00
页 36: [28	54] 删除的内容	LucidPapers	2018/6/19 PM3:48:00
页 36: [28	54] 删除的内容	LucidPapers	2018/6/19 PM3:48:00
页 36: [28	55] 删除的内容	LucidPapers	2018/6/19 PM3:48:00
页 36: [28	55] 删除的内容	LucidPapers	2018/6/19 PM3:48:00
页 36: [28	56] 删除的内容	LucidPapers	2018/6/19 PM3:45:00
页 36: [28	56] 删除的内容	LucidPapers	2018/6/19 PM3:45:00
页 37: [28	57] 删除的内容	Microsoft Office User	2018/4/15 AM11:41:00
页 39: [28	58] 删除的内容	Microsoft Office User	2018/4/12 AM11:58:00

References

