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Figure S1. a, Time series of annual averages of the top5% of DA24 PM2.5 and MDA8 O3 concentrations 

of NYC and their best-fit lines; b, The VOC, NOx, SO2, and primary PM2.5 emissions of NY state in 

2001, 2005, 2011, 2017.  
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Figure S2. The averaged aerosol mass fraction for each subperiod in Beijing.  
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Figure S3. The O3-PM2.5 relationship of BJ for SP1 (2014-2016) and SP2 (2017-2019) (colored by the 

average temperature of each PM2.5 level). The temperature of SP2 was about 2-3 °C higher than SP1 

after PM2.5 over IFP, which would related be about an increase of 2-3 ppb of O3 for SP21. This 

enhancement would be relative lower than the difference of O3 of SP2 vs. SP1, with the estimated 10 

ppb O3 enhancement at the top5% DA24 PM2.5 level of SP2 (90 µg m-3), which implying the 

enhancement of O3 caused by the increased temperature of SP2 would not be the dominate reason.   
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Figure S4. The average of the top5% MDA8 O3 and DA24 PM2.5 during June-August, 2017 in the base 

case and cases with proportional abatements of all the anthropogenic emissions by 25%, 50%, and 75%. 
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Figure S5. The location of main urban cities in three megacity clusters with a background map of 2019 

summer TROPOMI NO2 column concentration (BTH: Beijing-Tianjin-Hebei region, including Beijing, 

Tianjin, Shijiazhuang, Tangshan and Baoding. YRD: Yangtze River Delta, including Shanghai, Nanjing, 

Suzhou, Hangzhou and Ningbo. PRD: Pearl River Delta, including Guangzhou, Shenzhen, Zhuhai, 

Foshan and Zhongshan). 
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Figure S6. Diagram non-linear fitting of the BJ O3-PM2.5 relationship of SP1 and SP2.  
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Figure S7. a, Domain of the CMAQ model simulation including BTH and its nearby region (Beijing-

Tianjin-Hebei-Shanxi (BTHS)); b, locations of 24 cities for model evaluations of O3 and PM2.5.  
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Figure S8. Comparison of observed (red dot) and modeled (black line) MDA8 O3 in 24 cities shown in 

Fig. S5. The episode-averaged MDA8 O3 by observations (red) and predictions (black) at each city are 

also included in each panel (units are μg m-3).  
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Figure S9. Comparison of observed (red dot) and modeled (black line) DA24 PM2.5 in 24 cities shown 

in Fig. S5. The episode-averaged DA24 PM2.5 by observations (red) and predictions (black) at each city 

are also included in each panel (units are μg m-3).  
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Figure S10. The relationship of the top5% DA24 PM2.5 concentration with the ratio of MEIC base 

emissions for, a, Beijing city; b, Shanghai city; c, Guangzhou city.  
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Table S1. Statistical analysis of MDA8 O3 and DA24 PM2.5 in 24 cities of the BTHS region (Fig. S5) in 

June, July, and August 2017 (NMB: normalized mean bias; NME: normalized mean error2) 

 

 
MDA8 O3 DA24 PM2.5 

NMB NME NMB NME 

Jun -0.19 0.23 -0.17 0.33 

July -0.13 0.24 -0.07 0.36 

August -0.12 0.24 0.11 0.41 

Benchmark* <±0.15 <0.25 <±0.30 <0.50 
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