
Dear Editor, 

Thank you for giving us the opportunity to submit the revised draft of our manuscript titled “Global 
PM2.5 prediction and associated mortality to 2100 under different climate change scenarios” to 
Environmental Science & Technology. We thank the insightful comments from the reviewers. Most of 
the suggestions made by reviewers have been incorporated and the changes made within the 
manuscript have been highlighted. Please see below, in blue, for a point-by-point response to the 
reviewers’ comments and concerns. The page numbers and line numbers refer to the revised 
manuscript file with tracked changes. 

Reviewers’ comments: 

Reviewer: 1 

Comments: 

The authors conducted a comprehensive study on evaluating the impact of ambient fine particulate 
matter (i.e., PM2.5) concentrations on public health or premature mortality burden by the end of the 
21st century under different climate change scenarios. This is an interdisciplinary research, 
representing a great concern to research communities, general public, and policy makers.  

Through this study, the authors developed a deep machine learning model and applied it to project the 
future ambient PM2.5 concentrations at a high resolution (0.1⁰ × 0.1⁰) on a global scale. With such a 
dataset, the authors completed a rigorous assessment of the impact of climate change-constrained air 
quality on human health. The results have important implications for policymakers to formulate 
feasible shared socioeconomic pathways to support sustainable development. Overall, the study is 
carefully-designed, the manuscript is well written and organized. However, several aspects need to be 
clarified before it is accepted to publish in EST.  

Author's Response: We thank the constructive comments and suggestions from the reviewer. Based 
on your review comments, we have added more descriptions of the methodology and analysis of the 
results into the manuscript. The point-to-point responses are provided as follows.  

 

Specific comments 

1. Reviewer #1 comment: Details about the emission:  Emissions inputs are critical for generating 
accurate PM2.5 forecasts or projections. However, it is not clear what global emission inventories were 
used in the projection or predictions of PM2.5 concentrations from 2021 to 2100.  As indicated on Line 
91, PKU-FUEL could be one of them. Are there any other global emission inventories included in the 
study?  In addition, it will be helpful if some additional detailed information about the global emission 



inventories used in this study can be provided. For instance, what are the base year(s) of emission 
inventories and what is the spatial resolution of original emission inventories? 

Author’s response: Thanks for your suggestion. We have added more detailed information about the 
global emission inventories used in this study in the revised manuscript (Lines 104–109). 

“CMIP6 dataset contains historical emissions (1750 to 2014) and future emission data for SSP 
scenarios (2015-2100). CMIP6 emissions data were utilized in both the training and prediction 
processes. CMIP6 historical emissions data (1998–2014, the historical emissions data are available 
till 2014) were used to build the deep learning model, and the emission data of SSP scenarios for 2015 
to 2019 were used in the deep learning model verification process. Future emission data for 2021–
2100 were input into the trained deep learning model for prediction. The detailed narratives of 
emission inventory used in this study are summarized in Table S3.” 

Table S3. Narratives of CMIP6 emission inventory used in this study. 

Role in this 
study 

Emission inventory 
in this study 

Time 
period 

Original 
Resolution 

Data citation 

Training  Historical emissions  1998-2014 0.5 ⁰ x 0.5 ⁰ Feng, et al. (2020)1 

Verification 
Emissions for SSP 

scenarios 
2015-2019 0.5 ⁰ x 0.5 ⁰ Feng, et al. (2020)1 

Prediction 
Emissions for SSP 

scenarios 
2021-2100 0.5 ⁰ x 0.5 ⁰ Feng, et al. (2020)1 

 

2. Reviewer #1 comment: L88: Here the word “Primary” is a little bit confused since I assume the 
emissions of all PM2.5 compositions are primary. When you use five pollutants as emission inputs to 
drive the deep learning model, what are the percentages of individual species? 

Author’s response: Thanks for your comment. We agreed with the reviewer, the word “primary” can 
be misleading. We have revised the below sentence in Lines 89-92: “Since the deficiency in the 
emissions of primary PM2.5 components (except organic carbon (BC) and black carbon (OC)) in the 
CMIP6 datasets, future PM2.5 concentrations are driven by changes to precursor emissions (ammonia 
(NH3), nitrogen oxides (NOx), and sulfur dioxide (SO2)), BC, OC and climate in this study.” 

Global emission amounts and percentages of the five species have been included in the supplementary 
information (SI), as shown in Table S1 and Table S2. 

 

 



Table S1. Global emission amount of BC, NOx, NH3, OC and SO2. 

Species 1995 2000 2005 2010 2014 Unit 

BC 8.12 7.46 8.84 9.66 9.74 Mt BC/yr 
NOx 135.17 135.53 149.85 155.42 155.64 Mt NOx/yr 
NH3 54.03 54.51 58.88 62.45 65.04 Mt NH3/yr 
OC 32.08 27.98 32.72 34.61 36.15 Mt OC/yr 
SO2 121.40 111.15 124.98 116.32 105.00 Mt SO2/yr 

 

Table S2. Percentage (%) of historical BC, NOx, NH3, OC and SO2 emissions. 

Species 1995 2000 2005 2010 2014 

BC 2.3% 2.2% 2.4% 2.6% 2.6% 
NOx 38.5% 40.3% 39.9% 41.1% 41.9% 
NH3 15.4% 16.2% 15.7% 16.5% 17.5% 
OC 9.1% 8.3% 8.7% 9.1% 9.7% 
SO2 34.6% 33.0% 33.3% 30.7% 28.3% 

 

3. Reviewer #1 comment: L117-118:  There is a gap between historical simulations (1981-2010) and 
future projections (2021-2100).  I'm curious as to the reasons for this.  

Authors’ response: Thank you for the comment. The classical period of climate, defined as the mean 
and variability of relevant quantities of certain variables over a period of time, is 30 years, which was 
recommended by the World Meteorological Organization (WMO).2 WMO used a 30-year baseline for 
weather and climate, operating on the principle that 30 years of data provide enough information to 
even short-term variability and afford a reliable reference period for monitoring the general patterns 
of weather and climate. A widely used standard reference period for calculating climate normals is the 
30-year period of 1981-2010.3 In order to keep the same number of years (30-year average) as 1981-
2010, we followed the previous downscaling study 4 and set the future scenarios as four 30-year periods 
for climate downscaling. The future periods are set as 2021–2050 (2030s), 2041–2070 (2050s), 2061–
2090 (2070s), and 2071–2100 (2080s), respectively.  

 

4. Reviewer #1 comment: As pointed out on L119-122, four SSP scenarios were classified by 
socioeconomic, land use, and environmental development assumptions. Can you add a table to 
summarize the key differences among them in the Supplementary even though they were described in 
other references?   



Authors’ response: Thank you for your suggestion. We have further added a summarized table of key 
differences among four SSP scenarios in Table S5 in the supplemental material. 

Table S5. Descriptions of the critical elements for SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 
relevant to air pollution 

Scenario Description 
Land-use 
Change 

Regulation 

Environmental 
Development 

Pollution 
Control 
Policy 

Energy Tech 
Change 

Population 
Growth 

SSP1-2.6 Sustainability 

Strong regulation 
to avoid 

environmental 
tradeoffs 

High environmental 
awareness; more inclusive 
development that respects 
perceived environmental 

boundaries 

Strong 

Directed away 
from fossil fuels, 
toward efficiency 
and renewables 

Relatively Low 

SSP2-4.5 
Middle-of-the-

road 

Medium 
regulation; slow 

decline in the rate 
of deforestation 

Medium environmental 
awareness; work toward 

but make slow progress in 
achieving sustainable 

development goals 

Medium 

Some investment 
in renewables but 
continued reliance 

on fossil fuels 

Medium 

SSP3-7.0 
Regional 
rivalry 

Limited 
regulation; 
continued 

deforestation 

Low environmental 
awareness; strong 

environmental 
degradation in some 

regions 

Weak 

Slow tech change, 
directed toward 
domestic energy 

sources 

High in 
developing 

countries; low in 
industrialized 

countries 

SSP5-8.5 
Fossil-fueled 
development 

Medium 
regulation; slow 

decline in the rate 
of deforestation 

High environmental 
awareness; local 

environmental problems 
are successfully managed 

Strong 

Directed toward 
fossil fuels; 
alternative 
sources not 

actively pursued 

Relatively Low 

 

5. Reviewer #1 comment: L122: Why do the authors highlight “radiative forcing” as an indicator to 
distinguish these four scenarios here? Is there any indication of “radiative forcing” to ambient levels 
of PM2.5 in the future or to the shared socioeconomic pathways?  

Authors’ response: Thank you for your question. The term “radiative forcing” has been employed in 
the IPCC Assessments to denote an externally imposed perturbation in the radiative energy budget of 
the Earth’s climate system. Conceptually, “radiative forcing” is the change in energy flux caused by 
both natural and anthropogenic factors that affect the global energy balance and force changes in the 
Earth’s climate.5 Changes in greenhouse gas concentrations in the atmosphere affect radiative forcing; 



thus, radiative forcing corresponds to different greenhouse gas (GHG) emissions and the resulting 
climate change. The SSP scenarios translate the socioeconomic factors and mitigation goals into GHG 
emissions (and associated radiative forcing) in a standardized manner, indicating the social pathways 
associated with different levels of warming. For example, SSP 1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-
8.5 correspond to the low, medium, high, and very high GHG emissions scenarios, resulting in 
subsequent radiative forcing of 2.6, 4.5, 7.0, 8.5 Watt/m2 by 2100. Hence, the IPCC report and previous 
literature used “radiative forcing values” to represent four different future pathways. Under different 
future “radiative forcing” conditions, emissions and meteorological conditions are different and such 
variations can be further propagated to the PM2.5 concentration. Previous studies have investigated the 
relationship between “radiative forcing” and the subsequent influence on ambient levels of PM2.5. 
Colette et al. (2013)6 estimated that, due to the air pollutant emission reduction, the decrease in PM2.5 
concentrations by 2050 in western Europe could reach up to 60% under radiative forcing of 8.5 Watt/m2 
and 75% under radiative forcing of 2.6 Watt/m2.  

To explain the “radiative forcing” as an indicator to climate change and its relationship with PM2.5 

concentration, we have added the following description from Line 148 to Line 158. 

“Changes in greenhouse gas concentrations in the atmosphere affect radiative forcing; thus, ‘radiative 
forcing’ mentioned in this work corresponds to different greenhouse gas (GHG) emission scenarios 
and the resulting climate change. Both SSP1-2.6 and SSP5-8.5 represent strong climate mitigation 
scenarios,7, 8 with the distinction that the anthropogenic radiative forcings by 2100 are 2.6 Watt/m2 
and 8.5 Watt/m2, respectively. 9, 10 SSP2-4.5 represents a moderate mitigation scenario and the 
radiative forcing is stabilized at 4.5 Watt/m2 until 2100 by implementing moderately restrictive 
emission reduction measures and strategies.11 SSP3-7.0 is the weakest climate mitigation scenario 
with an anthropogenic radiative forcing of 7.0 Watt/m2 by 2100.12” 

 

6. Reviewer #1 comment: Some details about the 80 years of global PM2.5 projection (why not use 
prediction?): It requires significant computer resources to complete long-term global high-resolution 
(0.1⁰×0.1⁰) PM2.5 predictions by using a 3D numerical climate-chemistry or air quality model. How 
much computer resources does the deep learning model need to complete the 80 years of simulations 
in this study?  

Authors’ response: Thanks for your comment. “Prediction” and “projection” are used to describe two 
different kinds of information that both significantly represent estimations about future conditions. 
“Prediction” is a probabilistic statement, i.e., a predictive relationship based on modeling some 
phenomenon from available data. In other words, “prediction” describes the forecasted climate for the 
coming months or years, which are strongly influenced by natural cycles of variability. While 
“projection” is a probabilistic statement that indicates about what happens in the future is possible if 



certain conditions develop. Projection relies on prescribed scenario information which illuminates how 
scenarios of gas emissions and associated socioeconomic pathways will influence climate and air 
quality in the long term. In summary, the critical difference between “prediction” and “projection” is 
that projections generally rely on scenarios or assumptions regarding the future. 

Regarding the computation resources cost, detailed information has been added to Text S2 in the SI 
(Page 4). 

“In this study, all experiments were performed on a high-performance computing server with an Intel 
i7-10700 CPU and an NVIDIA Quadro RTX 4000 GPU. It takes about 20 seconds to execute each 
training epoch, and the total training time is about 5 hours. For the projection, it takes only 10 seconds 
on average to simulate every decade.” 

 

7. Reviewer #1 comment: As shown in Fig. 2, S2-4, the CNN model predictions show very good 
agreement with satellite-retrieved data.  I know this is beyond of this study scope, but I am still 
interested in whether this model can be used to generating regional operational PM2.5 forecasts. Any 
comments on that? 

Authors’ response: Thank you for your comment. Yes, the CNN model can also be used to predict 
regional PM2.5 concentration. PM2.5 is a cross-boundary pollution issue; thus, it is influenced not only 
by local but also by regional situations (e.g., meteorological conditions and emission intensities). At 
the same time, CNN is adept at obtaining spatial information and considering the regional influence, 
due to the fact that this type of deep learning model typically consists of a series of convolutional 
layers, pooling layers, and fully-connected layers.13, 14 

The CNN technique was found to have good performance in estimating the regional PM2.5 
concentration. A recent study developed a CNN model and used it for regional air quality forecast in 
South Korea.15 Results show that the R2 values of PM2.5 and PM10 predictions reached 0.975 and 0.976 
respectively. For another PM2.5 forecast research in Beijing, China, results revealed that CNN has a 
more stable improvement in regional PM2.5 concentration prediction for the future 24 hours.16 
Therefore, the CNN approach has the potential to perform reliable regional PM2.5 forecast. 

 

8. Reviewer #1 comment: L152: Even though some explanations are provided here. I am still not very 
clear the reason(s) of implementing 8-fold cross-validation and the way of calculation. Are there any 
references on this?  

Authors' response: Thanks for your comment. We agree with the reviewer that more descriptions and 
references are required to clarify the 8-fold cross-validation. 



The core idea of cross-validation lies in dividing the dataset into several groups and averaging the 
results of multiple evaluations, thus thoroughly evaluating the proposed model and fully implementing 
all data for validation.17, 18 With cross-validation, all data can have the opportunity to become both 
training and validation datasets. Therefore, cross-validation can better evaluate the generalization 
ability and model performance. 

We have added the calculation of 8-fold cross-validation in Text S7 in the SI (Page 7). 

“Cross-validation is a resampling process used to evaluate machine/deep learning models on a limited 
sample of data,19, 20 which has also been widely used in the verification of machine learning models for 
air pollution prediction. 21, 22 The core idea of cross-validation lies in dividing the dataset into several 
groups and averaging the results of multiple evaluations, thus thoroughly evaluating the proposed 
model and fully implementing all data for validation.17 

The procedure of 8-fold cross-validation is as follows.  

1. Full set of the input data is divided into 8 parts. 
2. In the training process, each time, one part of the input data is withheld, and the remaining 7 

parts are input to the CNN framework to train the model.  
3. The correlation coefficient (CORRi) and RMSEi are calculated by validation with the 

withheld one-part data. 
4. Steps 2 and 3 are performed 8 times, and then 8 times of RMSEi and CORRi can be 

calculated. 
5. The final RMSE and CORR are calculated by averaging the 8 different RMSEi and CORRi.” 

 

9. Reviewer #1 comment: PM2.5 exposure concentrations are widely used in health impact studies 
while ambient levels of PM2.5 are more commonly used in air quality or atmospheric environment 
studies. Is(are) there any difference(s) between both in terms of values?  

Authors’ response: Thanks for your comment. Yes, there exist differences between the PM2.5 exposure 
concentrations and ambient levels in terms of values.  

The “exposure concentration” can be used to indicate the people's actual exposure to environmental 
PM2.5 concentrations.23 In real life, due to the influence of the natural environment and urban layout, 
residents usually gather in the city center, and the urban population is unevenly distributed. Directly 
using the ambient PM2.5 concentration to assess the population exposure, without considering the 
disproportionate spatial-temporal distributions of the pollution and the population, might not reflect 
the true impact of air pollution on health. The criticism that “the ambient levels of PM2.5 may not 
properly reflect individual exposures” has been supported by studies since the 1980s. A series of 



studies have found that personal exposures to particulate matter were much higher than the average 
ambient concentrations.24-26  

To clarify, we have added the description and calculation results of “exposure” in Text S5 in the SI 
(Page 6). 

“Population-weighted concentration can better reflect the impact of PM2.5 pollution on the exposed 
population, and thus build a more reliable theoretical basis for public health assessment. Eq. (S5) and 

Eq. (S6) were used to calculate the exposure concentration (𝑪𝑷𝑴𝟐.𝟓
𝒊$𝒑𝒐𝒑 ) and spatial ambient levels 

(𝑪𝑷𝑴𝟐.𝟓
𝒊$𝒔𝒑𝒂𝒄𝒆) of PM2.5, respectively.  

𝑪𝑷𝑴𝟐.𝟓
𝒊$𝒑𝒐𝒑 = #∑ 𝑪𝒌𝒊 ∗ 𝑷𝒌𝒊𝑵

𝒌-𝟏 ' ∑ 𝑷𝒌𝒊𝑵
𝒌-𝟏(   Eq. (S5) 

𝑪𝑷𝑴𝟐.𝟓
𝒊$𝒔𝒑𝒂𝒄𝒆 = 𝟏

𝑵
#∑ 𝑪𝒌𝒊𝑵

𝒌-𝟏 '             Eq. (S6) 

Here, different countries and the total grid number of the country are represented by 𝑖  and 𝑁 , 
respectively. 𝐶/0  and 𝑃/0  are the PM2.5 concentration and corresponding population of grid 𝑘  in 
country 𝑖, respectively.” 

A clear difference between the exposure and spatial ambient level can be found in Table A1, with 
exposure at the national level being generally higher in values than the corresponding spatial ambient 
level of PM2.5. 

Table A1. Country-level population-weighted exposure and spatial-weighted PM2.5 
concentrations in 2015. 

Country 
Exposure 
[μg/m3] 

Ambient level 
[μg/m3] 

Population [in million] 

Global 44 14 7366 
Australia 6 1.5 24 

Brazil 11 6.1 207 
Canada 7 2.9 36 
China 58 18.7 1383 
France 12 8.7 65 
India 72 39.4 1311 
Japan 13 10.8 128 

Philippines 23 4.6 100 
Russia 17 6.7 148 

Singapore 19 27.6 4 



South Africa 30 13.1 53 
South Korea 29 24.7 50 
South Sudan 32 12.1 12 

Spain 10 6.3 48 
Turkey 36 12.9 78 

United States 8 6.0 323 
Vietnam 28 18.0 93 

 

 

10. Reviewer #1 comment: L298-301: The impact of driving factors could be quite complex.  The 
authors highlighted the importance of the planetary layer height for the SSP3-7.0 scenario in Figure. 
S7 and on lines 298-301. However, if you look closely at Figs. S5, S6, and S8, the delta changes of 
surface temperature, specific humidity, and sea level pressure are more significant than the change in 
PBLH for Scenarios SSP 3-7.0 and 5-8.5.  Any comments on that?  

Authors’ response: Thank you very much for your comment. We agree with the reviewer that 
meteorological conditions affect the accumulation and diffusion of PM2.5 through multiple mechanisms. 
Influence of PBLH on PM2.5 concentrations has been reported in several previous studies. PM2.5 
concentrations are highly sensitive to PBLH, which decides the vertical space to which PM2.5 can 
disperse.27 With a given amount of emitted pollutants, lower PBL height can generally cause the 
pollution episode of PM2.5.28, 29 That’s the main reason why we want to emphasize the role of PBLH 
on PM2.5 concentration in the manuscript. Although the differences in pressure, temperature, and 
specific humidity are also significant as pointed out by the reviewer, their impacts on PM2.5 pollution 
are not linear and straightforward. Based on your comment, we have modified our description of the 
influence of meteorological factors (Lines 425–436). 

“Under the SSP3-7.0 scenario, the planetary boundary layer height (PBLH) exerts strong influence 
on PM2.5 dispersion, and thus its decreases in East Asia, South Asia, and eastern Africa (Figure S10) 
will increase the PM2.5 concentrations. Besides PBLH, other meteorological conditions, such as higher 
temperature,30 are also favorable for PM2.5 accumulation in these regions and therefore exacerbate 
the PM2.5-associated mortality burden until the 2050s.” 

 

 

 



11. Reviewer #1 comment: Differences in key meteorological fields (e.g., PBLH, surface temperature, 
etc.) are presented in Figures S5-S9. It will be helpful to include similar changes in emissions for four 
scenarios if they are different.  

Authors’ response: Thank you for your suggestion. We have added below figures to reveal the changes 
of emissions in the supplementary material. (SI Page 23-25)  

“Emissions (SO2, NH3, OC, BC, NOx) for the four SSP scenarios up to 2100 are shown in Figures 
S13-S17.” 

 

Figure S13. Changes in SO2 emission (g km-2 yr-1 in log scale) for 2030s (2021-2050 average), 

2050s (2041-2070 average), 2070s (2061-2090 average), and 2080s (2071-2100 average) compared 

to that in 1990s (1981-2010) under the four scenarios. 



 

Figure S14. Changes in NH3 emission (g km-2 yr-1 in log scale) for 2030s (2021-2050 average), 

2050s (2041-2070 average), 2070s (2061-2090 average), and 2080s (2071-2100 average) compared 

to that in 1990s (1981-2010) under the four scenarios. 

 

Figure S15. Changes in OC emission (g km-2 yr-1 in log scale) for 2030s (2021-2050 average), 

2050s (2041-2070 average), 2070s (2061-2090 average), and 2080s (2071-2100 average) compared 

to that in 1990s (1981-2010) under the four scenarios. 



 

Figure S16. Changes in BC emission (g km-2 yr-1 in log scale) for 2030s (2021-2050 average), 

2050s (2041-2070 average), 2070s (2061-2090 average), and 2080s (2071-2100 average) compared 

to that in 1990s (1981-2010) under the four scenarios. 

 

Figure S17. Changes in NOx emission (g km-2 yr-1 in log scale) for 2030s (2021-2050 average), 
2050s (2041-2070 average), 2070s (2061-2090 average), and 2080s (2071-2100 average) compared 
to that in 1990s (1981-2010) under the four scenarios. 



Minor comments:  

1. Reviewer #1 comment: L25: Please spell out CI. 

Authors’ response: Thanks for your comment. We have spelled out the CI (Confidence Interval) in the 
manuscript (Line 377). 

2. Reviewer #1 comment: L63: “and emissions” or “emissions”?  Do you need a “and” before 
“emissions”? 

Authors’ response: We are sorry for the typo, and it has been corrected. 

3. Reviewer #1 comment: L97: What are the “primary spatial resolutions”?  

Authors’ response: To avoid misunderstanding, we have revised the “primary spatial resolutions” to 
“original spatial resolutions”. Also, we have added more information about the original spatial 
resolutions in the manuscript. (Line 113–115) 

“Before training the deep learning model, all meteorological and emissions data were re-interpolated 
from their original spatial resolutions (meteorological data with 0.625° × 0.500° and emission data 
with 0.5° × 0.5°) into the same grid as the surface PM2.5 data with a resolution of 0.1° × 0.1°.” 

4. Reviewer #1 comment: L152: please provide a little bit detail about the calculation of 8-fold cross-
validation. 

Authors’ response: Thanks for your comment. We have added the description and calculations of 8-
fold in Text S5 in the SI (Page 6).  

“Cross-validation is a resampling process used to evaluate machine/deep learning models on a limited 
sample of data,19, 20 which has also been widely used in the verification of machine learning models for 
air pollution prediction. 21, 22 The core idea of cross-validation lies in dividing the dataset into several 
groups and averaging the results of multiple evaluations, thus thoroughly evaluating the proposed 
model and fully implementing all data for validation.17 

The procedure of 8-fold cross-validation is as follows.  

1. Full set of the input data is divided into 8 parts. 
2. In the training process, each time, one part of the input data is withheld, and the remaining 7 

parts are input to the CNN framework to train the model.  
3. The correlation coefficient (CORRi) and RMSEi are calculated by validation with the 

withheld one-part data. 
4. Steps 2 and 3 are performed 8 times, and then achieve 8 times of RMSEi and CORRi. 
5. The final RMSE and CORR are calculated by averaging the 8 different RMSEi and CORRi.” 

 



5. Reviewer #1 comment: L176: Figure2: What are the time period and scope of the validation 
presented in the figure?  

Authors’ response: Thanks for your comment. We have included the time period and scope in the 
caption of Figure 2.  

“Figure 2. 8-fold cross-validation of the global PM2.5 concentrations predicted by the U-Net CNN 
model during 1998-2014. The color represents the sample density.” 

6. Reviewer #1 comment: L195: Figure 3: Each panel subplot includes a letter label. It is necessary to 
include them in the figure caption.  

Authors’ response: Thank you for the suggestion. We have included a letter label for each panel subplot 
in this figure caption.   

 

“Figure 3. Spatial distribution of changes in projected global PM2.5 concentrations relative to the 
baseline period (2010–2019) under different climate change scenarios. Panels (a)-(d) represent the 
changes in PM2.5 concentration for 2030s (2021-2050 average), 2050s (2041-2070 average), 2070s 
(2061-2090 average), and 2080s (2071-2100 average) under SSP1-2.6 scenarios compared to the 
baseline condition. Panels (e)-(h) represent that of the same period but under SSP2-4.5. Panels (i)-
(l) represent that of the same period but under SSP3-7.0. Panels (m)-(p) represent that of the same 
period but under SSP5-8.5.”  
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Reviewer: 2 

Comments: 

The authors have developed a machine learning-based approach to predicting monthly average PM2.5 

concentrations at high spatial resolution (0.1 degree), trained on MERRA2 reanalysis fields, historical 

emissions from CMIP6, and PM2.5 data based on satellite observations and GEOS-Chem simulations. 

This trained model is then applied to estimate monthly average PM2.5 concentrations from 28 CMIP6 

global climate models for each month from 2015 to 2100, for each of four SSPs. The resulting PM2.5 

concentrations are then used with future projections of population distributions to estimate PM2.5-

associated mortality. The subject is certainly of interest for ES&T. However, I cannot recommend this 

manuscript for publication in its current form. 

Authors' response: We are grateful for the constructive comments. Substantial revisions have been 

made for the manuscript based on your comments. The U-Net model has been described and elaborated 

in more detail in the revised manuscript, accompanied by the replotting of the U-Net architecture with 

additional detailed information on model structure and parameters. More discussions of the model 

results, such as generalisation and standard error, have been added. In addition, the implications of the 

study have been further elaborated in the revised manuscript, with a focus on the economic impact of 

future premature mortality associated with PM2.5. The point-by-point response to your questions are 

listed as follows. The page numbers and line numbers refer to the revised manuscript file with tracked 

changes. 

 

1. Reviewer #2 comment: First, the most interesting and novel aspect of this analysis, and where the 

authors clearly have expertise, is the U-Net machine learning model. However, the description of this 

model is inadequate for me to follow, and I suspect inadequate for the majority of readers of this 

journal. The authors do provide many references, but in my opinion more details in this paper are 

warranted, at least in the Supplement. Figure 1 raises more questions for me than it answers, and the 

supplementary text S1 does not have much depth. Are w and s equal to 3600 and 1800 (representing 

0.1 degrees longitude and latitude?). What value is used for the shuffle factor s? What is ADMM, and 

how does the learning rate enter into the equation S2? Did the authors use their own custom code, or 



did they use existing machine learning packages? What is the reason for subtracting 2.4 ug/m3 from 

the PM2.5 concentration (Text S3)? Why 64 channels?  The SI includes this unhelpful fragment: "For 

more details about these parameters" without referring the reader to where those details may be 

obtained. 

Authors’ response: Thank you very much for the comments.  

In this work, we aimed to predict PM2.5 concentration based on meteorological and emission data, as 

shown in Eq. (S1): 

𝓧
1:3$456
/⎯⎯⎯⎯1𝓨              Eq. (S1) 

where 𝓧 = (𝑿𝟏, … , 𝑿𝑻)	represents the meteorological and pollutant emissions data over T months, 

	𝓨 = (𝒀𝟏, …𝒀𝑻) represents surface PM2.5 concentrations in the corresponding T months, and 𝑓	is the 

well-trained U-net CNN model. 

The U-net CNN model is used to learn the relationship between meteorological variables, emissions 

(𝓧) and PM2.5 concentration (𝓨). CNN model we used is an image-based multilayer feedforward 

neural network. In this work, the meteorological and emission fields (𝓧) and PM2.5 concentration fields 

(𝓨) were treated as 2-D images. The geographic range of the meteorological fields, emissions, and 

global PM2.5 concentrations in this study is 180°W to 180°E, 69.75°N to 54.75°S, with a resolution of 

0.1° × 0.1°. Therefore, the size of 2-D images is equal to 3600×1246. 

The architecture of U-net CNN consists of a contracting path to capture the context in images and a 

symmetric expansive path to expand the image size.1 In the contracting path,  convolutional layers 

and max-pooling layers are included. The convolutional layer, which can extract data features, is the 

key to CNN. The convolutional layer relies on convolutional nuclei to extract the features from the 

input (meteorological and emissions data) and the target (PM2.5 concentration), and to obtain a 

complete feature map of the input and target data by sliding the convolutional kernel.2 The max-

pooling layer is mainly used for feature dimensionality reduction and also for improving the quality of 

the extracted information.3 In the expansive path, up-sampling layers, convolutional layers, copy 

connection, and a final output layer are included. The up-sampling layer is designed to expand the 

image size so that the expanded features can be concatenated with feature maps from the corresponding 



max-pooling layer. The convolutional layers in the expansive path are used to combine the information 

from the contracting path (including high-level features extracted from the original image) and the 

information from the copy connections (including detailed features copied from the contracting path). 

After the above-mentioned operations, the U-net CNN model can mine the deep features implied 

between PM2.5 concentration and meteorological and emissions data.  

To clarify the architecture of the U-net model and explain the parameters in the supplementary 

information (SI), we replotted the model architecture and added more detailed descriptions of the U-

net model in Text S2 (SI Page 2–3). 

“In this study, the meteorological, emission fields, and PM2.5 concentration fields are treated as 2-D 

images. The detailed architecture of our proposed U-Net for PM2.5 projection is shown in Figure 1. 

There are mainly three parts in U-Net, i.e., contracting path, bottleneck, and expansive path. In the 

contracting path, the multichannel input images first went through two contraction blocks. Each 

contraction block, aimed to capture and aggregate the spatial features, is comprised of two 

convolution layers (represented as yellow cuboid) and one max-pooling layer (represented as orange 

cuboid). All the convolution layers share the same kernel size of 3×3 and utilize Rectified Linear Unit 

(ReLU) as the activation function. Max-pooling layers are adopted for adjusting the size of images in 

order to obtain better bottleneck information. After each block, the image size will be halved by using 

the max pooling layer with kernel size of 2×2, but the number of channels will be doubled. In the 

bottleneck part, combined with two convolution layers, the most crucial spatial information was 

automatically extracted and refined with the smallest intermediate images, which is crucial to ensure 

the accuracy of the final prediction. In the expansive path, each block consists of one up-sampling 

layers (represented as black cuboid) and three 3×3 convolution layers, and one copy connection layer 

(represented as blue cuboid). The up-sampling layer (with kernel size 2×2) is designed to expand the 

image size so that the expanded features could be concatenated with feature maps from the 

corresponding contraction layer. The copy connection is to ensure that the detailed features learned 

by contraction can be directly used for reconstruction. The arrows with different colors in Figure 1 

indicate the information flow in different parts of the model. At the end of the expansion part, a final 

layer with kernel size 1×1 helps make the final prediction of the estimated PM2.5 concentration.” 



 

Figure 1. Architecture of the U-Net model 

Are w and s equal to 3600 and 1800 (representing 0.1 degrees longitude and latitude?). What 

value is used for the shuffle factor s? 

Authors’ response: In this work, the meteorological and emission fields and PM2.5 concentration fields 

are treated as 2-D images. Since the initial data of PM2.5 surface concentrations are not available in the 

Arctic and Antarctic Circle, the geographic range of global PM2.5 concentrations predicted in this study 

is 180°W to 180°E, 69.75°N to 54.75°S, with a resolution of 0.1° × 0.1°. Therefore, w (width) and h 

(hight) are equal to 3600 and 1246, respectively.  

Directly inputting data with a 0.1° × 0.1° grid resolution would lead to a large computation load for 

deep learning. However, reducing the input size would cause inevitable information loss for the deep 

learning model, which would degrade the prediction performance. To overcome this barrier, the 

inverse pixel shuffle strategy was used to rearrange images to reduce the computational load without 

losing image information.  

The steps of inverse pixel shuffle strategy are as follows. First, the original high-resolution images 

were separated into s2 parts. Secondly, the inverse pixel shuffle rearranges the raw input with size 

w× h to form s8 sample images with a size of 9
:
× ;

:
. We set the s (shuffle factor) to 6, which means 



that the original input (3600 * 1246) is divided into 62 samples with the size of 600 × 208 by inverse 

pixel shuffle. 

We have revised the descriptions in Text S2 (SI Page 4). 

“The inverse pixel shuffle strategy was used to reduce the computational load without information loss, 

as shown in Figure S1. In this way, the computational load was reduced, and the training data could 

be fully processed. For the inverse pixel shuffle operation with shuffle factor 𝑠, the raw input with size 

𝑤 × ℎ was separated and reorganized into 𝑠8 sample images with a size of  <
=
× >

=
, where 𝑤 and ℎ 

are equal to 3600 and 1246 (representing longitude 180°W to 180°E, latitude 69.75°N to 54.75°S with 

a resolution of 0.1° × 0.1°), and 𝑠 set to 6. ” 

 

What is ADMM, and how does the learning rate enter into the equation S2? 

Authors’ response: Thanks for your comments. We have clarified the ADMM and learning rate in Text 

S2 (SI Page 3–4). 

“Alternating Direction Method of Multipliers (ADMM) algorithm is a widely used optimization 

method for the constrained problems in machine learning technique. The principle and detailed 

information of ADMM can be found in Boyd, et al. (2011) 4 From the perspective of solving constrained 

problems, this method is generated mainly to compensate for the disadvantages of quadratic penalties. 

In some problems, approximating constrained problems with quadratic penalties near the optimal 

point requires the coefficients of the penalty terms to converge to infinity, which will make the 

Heisenberg matrix very large, so the approximate objective function is very unstable. To solve this 

limitation, a linear approximation is introduced, in which the coefficients of the linear terms 

continuously approach the optimal solution (pairwise ascent), so that the solution can be obtained 

with the required accuracy even if the coefficients of the quadratic penalty terms are small. Moreover, 

from the perspective of solving distributed problems, ADMM decomposes the large global problem 

into several smaller and easier-to-solve local subproblems through the Decomposition-Coordination 

process. Boyd, et al. (2011) 4 have proved its applicability to large-scale distributed optimization 



problems. Since ADMM is a mature and popular general framework for constraint optimization, we 

used the ADMM as the optimizer in this study.  

The learning rate (0.001 in this study) is a tunable parameter in an optimization algorithm that 

determines the step size at each iteration while moving toward a minimum loss function (Eq. S2). The 

learning rate is usually determined from the gradient of the loss function.” 

𝑚𝑖𝑛
1
∑ #𝒀𝒕 − 𝑓(𝑿𝒕)'@
6-A 	8    Eq. (S2) 

 

Did the authors use their own custom code, or did they use existing machine learning packages? 

Authors’ response: The U-net CNN model was built by using our own custom code in this study. 

What is the reason for subtracting 2.4 ug/m3 from the PM2.5 concentration (Text S3)? 

Authors’ response: According to the GEMM model5, 2.4 µg/mB represents the counterfactual PM2.5 

concentration. If the PM2.5 concentration is lower than 2.4 µg/mB, no adverse health impact is assumed. 

In other word, the health impact of PM2.5 are only estimated above the counterfactual concentration, 

therefore the PM2.5 concentration should be subtracted by 2.4 µg/mB.  

To explain the reason for subtracting 2.4 µg/mB, we added more information in Text S6 (SI Page 7). 

“where z = max (0, PM2.5 − 2.4 𝜇g/m3), 2.4 𝜇𝑔/𝑚B represents the counterfactual PM2.5 concentration. 

No adverse health impact is assumed when the PM2.5 concentration is lower than this counterfactual 

concentration.” 

Why 64 channels?   

Authors’ response: 64 channel is a popular model setting and it is based on the trial and error from 

previous studies.6 In machine/deep learning research, it is customary to use the multiple of 2 as the 

channel number. 

 



The SI includes this unhelpful fragment: "For more details about these parameters" without 

referring the reader to where those details may be obtained. 

Authors’ response: We are sorry for the typo and we have revised the sentence.  

“For more details about these parameters, please refer to Burnett et al. (2018) 7” 

 

2. Reviewer #2 comment: Second, more discussion is warranted as to the capabilities of the model. 

The average results shown (Fig S2) are impressive in terms of how well they match the satellite data, 

but what is the standard error of the monthly estimates? How does the variability seen in the training 

set compare to the future conditions, with changes in emissions and meteorology? Do any of the CMIP 

models include atmospheric chemistry components, which could be used as an independent check on 

the U-Net model results? What accounts for the anomalous increases in PM2.5 in isolated regions of 

central Africa (Fig. 3)? Are wildfire emissions included in the historical CMIP emissions data? They 

almost certainly are not included in the future SSP emissions data. The same is true for windblown 

dust. What are the implications of these limitations for the analysis? 

Authors’ response: We very much appreciate the helpful comments and have added more discussions 

on the capabilities of the model. 

The average results shown (Fig S2) are impressive in terms of how well they match the satellite 

data, but what is the standard error of the monthly estimates? 

Authors’ response: Thanks for your question, if we understand correctly, the reviewer means the 

standard error of performance for monthly estimates. We have added the Root Mean Squared Error 

(RMSE), which is related to the standard error of the mean, in Table 1. Table 1 represents the 8-fold 

cross-validation for the monthly mean, where the standard errors of the relevant metric are included. 

Values in the first row indicate the means of performance metrics (NMB, NME, MB, MAGE, RMSE, 

and R) on the monthly estimates, and the values in the second row indicate the standard error of 

statistics (NMB, NME, MB, MAGE, RMSE, and R) of the monthly estimates. The standard error of 

performance metrics was used to evaluate the variability of performance metrics on monthly estimates.  

 



Table 1. 8-fold cross-validation of U-Net CNN model performance 

 NMB* NME* MB* 
(𝛍𝐠/𝐦𝟑) 

MAGE* 
(𝛍𝐠/𝐦𝟑) 

RMSE* 
(𝛍𝐠/𝐦𝟑) 

R 

Average −0.01 0.22 −0.05 1.36 4.02 0.987 

Standard 
error 0.01 0.03 0.08 0.11 0.39 0.010 

*NMB: normalized mean bias; NME: normalized mean error; MB: mean bias; MAGE: mean absolute gross error; 

RMSE: Root Mean Squared Error 

 

How does the variability seen in the training set compare to the future conditions, with changes 

in emissions and meteorology? 

Authors’ response: To elucidate the changes in the inputs, we plotted the data distribution of the 

training dataset and inputs under the four SSPs with the data from 2071-2100 as an example. We have 

described the dataset distributions in Text S1 (SI Page 2). 

Text S1. Frequency distribution of current and future data 

Figure S1 and Figure S2 show the frequency distributions of current and future meteorological and 

emission data. For the meteorological inputs in Figure S1, overall, the distributions for current and 

future scenarios are similar. For example, the PBLH within the ranges of 350m to 1200m appears in 

high frequency under current and future scenarios. The temperature and specific humidity under 

current and future scenarios are skewed to the right and contain similar distribution patterns. 

For emissions inputs, since the difference between the maximum (up to 8´106 g km-2 yr-1) and minimum 

(0 g km-2 yr-1) values is very large, in order to be able to compactly display numerical data with such 

a wide range of values, we used logarithmic scale here to present the distribution. In Figure S2, the 

change in OC emission is the most noticeable and the peaks in future scenarios tend to shift towards 

higher values. However, overall, few significant changes were found in the shape of the distribution 

(peaks, symmetry, skewness, uniformity) for either meteorology or emission input. Therefore, although 

the values between current periods and future scenarios differ, the distribution variations are subtle 

and the U-Net deep learning model applied in this work has the capability to digest the data of future 

scenarios.  



 

 

Figure S1. Frequency distribution of meteorological inputs for the four SSPs in the 2080s (2071-

2100) compared with the training dataset (1998-2014). The x-axis corresponds to the value of 

meteorological inputs, and the y-axis represents the frequency counts falling in each interval. 

Units for the x-axis of PBLH, temperature, specific humidity, wind speed, and sea level pressure 

are m, °C, kg/kg, m/s, and kPa, respectively. 



 

 

Figure S2. Frequency distribution of emission (g km-2 yr-1 in log scale) for the four SSPs in the 

2080s (2071-2100) compared with the training dataset (1998-2014). The x-axis corresponds to 

the value of emission inputs in the log scale, and the y-axis represents the frequency counts falling 

in each interval. Units for the x-axis are g km-2 yr-1 in log scale. 

 

Do any of the CMIP models include atmospheric chemistry components, which could be used as 

an independent check on the U-Net model results? 

Authors’ response: Thanks for your comments. Some CMIP6 models do include atmospheric chemical 

components of PM2.5 (e.g., organic aerosol and sulfate), however, the dataset from some of models in 

CMIP6 platform do not contain PM2.5. For those models that contain the PM2.5 data, the calculations 



of PM2.5 are inconsistent due to the different treatments of aerosols and their components. For example, 

only Goddard Institute for Space Studies ModelE2.1 (GISS-E2-1-H) and Geophysical Fluid Dynamics 

Laboratory’s Earth System Model Version 4 (GFDL-ESM4) have provided nitrate mass mixing ratios. 

Therefore, the CMIP6 dataset does not contain the complete set of aerosol component data, and the 

aerosol data from this dataset cannot be used as an independent check for the U-Net model results.  

In some of previous studies,8, 9 future PM2.5 concentration projection was generally based on a simple 

equation. Surface PM2.5 was estimated as the sum of the mass of individual species of black carbon 

(BC), OA, sulphate (SO4), sea salt (SS) and dust (DU). All BC, OA and SO4 aerosol masses were 

assumed to be presented in the fine-size fraction (< 2.5 µm), while a factor of 0.25 for SS and 0.1 for 

DU was used to calculate the approximate contribution of these components to the fine particulate 

matter (Eq. A1). 

PM2.5 = BC + OA + SO4 + NH4 + (0.25×SS) + (0.1×dust)  Eq. (A1) 

A comprehensive study has systematically compared simulated PM2.5 concentrations based on Eq. A1 

with observed surface PM2.5 concentrations (obtained from ground-based observations and reanalysis 

products).8 Compared to ground-based observations from the Global Aerosol Synthesis and Science 

Project database, the PM2.5 concentration estimated from Eq. A1 by inputting the component data from 

CMIP6 dataset was underestimated by up to 10 µg m-3. 10, 11  

Therefore, the PM2.5 concentrations estimated by this equation will differ numerically from the actual 

concentrations and from our U-Net results, so it is not reliable to use the output from CMIP6 for the 

direct verification. 

 

What accounts for the anomalous increases in PM2.5 in isolated regions of central Africa (Fig. 3)?  

Authors’ response: Thank you for your comment. The increases in PM2.5 in central Africa compared 

with the baseline values are mainly caused by the emission changes in these regions. To illustrate this 

issue more clearly, we have provided spatial emission maps for Africa. The anomalous increases in 

central Africa occurred in the SSP3-7.0 and SSP5-8.5 scenarios, so we compare emissions of SSP3-

7.0 and SSP5-8.5 scenarios with those of the 1990s. As shown in Figure 3, PM2.5 concentrations 



continued to exceed baseline values in central Africa (e.g., The Republic of Niger, The Republic of 

Mali, The Republic of Chad, and The Republic of Sudan) under SSP3-7.0 scenario until the end of the 

21st century. This area is quite consistent with the emission-increasing region, as shown in Figures S5 

and S6, which means that the emission change should be the major driver for the PM2.5 concentration 

increase in Central Africa. 

 

Figure 3. Spatial distribution of changes in projected global PM2.5 concentrations relative to the 

baseline period (2010–2019) under different climate change scenarios. Panels (a)-(d) represent 

the changes in PM2.5 concentration for 2030s (2021-2050 average), 2050s (2041-2070 average), 

2070s (2061-2090 average), and 2080s (2071-2100 average) under SSP1-2.6 scenarios compared 

to the baseline condition. Panels (e)-(h) represent that of the same period but under SSP2-4.5. 

Panels (i)-(l) represent that of the same period but under SSP3-7.0. Panels (m)-(p) represent that 

of the same period but under SSP5-8.5. 

We have added Figure S5 and Figure S6 into the supplementary material and provided an explanation 

in the revised manuscript (Lines 295–298):  

“PM2.5 concentrations continued to exceed baseline values in central Africa under SSP3-7.0 and 

SSP5-8.5, which is quite consistent with the emission-increasing trends in the region as shown in 



Figure S22 and S23, implying that the emission change should be the major driver for the PM2.5 

concentration increase in Central Africa.” 

 

Figure S22. Changes in BC, NH3, NOx, SO2, and OC emissions (g km-2 yr-1 in log scale) under 

SSP3-7.0 scenario for 2030s (average of 2021-2050), 2050s (average of 2041-2070), 2070s (average 

of 2061-2090), and 2080s (average of 2071-2100) compared to that in 1990s (1981-2010). 



 

Figure S23. Changes in BC, NH3, NOx, SO2, and OC emissions (g km-2 yr-1 in log scale) under 

SSP5-8.5 scenario for 2030s (average of 2021-2050), 2050s (average of 2041-2070), 2070s (average 

of 2061-2090), and 2080s (average of 2071-2100) compared to that in 1990s (1981-2010). 

 

 

 



Are wildfire emissions included in the historical CMIP emissions data? They almost certainly 

are not included in the future SSP emissions data. The same is true for windblown dust. What 

are the implications of these limitations for the analysis? 

Authors’ response: The wildfire emissions, defined as the emissions from forest, grassland, and 

peatland fires, along with agricultural waste burning (AWB) on fields, have been included in the 

historical CMIP6 gridded emissions dataset. The development of the historical open burning emissions 

in CMIP6 can be found in Marle et al. (2017).12 CMIP6 also contains the future open burning emissions 

which are derived from integrated assessment models (IAMs). However, unlike historical open 

burning emissions, the spatial distribution of open burning emissions of a given category (e.g., forest 

burning) within each country does not vary in future scenarios.13 

The wind-blown dust emission has not been included in this study due to the relatively coarse 

resolution (100km) and large uncertainties of dust emission in the CMIP6 dataset.14 The deficiency of 

dust emissions may have an influence on our results, especially for the Sahara and Middle East, which 

are close to large sources of dust emissions. However, wind-blown dust has a limited impact on our 

health burden assessment due to the fact that these areas only contain small number of the population. 

In addition, a study conducted in Spokane found that particulate matter, composed mostly of dust, 

generally had limited association with premature mortalities.15 

We have added more descriptions of CMIP6 emissions in the manuscript from Line 101 to Line 104. 

“Covering the period of 1750–2100 (historical dataset: 1750–2014, future emissions dataset: 2015–

2100), CMIP6 gridded emissions dataset includes aviation emissions, all other anthropogenic 

emissions sectors, and total open burning emissions. This gridded dataset has previously been used 

for global model simulation and for emission scenarios comparisons.48, 49” 

For the implications of these limitations, we have discussed more in the revised manuscript (Lines 

488–494). 

“Finally, the biases in emissions data (e.g., bias in future wildfires and missing windblown dust), can 

be directly propagated to the air pollution concentration estimation. Thus, PM2.5 projections in this 

work contain unavoidable uncertainty. The spatial pattern of windblown dust was not included in this 

study, which may have an influence on our results, especially for the Sahara and Middle East. Given 



the proximity of these regions to large sources of dust emissions, there is a possibility that an 

underestimation of PM2.5 concentrations would occur in these regions. However, the impact on the 

mortality estimations is limited since these regions are more sparsely populated.” 

 

3. Reviewer #2 comment: Finally, there is not much discussion as to the meaning or utility of these 

results. Ultimately, the authors conclude that SSP1-2.6 produces the lowest PM2.5 concentrations and 

would lead to a significantly reduced mortality burden. This seems rather weak: policymakers and the 

scientific community do not need this paper to reach that conclusion. One possibility would be to 

extend the mortality burdens to consider costs and compare this to estimates of costs for controls 

needed to reach different SSP scenarios. 

Authors’ response: Thank you for your comments. In our revised manuscript, we have highlighted the 

meaning of our work. We have calculated the economic impact of PM2.5-related mortality as suggested 

by the reviewer in Text S9. (SI Page 8–10) 

Lines 442–453: 

“From the methodology and dataset perspectives, this work provides a new set of global-scale future 

PM2.5 dataset in 10km spatial resolution. This dataset can be used by others for air quality-related 

studies at the national and even regional scales. The dataset can be downloaded from the link listed 

in Text S11. The method developed in this work can also be implemented for other air pollution-related 

research. Researchers can further develop other more advanced deep learning frameworks for 

relevant studies based on the design of the method proposed in this work.  

From the results perspective, this work has quantified how the future PM2.5 and its associated adverse 

health impacts will change based on different SSP scenarios. Based on our results, governments and 

relevant stakeholders from different countries can generally understand to what extent can PM2.5 

influence their specific local health burdens. This can provide useful scientific references for future 

air pollution control policy design. In addition, when other studies come out in the future, the results 

from this work can also be used for the comparison. For example, compared to the adverse effects 

caused by other pollutants, such as O3, which pollutant should the government put onto the priority 

position under different SSP scenarios.” 



We agree with the reviewer that it is also important to present the results from the economic loss 

perspective. We have calculated the economic burdens caused by future PM2.5 pollution, as shown in 

Text S9. The health-economic impact has been discussed from Line 454 to Line 461 in the manuscript. 

“From the health-economic impact perspective, the results of economic burdens shed light on the 

relationship between mortality cost that is associated with PM2.5 pollution and economic development 

in various countries under different future scenario. The economic burdens related to future PM2.5 

pollution are discussed in Text S9. Figure S18 and Figure S19 show the economic loss that is 

associated with PM2.5-related health burdens. SSP3-7.0 and SSP5-8.5 scenarios result in the lightest 

and heaviest economic loss, respectively. As shown in Figure S19, for most OECD countries, China, 

and Central Asia, air pollution mitigation and economic development can have a beneficial synergistic 

effect. The ratio of economic loss associated with PM2.5 pollution to the total GDP (PPP based) is 

minimal in the sustainable development scenario (SSP1-2.6). For Central Africa and South America, 

from PM2.5 associated economic loss perspective, these countries may consider choosing SSP2-4.5 

pathway as their development modes.” 

 

Text S9. Health-economic impact 

The cost of premature deaths is estimated from the value of statistical life (VSL). VSL is a measure of 

how much that individuals are willing to pay for a reduction in the risk or likelihood of premature 

death. 52 This methodology has been applied by the World Bank and IHME (2016)53 to estimate the 

economic loss that is associated with air pollution. The proposed benefit-transfer function is shown 

below: 

𝑉𝑆𝐿D,F = 𝑉𝑆𝐿GHIJ × (
K$,&

K'()*
)∈    Eq. (S9) 

where 𝑉𝑆𝐿D,F is the estimated VSL for country c in year n, 𝑉𝑆𝐿GHIJ is the average base VSL in 

Organisation for Economic Co-operation and Development (OECD) countries ($3.83 million), 𝑌D,F 

is Gross Domestic Product (GDP) per capita based on Purchasing Power Parity (PPP) in country c 

in year n, 𝑌GHIJ is the average GDP per capita based on PPP for the OECD countries ($37,000), 

and ∈ is the income elasticity (1.2 for low- and middle-income countries and 0.8 for high-income 

countries). ∈ is assumed as constant over the future scenarios in line with other literatures.16, 17 



The economic loss that is associated with the PM2.5 pollution for country c in year n can be calculated 

as follow: 

𝐶𝑜𝑠𝑡D,F = 𝑀D,F × 𝑉𝑆𝐿D,F      Eq. (S10) 

The economic burden of premature death (𝐸𝑐𝑜MNOP5F) on the overall economy of the country can be 

calculated as follows: 

𝐸𝑐𝑜MNOP5F =
IQ=6$,&
RJS$,&

× 100%     Eq. (S11) 

where 𝑀D,F is the PM2.5-associated premature mortality, 𝐺𝐷𝑃D,F is the country’s total GDP (PPP 

based). GDP (PPP based) for different future scenarios at national level can be obtained from 

https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=citation, which is produced by the 

OECD Env-Growth model.  

As shown in Figure S31, for almost all of the representative regions, the SSP3-7.0 and SSP5-8.5 

scenarios result in the lightest and heaviest economic costs, respectively. The global cost of PM2.5-

related mortality burdens will reach 8.9´107 (95% CI: 6.3-11.2´107) million USD by 2100 for the 

SSP5-8.5 scenario, but only 2.2´107 (95% CI: 1.5-2.7´107) million USD for SSP3-7.0. Even though 

SSP3-7.0 is the scenario with the highest premature mortalities, it has the lowest economic losses 

given that its income level is much lower than the other scenarios. 

Figure S32 represents the ratio of economic loss caused by PM2.5-related mortality to the total GDP 

(PPP based) for each country, indicating the extent to which can the PM2.5-associated health burden 

affect the national economy. For most OECD countries, China, and Central Asia, air pollution 

mitigation and economic development can have a beneficial synergistic effect. In the sustainable 

development scenario (SSP1-2.6), the ratio of economic loss that is associated with PM2.5 pollution to 

the total GDP (PPP based) is minimal. By 2100, the ratios of the economic burdens that are associated 

with PM2.5 pollution to total GDP (PPP based) are lower than 6%, 12% and 8% for OECD countries, 

China, and Central Asia, respectively. However, as shown in Figure S32, the economic burdens for 

Central Africa and South America under SSP1-2.6 scenario are quite excessive when compared with 

the overall GDP (PPP based). By incorporating the factors of economic growth and economic loss 

associated with PM2.5 pollution, these countries may consider choosing SSP2-4.5 pathway as their 

development mode.   



 
Figure S31. Economic loss caused by PM2.5-related mortality over different regions around the 

world for SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios (Units: million US$).  

 

 
Figure S32. The ratio of economic loss caused by PM2.5-associated premature mortality to the 

total GDP (PPP based) for each country. The first row represents the ratios in the 2010s. 

(Units: %). 

 

 



 

Minor comments by line number 

1. Reviewer #2 comment: Line 68 conscientious is not the right word here. Perhaps the authors mean 

"comprehensive". 

Authors’ response: Thank you very much. We have revised the word “conscientious” to 

“comprehensive”. (Line 69) 

2. Reviewer #2 comment: Line 116, 147, 154: "well-trained" should be just be "trained".  

Authors’ response: Thank you. We have corrected “well-trained” to “trained”. 

3. Reviewer #2 comment: 158: "the model gave a well-fitted in the areas": this phrase is missing a 

noun ("estimate" or "result"). Alternatively, "The results show that the model produced good fits in 

areas with both ...". Reading this a few times, I believe it is the case that this section refers to how well 

the model reproduces the training data. Are the values shown in Figure S2 averages across all months 

for all 17 years? 

Authors’ response: Thank you for your comments. We are sorry for the typo, and we have corrected 

the sentence in the manuscript. (Line 198–199)  

“The results show that the model produced good fits in the areas with both low (≤	35 𝜇𝑔/𝑚B) and 

high (> 35 𝜇𝑔/𝑚B) PM2.5 concentration.” 

Yes, Figure S2 presents the monthly comparison between satellite-retrieved PM2.5 data and the average 

8-fold cross-validation data predicted using the U-net convolutional neural network for the years of 

1998-2014. We have revised the caption of Figure S2 (Figure S5 in the revised SI). 

“Figure S5. Monthly spatial comparison between satellite-retrieved PM2.5 data and the average 8-

fold cross-validation data predicted using the U-Net convolutional neural network for the years of 

1998-2014.” 

 

 



4. Reviewer #2 comment: 160-161: are these stated results ("all grid cells within +/- 12 ug/m3") true 

for all months, or just for the long-term averages? 

Authors’ response: Thank you for your comment. This sentence means the monthly average during 

the period of 1998 to 2014. We have revised the sentences in Line 199–201 and Figure S6–S7. 

“As demonstrated in Figures S6 and S7, the errors between the simulated and target monthly average 

PM2.5 concentrations for all grid cells were within ±	12 𝜇𝑔/𝑚B	for 1998-2014. The monthly average 

relative errors specific to each country were within ±	10%.” 

“Figure S6. Absolute error between monthly satellite retrieved PM2.5 and the data predicted by using 

U-net convolutional neural networks for 1998-2014 

Figure S7. Country-specific relative error between annual satellite retrieved PM2.5 and the data 

predicted by using U-net convolutional neural networks” 

5. Reviewer #2 comment: 165-167 There is no need to put these statistics in both the text and in Table 

1. Four significant digits seems too many. 

Authors’ response: Thank you for the comment. We have shortened the significant digits in Table 1 

(as shown below) and delated the statistics in the text. 

We have revised the sentence to: 

“The statistical evaluation metrics (A1–A6 in the supplemental material) shown in Table 1 were further 

used to verify the model performance.” 

Table 1. 8-fold cross-validation of U-Net CNN model performance 

 NMB* NME* MB* 
(𝛍𝐠/𝐦𝟑) 

MAGE* 
(𝛍𝐠/𝐦𝟑) 

RMSE* 
(𝛍𝐠/𝐦𝟑) R 

Average −0.01 0.22 −0.05 1.36 4.02 0.987 

Standard 
error 0.01 0.03 0.08 0.11 0.39 0.010 

*NMB: normalized mean bias; NME: normalized mean error; MB: mean bias; MAGE: mean absolute gross error; 

RMSE: Root Mean Squared Error 

 



6. Reviewer #2 comment: 167-168: how do you determine whether the model is or is not overfitted?  

Authors’ response: The model we proposed in this study can overcome the overfitting issue. First, 

from the model design perspective, we utilized the data augmentation and dropout layer in each block 

of the U-Net CNN structure. Data Augmentation is a technique to extend the training data by using 

flipping, rotating, scaling, etc., so that the generalization ability can be improved by increasing the 

diversity of learning samples.18-20 In our work, the specific operations of data augmentation were to 

randomly rotate 2D-array images with a rotation angle ranging from -10 degrees to 10 degrees, and to 

flip 2D-array images with 50% probability randomly.  

The dropout layer is able to reduce overfitting in the deep neural network model. Dropout strategy 

solves the overfitting problem from two main aspects.21 One is to drop units from neural networks and 

average them randomly. The dropout regularization is to randomly discard units (together with their 

connections) from the neural network during training in each iteration. When different sets of units are 

dropped, it is equivalent to training a different neural network. Thus, the dropout procedure is like 

averaging the effects of a large number of different networks. This strategy is often effective in 

preventing overfitting problems. 22, 23 The second is to reduce the complex co-adaptation relationship 

between different units. The dropout regularization allows hidden units to be randomly omitted from 

the network, so that a hidden unit cannot depend on the existence of other hidden units. In this way, 

the update of weights no longer relies on the co-adaptation relationship between different units, which 

forces the network to learn more robust features. If our neural network targets to make predictions, it 

should not be too sensitive to some specific cue fragments, and it should be able to learn some common 

patterns from many other cues (robustness).24, 25 Srivastava et al.(2014)21 compared the performance 

of dropout with other techniques and found that the dropout strategy could reduce the generalization 

error effectively, a measure of how accurately an algorithm is able to predict results for data not 

previously involved in training.  

In addition, as shown in Figure S4, the monotonic decrease in training and validation loss shows that 

our model is not overfitted. 

The overfitting issue and generalization ability of our model have been discussed in the manuscript 

from Line 135 to Line 137. 



“The data augmentation and dropout regularization have been applied to improve the model 

generalization ability, as discussed in Text S7. And the monotonic decreases in training and validation 

loss (Figure S4) have proved that no overfitting was detected.” 

 

Figure S4. Illustration of training loss and validation loss. 

Text S3. Generalization ability of deep learning model  

In this work, data augmentation and regularization technique were used to improve the model 

generalization. Data Augmentation is a technique to extend the training data by using flipping, rotating, 

scaling, etc., so that the generalization ability can be improved by increasing the diversity of learning 

samples and increasing the difficulty of learning samples. 18-20 Taylor and Nitschke (2018)26 conducted 

a comparative study on the effectiveness of geometric and photometric (color space) transformations, 

showing that flipping, rotating, and color jittering can improve the accuracy of the results by 2.86%, 

4.91%, and 2.68%, respectively. In our work, the specific operations of data augmentation were to 

randomly rotate 2D-array images with a rotation angle ranging from -10 degrees to 10 degrees, and 

to flip 2D-array images with 50% probability randomly. 

Compared with data augmentation, the dropout strategy is a type of regularization technique. The 

dropout layer within the model is able to reduce the overfitting and thus improve the generalization 

ability in the deep neural network model. Srivastava et al.(2014)21 compared the performance of the 

dropout method with other techniques and found that the dropout strategy could reduce the 



generalization error effectively, a measure of how accurately an algorithm is able to predict results 

for data not previously involved in training. Thus, dropout regularization has proven to be successful 

in reducing overfitting.  

Equipped with data augmentation and regularization, our network can predict the PM2.5 concentration 

in the future scenario better, even if the data in the future scenario are slightly different from the 

training input data. 

7. Reviewer #2 comment: 188-193: Is there enough variability in the test dataset (2015-2019) to 

represent changes to 2100? Alternatively, are the changes in meteorological and emissions inputs 

under the SSPs outside the range of the training data? 

Authors’ response: Thanks for your comment. This is a good point and requires a lengthy explanation 

as described below. On the one hand, our results are based on the underlying assumption that the 

relationship between PM2.5 concentrations and other independent variables (e.g., meteorological 

factors and emission) in the historical period is also suitable for future scenarios. In other words, this 

study assumes that the current atmospheric physical and chemical mechanisms also hold for future 

scenarios.  

On the other hand, deep learning models have strong generalization ability, which refers to the ability 

to adapt to new data with similar distributions as the ones used to create the models. Dinal et al. 

(2017)27 and Kawaguchi et al. (2017)28 provide theoretical insights into why and how deep learning 

can generalize well on previously unseen data. To improve the model generalization, we applied data 

augmentation and dropout regularization in this work, as discussed in Text S3. Equipped with data 

augmentation and regularization, our network can predict the PM2.5 concentration in the future scenario 

better, even if the data in the future scenario are slightly different from the training input data. 

We plotted the data distribution of the training dataset and inputs for the period of 2071-2100 under 

the four SSPs as an example. We have described the dataset distributions in Text S1. 

Text S1. Frequency distribution of current and future data 

Figure S1 and Figure S2 show the frequency distributions of current and future meteorological and 

emission data. For the meteorological inputs in Figure S1, overall, the distributions for current and 



future scenarios are similar. For example, the PBLH within the ranges of 350m to 1200m appears in 

high frequency under current and future scenarios. The temperature and specific humidity under 

current and future scenarios are skewed to the right and contain similar distribution patterns. 

For emissions inputs, since the difference between the maximum (up to 8´106 g km-2 yr-1) and minimum 

(0 g km-2 yr-1) values is very large, in order to be able to compactly display numerical data with such 

a wide range of values, we used logarithmic scale here to present the distribution. In Figure S2, the 

change in OC emission is the most noticeable and the peaks in future scenarios tend to shift towards 

higher values. However, overall, few significant changes were found in the shape of the distribution 

(peaks, symmetry, skewness, uniformity) for either meteorology or emission input. Therefore, although 

the values between current periods and future scenarios differ, the distribution variations are subtle, 

and the U-Net deep learning model applied in this work has the capability to digest the data of future 

scenarios. 

 



 

Figure S3. Frequency distribution of meteorological inputs for the four SSPs in the 2080s (2071-

2100) compared with the training dataset (1998-2014). The x-axis corresponds to the value of 

meteorological inputs, and the y-axis represents the frequency counts falling in each interval. 

Units for the x-axis of PBLH, temperature, specific humidity, wind speed, and sea level pressure 

are m, °C, kg/kg, m/s, and kPa, respectively. 

 



 

Figure S4. Frequency distribution of emission (g km-2 yr-1 in log scale) for the four SSPs in the 

2080s (2071-2100) compared with the training dataset (1998-2014). The x-axis corresponds to 

the value of emission inputs in the log scale, and the y-axis represents the frequency counts falling 

in each interval. Units for the x-axis are g km-2 yr-1 in log scale. 

 

8. Reviewer #2 comment: 208-209 This study is using future climate and emissions projections to 

estimate future air quality. Both emissions and climate are changing. In order for the authors to attribute 

the increases in PM2.5 at mid-century under SSP5-8.5 specifically to "climate change", they should 

show that emissions changes are not affecting the concentration changes in central Africa.  



Authors’ response: We agreed with the reviewer that both future climate and emissions will change 

under the SSP5-8.5 scenario, leading to the changes in PM2.5. We have revised the description in the 

manuscript. (Line 292–293) 

“Thus, in the middle of the 21st century, climate and emission change would considerably increase 

PM2.5 concentrations and cause considerable damage to human health in central Africa.” 

 

9. Reviewer #2 comment: 213-216 This sentence does not make sense. What asymmetry is being 

referred to, and how is it disproportionate? "Intimidation" is clearly not the word the authors intend, 

but I am unable to tell what is intended. 

Authors’ response: We apologize for causing the misunderstanding. 

The meaning we intended to convey is as follows. Due to the urbanization process, residents usually 

gather in the city where PM2.5 concentration is relatively high.29, 30 Since a large percentage of people 

are living in urban areas, using the average PM2.5 concentration of rural and urban areas cannot reveal 

the exact population exposure level.  

We have revised the sentences in the manuscript from Line 300 to Line 304 and added the population 

density (persons/km2) in the SI (Page 31). 

“SSPs narratives gave rise to spatial and temporal differences in the demographic projections. The 

projected population density (persons/km2) and the corresponding variations (compared to the 

situation in the 2010s) in four SSP scenarios are shown in Figure S26. Combined with demographic 

projections, the exposure concentration can be estimated and used to assess the PM2.5 exposure 

associated health impacts.31, 32”  



 

Figure S26. (a)–(d) Projected population density (Persons for 25+ years/km2) for the four SSPs 

in the 2091-2100, and (e)–(g) corresponding projected population change compared with that in 

2010s (2010-2019 average). 

 

10. Reviewer #2 comment: 217-230 and Fig 4: I believe the authors are using the word "exposure" to 

mean population-weighted PM2.5 concentrations. If so, please state this is the case. The authors use the 

term "population-weighted" on line 225 but it is not clear whether this is intended to be synonymous 

with the earlier definition of "exposure".  



Authors’ response: Thanks for your comment. Yes, the “population-weighted” is used to represent 

“exposure” in this study. To clarify, we have added the description and calculation results of “exposure” 

in Text S5. (SI Page 6) 

“Population-weighted concentration can better reflect the impact of PM2.5 pollution on the exposed 
population, and thus build a more reliable theoretical basis for public health assessment. Eq. (S5) 

and Eq. (S6) were used to calculate the exposure concentration (𝑪𝑷𝑴𝟐.𝟓
𝒊$𝒑𝒐𝒑) and spatially averaged 

ambient levels (𝑪𝑷𝑴𝟐.𝟓
𝒊$𝒔𝒑𝒂𝒄𝒆) of PM2.5, respectively.  

𝑪𝑷𝑴𝟐.𝟓
𝒊$𝒑𝒐𝒑 = #∑ 𝑪𝒌𝒊 ∗ 𝑷𝒌𝒊𝑵

𝒌-𝟏 ' ∑ 𝑷𝒌𝒊𝑵
𝒌-𝟏(   Eq. (S5) 

𝑪𝑷𝑴𝟐.𝟓
𝒊$𝒔𝒑𝒂𝒄𝒆 = 𝟏

𝑵
#∑ 𝑪𝒌𝒊𝑵

𝒌-𝟏 '             Eq. (S6) 

Here, different countries and the total grid number of the country are represented by 𝑖  and 𝑁 , 

respectively. 𝐶/0  and 𝑃/0  are the PM2.5 concentration and corresponding population of grid 𝑘  in 

country 𝑖, respectively.” 

 

11. Reviewer #2 comment: 223-224 "Space-weighted" should be "Spatially-averaged". More 

importantly, the claims that PM2.5 concentrations are lower under SSP5-8.5 than under SSP2-4.5, and 

that this is due to tighter pollution controls in the former, are counterintuitive. My understanding is 

that air pollutants are often co-emitted with CO2 during combustion, so that scenarios in which CO2 

emissions are reduced tend to have lower air pollutant emissions also. Please expand on this point, or 

provide a reference, or possibly additional figures in the SI showing changes in emissions of the species 

considered in your model. 

Authors’ response: Thanks for your comments. We have corrected the word “space-weighted” to 

“spatially-averaged” in the revised manuscript.  

It should be noted that unlike the general greenhouse gases (GHG), such as CH4 and CO2, aerosols and 

their precursors (BC, OC, NH3, NOx, SO2) are short-lived climate forcers (SLCFs) pollutants, with 

lifetimes ranging from minutes to weeks. Therefore, the impacts of SLCFs on radiative forcing are 

relatively limited. In contrast, these SLCF pollutants are often tied to regional air quality and can be 

effectively controlled. Decisive and rapid action to address SLCF pollutants will have an immediate 



impact on improving air quality. As described in the IPCC AR6 report, in the SSP scenarios, SLCF 

emissions trajectories are steered by different levels of air pollution controls, independently from 

climate change mitigation (i.e., GHG mitigation).33 Thus, the emission trajectories of SLCF in the 

SSPs scenario are independent of CO2 emissions. In the SSP5-8.5 scenario, extremely stringent 

pollution control policies will be implemented for SLCFs control.34  

SSP5-8.5 shows a transition to less polluting fuels and technologies, leading to a rapid and sustained 

reduction in emission intensities of air pollutants. SSP2-4.5, on the other hand, emphasizes large-scale 

electrification and modest technology advances. As illustrated by Rao et al.(2017), SSP2 shows a 

continued decline in all pollutants throughout the century, while SSP5 exhibits a faster decline due to 

more effective pollution controls resulting in the lowest emissions of air pollutants in the second half 

of the century. 34 

We have further added a summarized table of key differences among the four SSP scenarios relevant 

to air pollution in Table S5 in the supplemental material. We have also provided below figures (Figure 

S13 – Figure S17) to reveal the emission changes under different scenarios. 

  



Table S5. Descriptions of the critical elements for SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 
relevant to air pollution 

Scenario Description 
Land-use 
Change 

Regulation 

Environmental 
Development 

Pollution 
Control 
Policy 

Energy Tech 
Change 

Population 
Growth 

SSP1-2.6 Sustainability 

Strong regulation 
to avoid 

environmental 
tradeoffs 

High environmental 
awareness; more 

inclusive development 
that respects perceived 

environmental boundaries 

Strong 

Directed away from 
fossil fuels, toward 

efficiency and 
renewables 

Relatively Low 

SSP2-4.5 
Middle-of-

the-road 

Medium 
regulation; slow 

decline in the rate 
of deforestation 

Medium environmental 
awareness; work toward 

but make slow progress in 
achieving sustainable 

development goals 

Medium 

Some investment in 
renewables but 

continued reliance 
on fossil fuels 

Medium 

SSP3-7.0 
Regional 
rivalry 

Limited 
regulation; 
continued 

deforestation 

Low environmental 
awareness; strong 

environmental 
degradation in some 

regions 

Weak 

Slow tech change, 
directed toward 
domestic energy 

sources 

High in 
developing 

countries; low in 
industrialized 

countries 

SSP5-8.5 
Fossil-fueled 
development 

Medium 
regulation; slow 

decline in the rate 
of deforestation 

High environmental 
awareness; local 

environmental problems 
are successfully managed 

Strong 

Directed toward 
fossil fuels; 

alternative sources 
not actively pursued 

Relatively Low 

 

 



 

Figure S13. Changes in SO2 emission (g km-2 yr-1 in log scale) for 2030s (2021-2050 average), 

2050s (2041-2070 average), 2070s (2061-2090 average), and 2080s (2071-2100 average) compared 

to that in 1990s (1981-2010) under the four scenarios. 

 

Figure S14. Changes in NH3 emission (g km-2 yr-1 in log scale) for 2030s (2021-2050 average), 

2050s (2041-2070 average), 2070s (2061-2090 average), and 2080s (2071-2100 average) compared 

to that in 1990s (1981-2010) under the four scenarios. 



 

Figure S15. Changes in OC emission (g km-2 yr-1 in log scale) for 2030s (2021-2050 average), 

2050s (2041-2070 average), 2070s (2061-2090 average), and 2080s (2071-2100 average) compared 

to that in 1990s (1981-2010) under the four scenarios. 

 

Figure S16. Changes in BC emission (g km-2 yr-1 in log scale) for 2030s (2021-2050 average), 

2050s (2041-2070 average), 2070s (2061-2090 average), and 2080s (2071-2100 average) compared 

to that in 1990s (1981-2010) under the four scenarios. 



 

Figure S17. Changes in NOx emission (g km-2 yr-1 in log scale) for 2030s (2021-2050 average), 
2050s (2041-2070 average), 2070s (2061-2090 average), and 2080s (2071-2100 average) compared 
to that in 1990s (1981-2010) under the four scenarios. 

 

12. Reviewer #2 comment: 239-247 The tenor of this paragraph is strange, especially "emerge 

victorious". The differences between scenarios are significant, even if they are not very different in 

terms of the fraction of the population meeting the WHO's stringent 5 ug/m3 AQ guideline. 

Authors’ response: We agree with the reviewer, and we have reworded the paragraph and emphasized 

the difference between scenarios. (Lines 339–346) 

“The proportion of the population that would be exposed to the PM2.5 concentration below previous 

and current Air Quality Guideline (AQG) values is also estimated under future climate change 

scenarios. As shown in Figure S29, the differences between SSP1-2.6 scenario and the other three 

scenarios are considerable. Compared with the other three scenarios, SSP1-2.6 would result in the 

largest fraction of the population exposed to the PM2.5 level that is lower than 5 µg/m³. In the SSP1-

2.6 scenario, 3.5% of the world’s population will live in areas that have PM2.5 concentrations lower 

than 5 µg/m³ by 2100, which is well above the baseline (2.0%). The other scenarios are comparable 



in terms of the proportion of the population exposed to the PM2.5 concentration that is below the 

current AQG values.” 

13. Reviewer #2 comment: 254-255 The text and the caption to Fig S19 indicates that the first row 

shows baseline PM2.5 mortality burden for 2010s, but the titles of the plots suggests otherwise. The 

caption to Fig 5 says "premature mortality rate"; a mortality rate usually means "mortalities per 100k" 

or similar. If instead the authors intend "rate" to mean "per year", then please state that. 

Authors’ response: We apologize for the mistake and Figure S19 has been revised (Figure S30 in the 

revised SI). We also corrected the caption for Fig. 5. 

“Figure 5. PM2.5-associated premature deaths (> 25 years old) in different regions. The red bars 

represent premature deaths, and the vertical black lines indicate the 95% empirical confidence 

intervals.” 

 

Figure S30. Projected premature mortality rate (per 100,000 population) in 184 countries under 

four SSP scenarios. The first row represents the baseline mortality rate in the 2010s. 

 



14. Reviewer #2 comment: 259-269 The number of significant digits given for PM2.5-associated 

mortalities is unscientifically precise. 

Authors’ response: We have revised the significant digits in Lines 377–389. 

“Given the middle-road development pattern of SSP2-4.5, premature deaths in this scenario would 

peak at 9,024,000 (95% Confidence Interval (CI): 6,352,000–11,236,000) in the 2060s and then 

steadily decline to 7,394,000 (95% CI: 5,202,000–9,291,000) in the final decade of the century, which 

is a less rapid decline than in the SSP1-2.6 scenario. SSP3-7.0 assumes weak pollution control in 

which the implementation of pollution mitigation measures is delayed and less ambitious in the long 

term. In this scenario, premature deaths would spike dramatically in all regions except North America, 

Europe, and Russia and would not decrease until the end of the century. The global number of PM2.5-

associated premature deaths would reach 11,149,000 (95% CI: 7,877,000–13,800,000) in 2091–2100, 

an increase of 63% from the baseline period. In the SSP5-8.5 scenario, which emphasizes 

technological progress and rapid economic growth through human capital development, 

environmental issues become a priority health concern, and ambitious air quality goals result in 

pollutant levels well below current levels in the medium to long term.16,72 Therefore, in SSP5-8.5, 

global premature deaths would peak at 8,509,000 (95% CI: 5,981,000–10,617,000) in the 2040s and 

then decline to 6,258,000 (95% CI: 4,410,000–7,887,000) in the second half of the 21st century as 

high-performance pollution control technologies are developed. This decrease would result in a 

smaller premature death burden than in the baseline period.” 

 

15. Reviewer #2 comment: 285-287 This sentence appears to be referring to the numbers in the first 

row of Table S4, which are all positive. These are for SA1, which is described as a "constant 

population" scenario, but the text indicates it is considering only population changes. This is 

contradictory. If population changes are exacerbating the burden of premature deaths, then the values 

from the table (holding population constant) should be negative.  

Authors’ response: We apologize for the typo, and we have revised the statement in Lines 409–411. 



“In the first sensitivity experiment (SA1), the only contributor to the difference in the estimated 

premature deaths from the baseline period is the demographic transition, while the contributor to the 

difference in the second sensitivity experiment (SA2) is the PM2.5 variation.”  

 

16. Reviewer #2 comment: 293-294 This sentence says SA2 is assuming constant population 

distribution, the opposite from what is written in 282-284.  

Authors’ response: We apologize for this mistake, and the statements in Lines 409–411 have been 

corrected. 

“In the first sensitivity experiment (SA1), the only contributor to the difference in the estimated 

premature deaths from the baseline period is the demographic transition, while the contributor to the 

difference in the second sensitivity experiment (SA2) is the PM2.5 variation.”  

 

 

Technical Corrections 

Several references are being generated incorrectly by your reference software. 

The authors of ref 2 are given as "Collaborators, G.R.F." 

Ref. 33 appears to have an additional reference embedded within it. 

Refs 50-56 appear to be using just the first initials for the journal titles. 

Authors’ response: We are sorry for the typo, and it has been corrected.  

“2. Forouzanfar, M. H.; Afshin, A.; Alexander, L. T.; Anderson, H. R.; Bhutta, Z. A.; Biryukov, S.; 

Brauer, M.; Burnett, R.; Cercy, K.; Charlson, F. J., Global, regional, and national comparative risk 

assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 

1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. The lancet 2016, 388, 

(10053), 1659-1724. 



33. Wen, A.; Wu, T.; Wu, X.; Zhu, X.; Li, R.; Ni, J.; Hu, G.; Qiao, Y.; Zou, D.; Chen, J., Evaluation 

of MERRA-2 land surface temperature dataset and its application in permafrost mapping over China. 

Atmospheric Research 2022, 279, 106373. 

50. Eyring, V.; Bony, S.; Meehl, G. A.; Senior, C. A.; Stevens, B.; Stouffer, R. J.; Taylor, K. E., 

Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and 

organization. Geoscientific Model Development 2016, 9, (5), 1937-1958. 

51. Gidden, M. J.; Riahi, K.; Smith, S. J.; Fujimori, S.; Luderer, G.; Kriegler, E.; Van Vuuren, D. P.; 

Van Den Berg, M.; Feng, L.; Klein, D., Global emissions pathways under different socioeconomic 

scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the 

century. Geoscientific model development 2019, 12, (4), 1443-1475. 

52. Ramírez Villegas, J.; Jarvis, A., Downscaling global circulation model outputs: the delta method 

decision and policy analysis Working Paper No. 1. International Center for Tropical Agriculture 

(CIAT). Cali. CO. 2010, 18. 

53. Hay, L. E.; Wilby, R. L.; Leavesley, G. H., A comparison of delta change and downscaled GCM 

scenarios for three mountainous basins in the United States 1. JAWRA Journal of the American Water 

Resources Association 2000, 36, (2), 387-397. 

54. Navarro-Racines, C.; Tarapues, J.; Thornton, P.; Jarvis, A.; Ramirez-Villegas, J., High-resolution 

and bias-corrected CMIP5 projections for climate change impact assessments. Scientific data 2020, 7, 

(1), 1-14. 

55. Hawkins, E.; Osborne, T. M.; Ho, C. K.; Challinor, A. J., Calibration and bias correction of climate 

projections for crop modelling: an idealised case study over Europe. Agricultural and forest 

meteorology 2013, 170, 19-31. 

56. Burnett, R.; Chen, H.; Szyszkowicz, M.; Fann, N.; Hubbell, B.; Pope Iii, C. A.; Apte, J. S.; Brauer, 

M.; Cohen, A.; Weichenthal, S., Global estimates of mortality associated with long-term exposure to 

outdoor fine particulate matter. Proceedings of the National Academy of Sciences 2018, 115, (38), 

9592-9597.” 

 



Comments on Supplement 

1. Reviewer #2 comment: Table S4: Suggest adding "(constant population)" and "(constant air 

pollution)", or similar, under the names SA1 and SA2 (though these designations appear to be reversed). 

There are far too many significant digits included in this table. Clarify whether "baseline" here refers 

to the 2010-2020 period or whether it refers to the "base" (non-sensitivity analysis) simulation. 

Authors’ response: Thanks for your comment. The “baseline” refers to the 2010-2019 period. We have 

revised Table S4 to adjust the significant digits and make it clear. 

Table S8. Changes in projected premature deaths (> 25 years old) for two sensitivity studies (SA1 

and SA2) relative to the premature deaths in the baseline period (2010-2019). Values are in 1000s.  

 Time frame SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5 

SA1* 

(constant air 
pollution) 

2021–2040 1594.31 1458.18 1340.62 1581.58 

2041–2060 3016.17 2916.32 2829.60 3000.95 

2061–2080 3214.96 3550.96 4024.10 3228.01 

2081–2100 2398.21 3505.78 5151.04 2483.66 

SA2* 

(constant 
population) 

2021–2040 −521.75 −50.25 403.24 −282.53 

2041–2060 −1819.82 −688.96 205.40 −1089.66 

2061–2080 −2583.48 −1129.58 −225.21 −1642.07 

2081–2100 −3083.89 −1800.52 −607.03 −2236.05 

*SA1 focused on the impact of future demographic changes on the number of premature deaths.  

*SA2 targets quantifying the future changes in the premature mortality burden due to climate change and emissions.  

 

2. Reviewer #2 comment: Figure S9: There appears to be almost the same pattern in each panel. 

Recommend checking closely for a scripting error. Also, this strikes me as a very large decrease in 

average wind speeds, much larger than I have seen in my own climate modeling. 

Authors’ response: Thanks for your comment. We apologize for the script mistake, and Figure S9 of 

the wind speed comparison has been replotted in the SI (Page 22). 



 

Figure S12. Changes in multi-model ensembles of surface wind speed using delta change 
downscaling for 2030s (2021-2050 average), 2050s (2041-2070 average), 2070s (2061-2090 
average), and 2080s (2071-2100 average) compared to that in 1990s (1981-2010).  

 

3. Reviewer #2 comment: Fig S14: Change the y-axis on so that it is units of billions, so that you can 

show 5.0, 5.5, etc., rather than repeating "5E+09" twice. 

Authors’ response: Thanks for your suggestions. We have changed the y-axis in Figure S24. 

 

Figure S24. Total population size (values in billion) aged 25 years and above for major world 

regions under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 until the end of the 21st century. 
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4. Reviewer #2 comment: Fig S17: What are the units of population growth rate? Percent per year? It's 

striking that on this scale North America is the same for all scenarios and times despite significant 

variation shown in Fig S15. Perhaps instead of showing the growth rate, the authors should show the 

population density at selected time points for each SSP. 

Authors’ response: Thanks for your comments. 

The population growth rates for the decadal mean population compared to that in the 2010s (2010-

2019 average) are calculated by using the following formula. The units are persons/persons. 

𝑷𝒐𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏	𝒈𝒓𝒐𝒘𝒕𝒉	𝒓𝒂𝒕𝒆 =
𝑭𝒖𝒕𝒖𝒓𝒆	𝒅𝒆𝒄𝒂𝒅𝒂𝒍	𝒄𝒐𝒖𝒏𝒕𝒓𝒚_𝒍𝒆𝒗𝒆𝒍	𝒑𝒐𝒑.−	𝟐𝟎𝟏𝟎𝒔	𝒑𝒐𝒑.

𝟐𝟎𝟏𝟎𝒔	𝒑𝒐𝒑. 	 

In fact, the population growth pattern in North America and three countries in North America (Canada, 

U.S.A., and Mexico) is different in the four future SSP scenarios, as shown in Table A1-A4. 

Table A1. Population aged 25 years and above (values in million) in North America (the sum of 

Canada, Mexico, and U.S.A.) under the four SSP scenarios. 

 Baseline 2020s 2030s 2040s 2050s 2060s 2070s 2080s 2090s 

SSP1-2.6 312.0 353.3 392.8 425.8 453.3 476.9 495.2 503.8 500.4 

SSP2-4.5 312.0 349.6 384.6 413.9 439.8 462.9 481.9 495.4 503.4 

SSP3-7.0 312.0 341.9 367.3 383.7 393.4 399.6 401.8 399.2 393.9 

SSP5-8.5 312.0 357.4 401.7 444.5 488.2 532.1 575.5 613.7 641.8 

 

Table A2. Population aged 25 years and above (values in million) in Canada under the four 

SSP scenarios. 

 Baseline 2020s 2030s 2040s 2050s 2060s 2070s 2080s 2090s 

SSP1-2.6 25.9 29.6 32.8 36.1 39.1 41.6 43.5 44.3 43.7 

SSP2-4.5 25.9 29.3 32.1 34.8 37.3 39.4 41.2 42.4 42.7 

SSP3-7.0 25.9 27.9 29.2 29.8 29.5 28.7 27.6 25.9 24.0 

SSP5-8.5 25.9 30.6 35.0 40.0 45.5 50.9 56.1 60.4 63.1 



 

Table A3. Population aged 25 years and above (values in million) in U.S.A under the four SSP 

scenarios. 

 Baseline 2020s 2030s 2040s 2050s 2060s 2070s 2080s 2090s 

SSP1-2.6 217.5 244.6 269.5 291.5 312.1 332.3 350.1 361.5 364.9 

SSP2-4.5 217.5 241.9 263.2 281.3 298.6 315.6 330.0 340.6 347.7 

SSP3-7.0 217.5 234.3 246.5 251.3 250.7 247.8 241.0 229.8 216.1 

SSP5-8.5 217.5 249.5 279.9 311.9 348.3 387.6 428.2 466.0 497.3 

 

Table A4. Population aged 25 years and above (values in million) in Mexico under the four SSP 

scenarios. 

 Baseline 2020s 2030s 2040s 2050s 2060s 2070s 2080s 2090s 

SSP1-2.6 68.7 79.1 90.5 98.2 102.1 103.0 101.6 98.1 91.8 

SSP2-4.5 68.7 78.5 89.2 97.8 103.9 107.9 110.7 112.4 113.0 

SSP3-7.0 68.7 79.7 91.6 102.6 113.3 123.1 133.2 143.4 153.8 

SSP5-8.5 68.7 77.3 86.8 92.5 94.3 93.5 91.2 87.3 81.5 

 

We agree with the reviewers that changes in population density need to be presented, as shown in 

Figure S26.  



 

Figure S26. (a)–(d) Projected population density (persons for 25+ years old/km2) for the four 

SSPs in 2091-2100, and (e)–(g) corresponding projected population change compared with that 

in 2010s (2010-2019 average). 
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Abstract 14 

Ambient fine particulate matter (PM2.5) can cause severe adverse health impacts in humans. Thus, reducing PM2.5 15 

exposure is an important public health focus. Meteorological and emissions factors, which considerably affect the 16 

PM2.5 concentrations in air, vary significantly under different climate change scenarios. However, PM2.5 17 

concentrations and their associated disease burden under future climate scenarios are not well clarified. In this work, 18 

the global PM2.5 concentrations from 2021 to 2100 were estimated by combining the U-Net convolutional neural 19 

network deep learning technique, reanalysis data, emissions data, and bias-corrected Coupled Model Intercomparison 20 

Project Phase 6 future climate scenario data. Based on the estimated PM2.5 concentrations, the future premature 21 

mortality burden associated with PM2.5 exposure was assessed using the Global Exposure Mortality Model. Ambient 22 

PM2.5 exposure is expected to be highest in the SSP3-7.0 scenario and lowest in the SSP1-2.6 scenario in the major 23 

representative regions of the world. The global mortality rate (per 100,000 exposed population) associated with PM2.5 24 

under the four different scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, ranging from 84.6 (95% Confidence 25 

Interval (CI): 59.6–107.0) to 150.0 (95% CI: 106.2–185.0)) at the end of this century is expected to be lower than the 26 

baseline (the 2010s, 161.1 (95% CI: 113.3–199.9)). Among all four scenarios, the sustainable development scenario 27 

(SSP1-2.6) results in the lowest PM2.5 concentrations and the lowest premature mortality burden, which indicates that 28 

this is the pathway that countries should strive for. Our work helps to advance the scientific understanding of the 29 

global geo-climatic system and provides suggestions for scientists and policymakers.  30 

Keywords: Climate change; Global; PM2.5; Mortality; Deep learning  31 



 

Synopsis: Future PM2.5 pollution and its associated health burden have not been well clarified. In this study, a new 32 

set of global-scale, spatially explicit PM2.5 concentration from 2021 to 2100 with a spatial resolution of 0.1°×0.1° 33 

was estimated, and associated PM2.5 exposure and premature mortality burden was calculated. 34 
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1. Introduction 37 

Ambient particulate matter (PM2.5) poses a considerable global threat to human health. Exposure to outdoor PM2.5 38 

caused 4.14 million deaths in 2019, accounting for 62% of all global deaths attributable to air pollution estimated by 39 

the Global Burden of Disease Project.1-4 Unmitigated climate change is projected to exacerbate inevitable challenges 40 

and threats to global air quality and increase its attributable adverse health impacts.5-7 Therefore, it is necessary to 41 

understand how future climate change scenarios will influence surface PM2.5 concentrations and propose appropriate 42 

climate mitigation measures. 43 

Most studies7, 8 on PM2.5 concentration estimation under different climate scenarios have been based on the Coupled 44 

Model Intercomparison Project 5 (CMIP5) Representative Concentration Pathways scenarios. However, with the 45 

release of the CMIP6 simulation results, the Scenario Model Intercomparison Project provides new alternative 46 

scenarios that are intimately connected with societal concerns regarding climate change mitigation, adaptation, and 47 

impacts.9, 10 Some studies have estimated future air quality based on CMIP6 climate projections;11, 12 however, these 48 

studies either investigated the PM2.5 exposure in only one country or region,11-13 or the predicted periods were shorter 49 

than 50 years.14, 15 Although future global-scale PM2.5 simulations are available,12, 16 the low model spatial resolution 50 

(e.g., 1.875° × 1.25°) prevents a clear understanding of how this pollutant will evolve over the next several decades 51 

and hampers reliable estimations of how this pollutant will influence human health in the future. As yet, no 52 

comprehensive study has estimated the global mortality burden associated with ambient PM2.5 based on high-53 

resolution (e.g., 0.1° × 0.1°) and bias-corrected future climate projections that incorporate demographic and emissions 54 

data. Such a study is urgently needed to understand how the PM2.5 concentration and the associated health burden in 55 

each country will vary under different climate scenarios.  56 

In this study, we estimated PM2.5 exposure and its associated mortality burden over the 2021–2100 period under the 57 

SSP1-2.617, SSP2-4.518, SSP3-7.0,19 and SSP5-8.520 scenarios (SSP: Shared Socioeconomic Pathway). The 58 

relationships between critical meteorological variables and PM2.5 concentrations were constructed using a U-Net 59 

convolutional neural network21 based on Modern-Era Retrospective Analysis for Research and Applications, version 60 

2 (MERRA-2)22, CMIP6 global emissions data,23 and satellite-retrieved PM2.5 data.24 PM2.5 exposure and the 61 

associated premature mortality over the 2021–2100 period were estimated based on the constructed relationships 62 

between the PM2.5 concentrations, meteorological variables, emissions, the high-resolution and bias-corrected 63 

CMIP6 future climate SSP scenario data (adjusted using the delta downscaling method), and future SSP demographic 64 
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projections. Our work endeavored to elucidate how and through what pathways PM2.5 exposure would influence the 66 

premature mortality burden in 184 countries and regions worldwide over the forthcoming 80 years, spanning the 67 

space of challenges to mitigation and adaptation to climate change, which can exhibit a more expansive and 68 

comprehensive blueprint to air quality projection. 69 

2. Methods 70 

2.1. Data acquisition 71 

2.1.1. Surface PM2.5 data for training 72 

High-resolution and highly accurate global surface PM2.5 data are required to examine the relationships between 73 

PM2.5 concentrations and meteorological and emissions conditions. Therefore, global surface PM2.5 data at 0.1° × 0.1° 74 

combining AOD retrievals from the NASA MODIS, MISR, and SeaWIFS instrument, GEOS-Chem chemical 75 

transport model, and ground-based observations calibrated by geographically weighted regression were selected for 76 

the study.24 Compared with previous global surface PM2.5 concentration datasets,25-27 this set of PM2.5 values 77 

contained finer resolution data and compensated for missing or limited monthly measurements. This PM2.5 dataset 78 

was highly consistent with collocated ground-based observations from monitoring networks PM2.5 (R2 = 0.84), with 79 

a root mean square error (RMSE) of 8.4 µg m-3, and thus can accurately represent the surface PM2.5 concentrations.  80 

2.1.2. Meteorological and emissions data for model input 81 

To train the deep learning model, the following monthly average meteorological data were taken from the MERRA-82 

2 dataset:28 surface temperature, wind speed, specific humidity, planetary boundary layer height, and sea level 83 

pressure; these parameters can strongly influence the PM2.5 concentration.29 Several studies have contrasted the 84 

MERRA-2 dataset with ground-based observations and other reanalysis datasets and have shown that the MERRA-85 

2 data better represent the surface meteorological conditions.22, 30-33 For example, when compared with the ground 86 

observation data from China, the RMSE, MB (mean bias), and R value for temperature were 3.62 K, −2.14 K, and 87 

0.95, respectively.33 These three statistical metrics for humidity were 5%, 0.63%, and 0.89.34  88 

Since the deficiency in the emissions of primary PM2.5 components (except organic carbon (OC) and black carbon 89 

(BC)) in the CMIP6 datasets, future PM2.5 concentrations are driven by changes to precursor emissions (ammonia 90 

(NH3), nitrogen oxides (NOx), and sulfur dioxide (SO2)), BC, OC and climate in this study. Global emission amounts 91 

and percentages of the five species are presented in Table S1 and S2. Based on existing global emission inventory, 92 
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such as PKU-FUEL, primary PM2.5 emission has high correlation with the emissions of these five pollutants.35, 36 100 

Covering the period of 1750–2100 (historical dataset: 1750–2014, future emissions dataset: 2015–2100), CMIP6 101 

gridded emissions dataset includes aviation emissions, all other anthropogenic emissions sectors, and total open 102 

burning emissions. This gridded dataset has previously been used for global model simulation and for emission 103 

scenario comparisons.13, 37, 38 CMIP6 dataset contains historical emissions (1750 to 2014) and future emission data 104 

for SSP scenarios (2015-2100). CMIP6 emissions data were utilized in both the training and prediction processes. 105 

CMIP6 historical emissions data (1998–2014, the historical emissions data are available till 2014) were used to build 106 

the deep learning model, and the emission data of SSP scenarios for 2015 to 2019 were used in the deep learning 107 

model verification process. Future emission data for 2021–2100 were input into the trained deep learning model for 108 

prediction. The detailed narratives of emission inventory used in this study are summarized in Table S3. 109 

The monthly MERRA-2 meteorological data and CMIP6 emissions data from 1998 to 2019 were input into the deep 110 

learning model for training and validation. The frequency distribution of meteorological and emission data is 111 

presented in Figure S1–S2 and discussed in Text S1. Before training the deep learning model, all meteorological and 112 

emissions data were re-interpolated from their original spatial resolutions (meteorological data with 0.625° × 0.500° 113 

and emission data with 0.5° × 0.5°) into the same grid as the surface PM2.5 data with a resolution of 0.1° × 0.1°. The 114 

bilinear interpolation technique was applied in this work, which has been widely used to interpolate climate data into 115 

different resolutions in previous studies.39,40  116 

2.2. U-Net convolutional neural networks 117 

Tremendous advances in computer vision have led to convolutional neural networks (CNNs) being widely used for 118 

2D data analysis.41 We built a CNN-based U-Net framework to construct relationships between PM2.5 concentrations 119 

and predictor variables.21 First proposed for medical segmentation,21 U-Net assumes that local information and global 120 

information are both essential, which is also apposite for PM2.5 prediction. Equipped with flexible global aggregation 121 

blocks, U-Net can sufficiently consider non-local influences from other grid cells to local PM2.5 concentration. In 122 

addition, multiple layers of U-Net CNNs make it possible to elucidate nonlinear relationships among critical 123 

meteorological variables, ambient pollutant emissions, and surface PM2.5 concentrations; these relationships can be 124 

too complex to be delineated through traditional regression methods.42-44  125 
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All of the predictor variables (meteorological and emission data) and the PM2.5 concentrations were treated as 2D 132 

images. The detailed architecture of our U-Net model, including the number of channels for each convolution layer, 133 

the size of the convolution kernel, the activation function of the convolution layer, and the image size are provided 134 

in Figure 1. The description of the U-Net model can be found in Text S2. The data augmentation and dropout 135 

regularization have been applied to improve the model generalization ability, as discussed in Text S3. And the 136 

monotonic decreases in training and validation loss (Figure S4) have proved that no overfitting was detected. 137 

 138 

Figure 1. Architecture of the U-Net model 139 

2.3. Future climate data under different Shared Socioeconomic Pathway (SSP) scenarios  140 

The trained model was used to predict the 2021–2100 PM2.5 concentrations using the meteorological variables from 141 

the CMIP6 future climate scenarios dataset. As shown in Table S4, historical simulations (1981–2010) and future 142 

projections (2021–2100) of global climate multiple-model ensemble results from 28 global climate models (GCMs) 143 

and four SSPs (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) were utilized. The four SSPs are classified by 144 

socioeconomic, land use, and environmental development assumptions and represent conceivable future scenarios 145 

that capture distinctive climate mitigation and adaptation challenges. SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 146 

represent low, medium, medium to high, and high radiative forcing by the end of the century, respectively.45-47 147 

Changes in greenhouse gas concentrations in the atmosphere affect radiative forcing; thus, ‘radiative forcing’ 148 

mentioned in this work corresponds to different greenhouse gas (GHG) emission scenarios and the resulting climate 149 
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change. Both SSP1-2.6 and SSP5-8.5 represent strong climate mitigation scenarios,17, 48 with the distinction that the 154 

anthropogenic radiative forcings by 2100 are 2.6 Watt/m2 and 8.5 Watt/m2, respectively.20, 49 SSP2-4.5 represents a 155 

moderate mitigation scenario and the radiative forcing is stabilized at 4.5 Watt/m2 until 2100 by implementing 156 

moderately restrictive emission reduction measures and strategies.18 SSP3-7.0 is the weakest climate mitigation 157 

scenario with an anthropogenic radiative forcing of 7.0 Watt/m2 by 2100.19 The critical elements relevant to air 158 

pollution among four SSP scenarios are summarized in Table S5. Further information and the assumptions used in 159 

the future scenarios are provided in Eyring et al. (2016)50 and Gidden et al. (2019).51 The SSPs explored in this study 160 

cover a wide range of plausible socioeconomic trends for this century.  161 

2.4. Bias correction and downscaling 162 

Before being fed into the trained U-Net model, the meteorological variables from CMIP6 were corrected and 163 

downscaled to achieve reliable climate change impact metrics. To produce high-resolution and bias-corrected future 164 

climate information, we used the delta change (DC) method, which applies a change factor (i.e., delta) derived from 165 

GCMs to historical observations.52, 53 Studies have found the DC method to be robust for downscaling climate data.54, 166 

55 Our implementation of the DC method was intended to correct the simulated climate data while providing results 167 

at high spatial resolution. The details of the DC method are described in the Text S4. 168 

2.5. Mortality calculation 169 

The Global Exposure Mortality Model (GEMM) proposed by Burnett et al. (2018)56 was used as a hazard ratio model 170 

to estimate the premature mortality burden associated with PM2.5 exposure (i.e., population-weighted PM2.5 171 

concentration, Text S5). GEMM has relieved some of the contentious assumptions that are stipulated by other disease-172 

specific hazard ratio models, such as the Integrated Exposure Response Model.56 The detailed of the GEMM model 173 

are provided in the Text S6. 174 

The baseline mortality rates for different countries in 2015 obtained from the Global Health Data Exchange data 175 

catalog were used for estimating premature mortality. The gridded population projections for all SSPs during 2021–176 

2100 at a resolution of 1 km × 1 km are available from the Spatial Population Scenario database. This demographic 177 

projection dataset has been previously verified57 and has been used to project heat-related excess mortality58, 59 and 178 

to model future patterns of urbanization.60 In this work, we calculated the PM2.5-associated premature mortality in 179 

accordance with the projected population, but the baseline mortality rate was assumed to be that of 2015 owing to a 180 
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lack of credible alternatives. Constant baseline mortality has been applied in other works that have projected the 183 

future environmental burdens of disease61, 62.  184 

3. Results 185 

3.1. Performance evaluation 186 

To verify that the trained U-Net model could generate accurate PM2.5 concentration predictions, we validated the 187 

model performance from the spatial, scatter point, and statistical matrix perspectives. CMIP6 historical emissions 188 

data are available through 2014, while the data from 2015 to 2019 were from the CMIP6 future scenario emissions 189 

dataset. In the CMIP6 future scenario emissions dataset, the different scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and 190 

SSP5-8.5) have their own emissions datasets, but the differences are very limited throughout the 2015–2019 period. 191 

Because of this, we separated the verification by (1) implementing 8-fold cross-validation to verify the performance 192 

for the estimations from 1998 to 2014 and (2) inputting the future emissions datasets (2015–2019) of the four 193 

scenarios together with other independent variables into the trained model to output the PM2.5 estimation for the 194 

comparison. For the 8-fold cross-validation, 15 years of data were used for training and 2 years of data were used for 195 

comparison in each fold. The calculation of 8-fold cross-validation is further described in Text S7. 196 

Figure S5 shows a spatial comparison between the satellite-retrieved PM2.5 data and the values predicted by the U-197 

Net CNN using 8-fold validation. The results show that the model produced good fits in the areas with both low (≤198 

	35 µg/m!) and high (> 35 µg/m!) PM2.5 concentration. As demonstrated in Figures S6 and S7, the errors between 199 

the simulated and target monthly average PM2.5 concentrations for all grid cells were within ±	12 µg/m!	for 1998-200 

2014. The monthly average relative errors specific to each country were within ±	10%. 201 

Figure 2 shows the scatter plots of the satellite-retrieved PM2.5 concentrations and the 8-fold average predicted 202 

concentrations. The strong correlation coefficient (R, 0.987) was better than that of previous studies63-65 and indicates 203 

that the model could accurately predict all of the 8-fold cross-validation data. The statistical evaluation metrics (A1–204 

A6 in the supplemental material) shown in Table 1 were further used to verify the model performance. The relatively 205 

small standard deviation of error indicates that our trained model has considerable stability. From these statistical 206 

matrix perspectives, the PM2.5 concentrations estimated by our proposed deep learning model were also better than 207 

those of previous studies.29, 66, 67 In addition to the comparison with the satellite-retrieved PM2.5 data, we compared 208 

the annual model-predicted PM2.5 concentrations with the monitor-based observations in China, the United States, 209 
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and Europe because these regions have well-established ground-based observation networks (Table S6). The R values 225 

for China, the United States, and Europe were 0.91, 0.80, and 0.81, respectively. These results show that the PM2.5 226 

estimates from our method were also in general agreement with the ground-based observations in these regions.  227 

 228 

Figure 2. 8-fold cross-validation of the global PM2.5 concentrations predicted by the U-Net CNN model 229 

during 1998-2014. The color represents the sample density. 230 

Table 1. 8-fold cross-validation of U-Net CNN model performance 231 

 NMB* NME* MB* 
(𝛍𝐠/𝐦𝟑) 

MAGE* 
(𝛍𝐠/𝐦𝟑) 

RMSE* 
(𝛍𝐠/𝐦𝟑) R 

Average −0.01 0.22 −0.05 1.36 4.02 0.987 

Standard 
error 0.01 0.03 0.08 0.11 0.39 0.010 

*NMB: normalized mean bias; NME: normalized mean error; MB: mean bias; MAGE: mean absolute gross error; 232 

RMSE: Root Mean Squared Error 233 

As mentioned above, the CMIP6 emissions from 2015–2019 under the four SSP scenarios together with other input 235 

data were fed into the trained deep learning model to estimate the PM2.5 concentrations for these 5 years, as shown in 236 

Table S7. These metrics indicate the good feasibility and generalizability of our model in predicting the PM2.5 237 

concentrations. In summary, the satisfactory performance indicated that the trained U-Net model was able to identify 238 

the relationships between PM2.5 and the influencing factors, which demonstrates that this model could be used for 239 

future PM2.5 pollution estimation in the 2021–2100 period under different climate scenarios. 240 
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3.2. Projection of future ambient PM2.5 concentrations 258 

The built U-Net deep learning model was used to project future PM2.5 concentrations under the SSP1-2.6, SSP2-4.5, 259 

SSP3-7.0, and SSP5-8.5 scenarios. Changes in the downscaled multi-model ensembles of critical meteorological 260 

variables are shown in Figures S8–S12. Emissions (SO2, NH3, OC, BC, NOx) for the four SSP scenarios up to 2100 261 

are shown in Figures S13-S17. The projected PM2.5 concentrations were compared with the baseline concentration 262 

(the average PM2.5 concentration from 2010 to 2019), as shown in Figure 3. The PM2.5 decadal average concentrations 263 

for the different SSP scenarios are shown in Figures S18–S21. 264 

 265 

Figure 3. Spatial distribution of changes in projected global PM2.5 concentrations relative to the baseline 266 

period (2010–2019) under different climate change scenarios. Panels (a)-(d) represent the changes in PM2.5 267 

concentration for 2030s (2021-2050 average), 2050s (2041-2070 average), 2070s (2061-2090 average), and 2080s 268 

(2071-2100 average) under SSP1-2.6 scenarios compared to the baseline condition. Panels (e)-(h) represent 269 

that of the same period but under SSP2-4.5. Panels (i)-(l) represent that of the same period but under SSP3-270 

7.0. Panels (m)-(p) represent that of the same period but under SSP5-8.5. 271 

Based on the deep learning model estimations, the PM2.5 concentrations are projected to decrease in almost all regions 272 

in all scenarios; however, there are some notable differences among the projections. In SSP1-2.6, the projected PM2.5 273 

concentration will decrease consistently from 2030 to 2100. Among the investigated regions, the Middle East, Eastern 274 
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China, and India will undergo the most significant decline in PM2.5 concentrations under this scenario. SSP2-4.5 284 

represents the middle range of plausible future pathways. In this scenario, although the furthest projection into the 285 

2090s showed a decline compared with the baseline level (that of the 2010s), this reduction was much smaller than 286 

the corresponding changes under SSP1-2.6. The projections are different for SSP3-7.0, which assumes more 287 

pessimistic development strategies, such as less investment in the environment and health care and a fast-growing 288 

population.17, 19, 68 This would lead to an apparent increase in PM2.5 concentrations in Asia and Africa before the 289 

2050s. After meeting economic development needs and implementing environmental control measures, the PM2.5 290 

concentrations would decrease to a level similar to the baseline period. In SSP5-8.5, fossil fuels are heavily relied on 291 

to achieve rapid economic growth. Thus, in the middle of the 21st century, climate and emission change would 292 

considerably increase PM2.5 concentrations and cause considerable damage to human health in central Africa. 293 

Nevertheless, with the rapid development of society and pollution mitigation policies, the overall PM2.5 294 

concentrations will undergo a sharper reduction after the 2050s. PM2.5 concentrations continued to exceed baseline 295 

values in central Africa under SSP3-7.0 and SSP5-8.5, which is quite consistent with the emission-increasing trends 296 

in the region as shown in Figure S22 and S23, implying that the emission change should be the major driver for the 297 

PM2.5 concentration increase in Central Africa. 298 

3.3. Projection of future ambient PM2.5 exposure  299 

SSPs narratives gave rise to spatial and temporal differences in the demographic projections. Figures S24 and S25 300 

show the demographic projections for the four SSPs scenarios for the world and for different regions, respectively. 301 

The projected population density (persons/km2) and the corresponding variations (compared to the situation in the 302 

2010s) in four SSP scenarios are shown in Figure S26. Combined with demographic projections, the exposure 303 

concentration can be estimated and used to assess the PM2.5 exposure associated health impacts.69, 70 304 

Figure 4 shows the projected PM2.5 exposure concentrations in several representative regions (North America, South 305 

America, Europe, Africa, the Middle East, Russia and Economies in Transition [EIT], Asia, and the rest of the world) 306 

under the various SSP scenarios. The region boundaries are shown in Figure S27. Overall, PM2.5 exposure is highest 307 

in the SSP3-7.0 scenario and lowest in the SSP1-2.6 scenario for the major representative regions of the world, 308 

although the main drivers for the projected outcomes differ.  309 
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In Europe and North America, where PM2.5 concentrations will be relatively low, the population distribution is the 322 

main determinant of PM2.5 exposure. Spatially-averaged PM2.5 concentrations will be lower in the SSP5-8.5 scenario 323 

owing to the stronger pollution control measures than in the “middle of the road” SSP2-4.5 scenario, but the 324 

population-weighted PM2.5 concentrations in SSP5-8.5 will slightly exceed those of SSP2-4.5 and even surpass those 325 

of SSP3-7.0 after the 2060s. These trends will be caused by the higher birthrate in Europe and North America in 326 

SSP5-8.5 driven by economic optimism and international migration, leading to accelerated population growth in 327 

these two regions (Figures S25 and S28).71 This implies that a greater share of the population will be concentrated in 328 

areas with higher levels of social development and education. Therefore, compared with SSP2-4.5, the SSP5-8.5 329 

scenario will result in a higher population-weighted PM2.5 exposure in North America and Europe after the 2060s.  330 

In both Asia and Africa, PM2.5 exposure will decline steadily over time, reaching −58.2% (−47.3%) and −52.5% 331 

(−32.0%) for Asia (Africa) by the end of the century under the SSP1-2.6 and SSP5-8.5 scenarios, respectively, 332 

compared with the baseline period. However, there will be no significant decline under the SSP3-7.0 scenario, and 333 

before the 2060s, the exposure levels will be even higher than in the baseline period. Two explanations can be offered 334 

for the persistently high exposure concentrations in Asia and Africa under the SSP3-7.0 scenario. The emissions and 335 

unfavorable meteorological factors will lead to increased PM2.5 pollution under this scenario before the 2030s. 336 

Meanwhile, population increase due to high fertility accompanied by slow urbanization in these regions will intensify 337 

the density of urban and rural settlement patterns, thereby increasing PM2.5 exposure.71  338 

The proportion of the population that would be exposed to the PM2.5 concentration below previous and current Air 339 

Quality Guideline (AQG) values is also estimated under future climate change scenarios. As shown in Figure S29, 340 

the differences between SSP1-2.6 scenario and the other three scenarios are considerable. Compared with the other 341 

three scenarios, SSP1-2.6 would result in the largest fraction of the population exposed to the PM2.5 level that is lower 342 

than 5 µg/m³. In the SSP1-2.6 scenario, 3.5% of the world’s population will live in areas that have PM2.5 343 

concentrations lower than 5 µg/m³ by 2100, which is well above the baseline (2.0%). The other scenarios are 344 

comparable in terms of the proportion of the population exposed to the PM2.5 concentration that is below the current 345 

AQG values. 346 
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 351 
Figure 4. Projected ambient PM2.5 exposure concentrations for 2030–2100 under different climate change 352 

scenarios.  353 
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3.4. Projection of premature mortality burden 370 

The global premature mortality burden associated with future PM2.5 concentrations under the different SSP scenarios 371 

was also analyzed. Figure 5 shows the PM2.5-associated premature deaths for the baseline (2010–2019) and future 372 

(2030–2100) periods in several representative regions. The green growth and sustainable development assumptions 373 

in the SSP1-2.6 scenario would lead to a rapid reduction in air pollution emissions globally. Therefore, the number 374 

of PM2.5-associated premature deaths worldwide would start to decline in the near future (2031–2040) before the 375 

population growth turning point (2071–2080). Given the middle-road development pattern of SSP2-4.5, premature 376 

deaths in this scenario would peak at 9,024,000 (95% Confidence Interval (CI): 6,352,000–11,236,000) in the 2060s 377 

and then steadily decline to 7,394,000 (95% CI: 5,202,000–9,291,000) in the final decade of the century, which is a 378 

less rapid decline than in the SSP1-2.6 scenario. SSP3-7.0 assumes weak pollution control in which the 379 

implementation of pollution mitigation measures is delayed and less ambitious in the long term. In this scenario, 380 

premature deaths would spike dramatically in all regions except North America, Europe, and Russia and would not 381 

decrease until the end of the century. The global number of PM2.5-associated premature deaths would reach 382 

11,149,000 (95% CI: 7,877,000–13,800,000) in 2091–2100, an increase of 63% from the baseline period. In the 383 

SSP5-8.5 scenario, which emphasizes technological progress and rapid economic growth through human capital 384 

development, environmental issues become a priority health concern, and ambitious air quality goals result in 385 

pollutant levels well below current levels in the medium to long term.16, 72 Therefore, in SSP5-8.5, global premature 386 

deaths would peak at 8,509,000 (95% CI: 5,981,000–10,617,000) in the 2040s and then decline to 6,258,000 (95% 387 

CI: 4,410,000–7,887,000) in the second half of the 21st century as high-performance pollution control technologies 388 

are developed. This decrease would result in a smaller premature death burden than in the baseline period. 389 
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 395 
Figure 5. PM2.5-associated premature deaths (> 25 years old) in different regions. The red bars represent 396 

premature deaths, and the vertical black lines indicate the 95% empirical confidence intervals. 397 
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Because the size of the population will determine the absolute number of premature deaths, country-specific mortality 402 

rates per 100,000 people were used to describe the PM2.5-associated mortality burden. Figure S30 shows the mortality 403 

rate per 100,000 people for 184 countries or districts. Overall, countries in North America, Western Europe, and 404 

Oceania will have the lowest mortality rates. The mortality rates in Eastern European countries (e.g., Ukraine and 405 

Serbia) will be the highest, followed by some countries in Asia, such as China and India.  406 

3.5. Key factors that influence the premature mortality burden 407 

Two sensitivity studies were conducted to explore how future population distributions and PM2.5 concentrations 408 

would affect the burden of PM2.5-associated premature mortality (Table S8). In the first sensitivity experiment (SA1), 409 

the only contributor to the difference in the estimated premature deaths from the baseline period is the demographic 410 

transition, while the contributor to the difference in the second sensitivity experiment (SA2) is the PM2.5 variation. 411 

When considering only the future demographic projections (i.e., demographic changes and changes in total 412 

population by age), the changes in the population distribution over the coming decades (2021–2040) will exacerbate 413 

the burden of premature deaths in all four scenarios, but the magnitude of the effect differs among the scenarios. 414 

These differences are reflected in the demographic assumptions about the birthrate, mortality, and migration.73 SSP1-415 

2.6 and SSP5-8.5 both envision a development path of increased investment in education and health, thereby 416 

accelerating the demographic transition.71 Therefore, in these two scenarios, the demographic turning point in 417 

population decline will be reached earlier, in the medium term (2050s) (Figure S25), after which the impact of 418 

demographics on the burden of premature mortality will gradually decrease.  419 

In the second sensitivity experiment, we explore the effect of the PM2.5 concentration on premature mortality 420 

assuming a constant future population distribution and size. Disease burden alleviation resulting from implementing 421 

air pollution control measures will become apparent in the near future under the SSP1-2.6 and SSP5-8.5 scenarios. 422 

SSP1-2.6 is the only scenario in which the effect of the PM2.5 concentration will be greater than the effect of 423 

population size by the end of the century. Rapidly declining emissions would successfully offset the burden of 424 

premature mortality resulting from population growth by the end of the century. Under the SSP3-7.0 scenario, the 425 

planetary boundary layer height (PBLH) exerts strong influence on PM2.5 dispersion, and thus its decreases in East 426 

Asia, South Asia, and eastern Africa (Figure S10) will increase the PM2.5 concentrations. Besides PBLH, other 427 
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meteorological conditions, such as higher temperature,74 are also favorable for PM2.5 accumulation in these regions 435 

and therefore exacerbate the PM2.5-associated mortality burden until the 2050s.   436 

 437 

3.6. Implications and limitations 438 

Global climate change is a significant challenge for society, and its impact on future air pollution is a critical 439 

perspective that requires quantitative assessment. Herein, a global PM2.5 concentration dataset with a spatial 440 

resolution of 0.1°	×	0.1° was estimated based on SSP scenarios.  441 

From the methodology and dataset perspectives, this work provides a new set of global-scale future PM2.5 dataset in 442 

10km spatial resolution. This dataset can be used by others for air quality-related studies at the national and even 443 

regional scales. The dataset can be downloaded from the link listed in Text S8. The method developed in this work 444 

can also be implemented for other air pollution-related research. Researchers can further develop other more 445 

advanced deep learning frameworks for relevant studies based on the design of the method proposed in this work.  446 

From the results perspective, this work has quantified how the future PM2.5 and its associated adverse health impacts 447 

will change based on different SSP scenarios. Based on our results, governments and relevant stakeholders from 448 

different countries can generally understand to what extent can PM2.5 influence their specific local health burdens. 449 

This can provide useful scientific references for future air pollution control policy design. In addition, when other 450 

studies come out in the future, the results from this work can also be used for the comparison. For example, compared 451 

to the adverse effects caused by other pollutants, such as O3, which pollutant should the government put onto the 452 

priority position under different SSP scenarios. 453 

From the health-economic impact perspective, the results of economic burdens shed light on the relationship between 454 

mortality cost that is associated with PM2.5 pollution and economic development in various countries under different 455 

future scenarios. The economic burdens related to future PM2.5 pollution are discussed in Text S9. Figure S31 and 456 

Figure S32 show the economic loss that is associated with PM2.5-related health burdens. For most OECD countries, 457 

China, and Central Asia, air pollution mitigation and economic development can have a beneficial synergistic effect. 458 

The ratio of economic loss associated with PM2.5 pollution over the total GDP (PPP based) is minimal in the 459 

sustainable development scenario (SSP1-2.6). For Central Africa and South America, from PM2.5 associated 460 

economic loss perspective, these countries may consider choosing SSP2-4.5 pathway as their development modes. 461 
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This work has some limitations. First, satellite-retrieved PM2.5 datasets were used as training targets, but according 477 

to the results in Table S6, there were discrepancies with the observational data obtained from ground measurements. 478 

Second, future climate, emission, and population projections harbor relatively large uncertainty, even if they have 479 

been calibrated against observed patterns of changes using historical data.23, 71 Third, there are no generalizable and 480 

accurate findings that indicate how baseline mortality rates will change in the future. Therefore, in accordance with 481 

previous studies75, 76 in the projection literature, we assumed that the nonlinear relationship between PM2.5 482 

concentrations and the baseline mortality rate would also be consistent. Fourth, the PM2.5 projections derived in this 483 

study were based on several underlying assumptions. Primarily, in line with previous works,75, 76 the relationships 484 

between PM2.5 concentrations and meteorological conditions and precursor emissions explored in this study were 485 

assumed to be true for future climate and emissions scenarios. Fifth, our predictions were based on the premise that 486 

the world is steadily developing, and our method cannot predict the effects of uncontrollable factors (such as war and 487 

strong earthquakes) on PM2.5 and population distributions. Finally, the biases in emissions data (e.g., bias in future 488 

wildfires and missing windblown dust), can be directly propagated to the air pollution concentration estimation. Thus, 489 

PM2.5 projections in this work contain unavoidable uncertainty. The spatial pattern of windblown dust was not 490 

included in this study, which may have an influence on our results, especially for the Sahara and Middle East. Given 491 

the proximity of these regions to large sources of dust emissions, there is a possibility that an underestimation of 492 

PM2.5 concentrations would occur in these regions. However, the impact on the mortality estimations is limited since 493 

these regions are more sparsely populated. Despite these limitations, this work helps quantify the extent to which 494 

climate change will influence PM2.5 concentrations worldwide. The results can contribute to the ongoing assessment 495 

of PM2.5-associated exposure and vulnerability under different climate change scenarios, and governments can use 496 

this information to design useful strategies to reduce pollution.  497 
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