Supplement for

Extending ozone and particulate matter pollution control from New York City to Beijing

Jie Zhang^{1,*}, Junfeng Wang^{2,*}, Yele Sun³, Jingyi Li², Matthew Ninneman⁴, Jianhuai Ye⁵, Ke Li², Brian Crandall⁶, Jingbo Mao⁷, Weiqi Xu³, Margaret J. Schwab¹, Weijun Li⁸, Xinlei Ge², Mindong Chen², Qi Ying⁹, Qi Zhang¹⁰, James J. Schwab^{1,*}

¹Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, NY 12203, USA

²Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China

³State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

⁴School of Science, Technology, Engineering and Mathematics, University of Washington Bothell, 18115 Campus Way NE, Bothell, WA, 98011, USA

⁵School of Environmental Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China

⁶New York State Department of Environmental Conservation, NY 12233, USA

⁷Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China

⁸Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China

⁹Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843, USA

¹⁰Department of Environmental Toxicology, University of California, Davis, Davis, CA 95616, USA

*To whom correspondence may be addressed. Email: jschwab@albany.edu, wangjunfengnuist@163.com, jzhang35@albany.edu

This file includes:

Figure S1 to S10

Table S1

Figure S1. a, Time series of annual averages of the top5% of DA24 PM_{2.5} and MDA8 O₃ concentrations of NYC and their best-fit lines; **b**, The VOC, NOx, SO₂, and primary PM_{2.5} emissions of NY state in 2001, 2005, 2011, 2017.

Figure S2. The averaged aerosol mass fraction for each subperiod in Beijing.

Figure S3. The O₃-PM_{2.5} relationship of BJ for SP1 (2014-2016) and SP2 (2017-2019) (colored by the average temperature of each PM_{2.5} level). The temperature of SP2 was about 2-3 °C higher than SP1 after PM_{2.5} over IFP, which would related be about an increase of 2-3 ppb of O₃ for SP2¹. This enhancement would be relative lower than the difference of O₃ of SP2 vs. SP1, with the estimated 10 ppb O₃ enhancement at the top5% DA24 PM_{2.5} level of SP2 (90 µg m⁻³), which implying the enhancement of O₃ caused by the increased temperature of SP2 would not be the dominate reason.

Figure S4. The average of the top5% MDA8 O₃ and DA24 PM_{2.5} during June-August, 2017 in the base case and cases with proportional abatements of all the anthropogenic emissions by 25%, 50%, and 75%.

Figure S5. The location of main urban cities in three megacity clusters with a background map of 2019 summer TROPOMI NO₂ column concentration (BTH: Beijing-Tianjin-Hebei region, including Beijing, Tianjin, Shijiazhuang, Tangshan and Baoding. YRD: Yangtze River Delta, including Shanghai, Nanjing, Suzhou, Hangzhou and Ningbo. PRD: Pearl River Delta, including Guangzhou, Shenzhen, Zhuhai, Foshan and Zhongshan).

Figure S6. Diagram non-linear fitting of the BJ O₃-PM_{2.5} relationship of SP1 and SP2.

Figure S7. a, Domain of the CMAQ model simulation including BTH and its nearby region (Beijing-Tianjin-Hebei-Shanxi (BTHS)); **b**, locations of 24 cities for model evaluations of O₃ and PM_{2.5}.

Figure S8. Comparison of observed (red dot) and modeled (black line) MDA8 O_3 in 24 cities shown in Fig. S5. The episode-averaged MDA8 O_3 by observations (red) and predictions (black) at each city are also included in each panel (units are $\mu g m^{-3}$).

Figure S9. Comparison of observed (red dot) and modeled (black line) DA24 PM_{2.5} in 24 cities shown in Fig. S5. The episode-averaged DA24 PM_{2.5} by observations (red) and predictions (black) at each city are also included in each panel (units are μ g m⁻³).

Figure S10. The relationship of the top5% DA24 $PM_{2.5}$ concentration with the ratio of MEIC base emissions for, **a**, Beijing city; **b**, Shanghai city; **c**, Guangzhou city.

Table S1. Statistical analysis of MDA8 O_3 and DA24 $PM_{2.5}$ in 24 cities of the BTHS region (Fig. S5) in June, July, and August 2017 (NMB: normalized mean bias; NME: normalized mean error²)

	MDA8 O ₃		DA24 PM _{2.5}	
	NMB	NME	NMB	NME
Jun	-0.19	0.23	-0.17	0.33
July	-0.13	0.24	-0.07	0.36
August	-0.12	0.24	0.11	0.41
Benchmark*	<±0.15	< 0.25	<±0.30	<0.50

References

- 1. Shi, Z. et al. Sensitivity analysis of the surface ozone and fine particulate matter to meteorological parameters in China. *Atmos. Chem. Phys.* 20, 13455–13466 (2020).
- 2. Emery, C. et al. Recommendations on statistics and benchmarks to assess photochemical model performance. *J. Air Waste Manag. Assoc.* 67, (5), 582-598 (2017).