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14 Abstract

15 Ambient fine particulate matter (PM2.5) can cause severe adverse health impacts in humans. Thus, reducing PM2.5 

16 exposure is an important public health focus. Meteorological and emissions factors, which considerably affect the 

17 PM2.5 concentrations in air, vary significantly under different climate change scenarios. However, PM2.5 

18 concentrations and their associated disease burden under future climate scenarios are not well clarified. In this work, 

19 the global PM2.5 concentrations from 2021 to 2100 were estimated by combining the U-Net convolutional neural 

20 network deep learning technique, reanalysis data, emissions data, and bias-corrected Coupled Model Intercomparison 

21 Project Phase 6 future climate scenario data. Based on the estimated PM2.5 concentrations, the future premature 

22 mortality burden associated with PM2.5 exposure was assessed using the Global Exposure Mortality Model. Ambient 

23 PM2.5 exposure is expected to be highest in the SSP3-7.0 scenario and lowest in the SSP1-2.6 scenario in the major 

24 representative regions of the world. The global mortality rate (per 100,000 exposed population) associated with PM2.5 

25 under the four different scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, ranging from 84.6 (95% Confidence 

26 Interval (CI): 59.6–107.0) to 150.0 (95% CI: 106.2–185.0)) at the end of this century is expected to be lower than the 

27 baseline (the 2010s, 161.1 (95% CI: 113.3–199.9)). Among all four scenarios, the sustainable development scenario 

28 (SSP1-2.6) results in the lowest PM2.5 concentrations and the lowest premature mortality burden, which indicates that 

29 this is the pathway that countries should strive for. Our work helps to advance the scientific understanding of the 

30 global geo-climatic system and provides suggestions for scientists and policymakers. 

31 Keywords: Climate change; Global; PM2.5; Mortality; Deep learning 
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32 Synopsis: Future PM2.5 pollution and its associated health burden have not been well clarified. In this study, a new 

33 set of global-scale, spatially explicit PM2.5 concentration from 2021 to 2100 with a spatial resolution of 0.1° 0.1° ×

34 was estimated, and associated PM2.5 exposure and premature mortality burden was calculated.

35

36 Graphic for Table of Contents (TOC)
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1

37 1. Introduction

38 Ambient particulate matter (PM2.5) poses a considerable global threat to human health. Exposure to outdoor PM2.5 

39 caused 4.14 million deaths in 2019, accounting for 62% of all global deaths attributable to air pollution estimated by 

40 the Global Burden of Disease Project.1-4 Unmitigated climate change is projected to exacerbate inevitable challenges 

41 and threats to global air quality and increase its attributable adverse health impacts.5-7 Therefore, it is necessary to 

42 understand how future climate change scenarios will influence surface PM2.5 concentrations and propose appropriate 

43 climate mitigation measures.

44 Most studies7, 8 on PM2.5 concentration estimation under different climate scenarios have been based on the Coupled 

45 Model Intercomparison Project 5 (CMIP5) Representative Concentration Pathways scenarios. However, with the 

46 release of the CMIP6 simulation results, the Scenario Model Intercomparison Project provides new alternative 

47 scenarios that are intimately connected with societal concerns regarding climate change mitigation, adaptation, and 

48 impacts.9, 10 Some studies have estimated future air quality based on CMIP6 climate projections;11, 12 however, these 

49 studies either investigated the PM2.5 exposure in only one country or region,11-13 or the predicted periods were shorter 

50 than 50 years.14, 15 Although future global-scale PM2.5 simulations are available,12, 16 the low model spatial resolution 

51 (e.g., 1.875° × 1.25°) prevents a clear understanding of how this pollutant will evolve over the next several decades 

52 and hampers reliable estimations of how this pollutant will influence human health in the future. As yet, no 

53 comprehensive study has estimated the global mortality burden associated with ambient PM2.5 based on high-

54 resolution (e.g., 0.1° × 0.1°) and bias-corrected future climate projections that incorporate demographic and emissions 

55 data. Such a study is urgently needed to understand how the PM2.5 concentration and the associated health burden in 

56 each country will vary under different climate scenarios. 

57 In this study, we estimated PM2.5 exposure and its associated mortality burden over the 2021–2100 period under the 

58 SSP1-2.617, SSP2-4.518, SSP3-7.0,19 and SSP5-8.520 scenarios (SSP: Shared Socioeconomic Pathway). The 

59 relationships between critical meteorological variables and PM2.5 concentrations were constructed using a U-Net 

60 convolutional neural network21 based on Modern-Era Retrospective Analysis for Research and Applications, version 

61 2 (MERRA-2)22, CMIP6 global emissions data,23 and satellite-retrieved PM2.5 data.24 PM2.5 exposure and the 

62 associated premature mortality over the 2021–2100 period were estimated based on the constructed relationships 

63 between the PM2.5 concentrations, meteorological variables, emissions, the high-resolution and bias-corrected 

64 CMIP6 future climate SSP scenario data (adjusted using the delta downscaling method), and future SSP demographic 
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2

65 projections. Our work endeavored to elucidate how and through what pathways PM2.5 exposure would influence the 

66 premature mortality burden in 184 countries and regions worldwide over the forthcoming 80 years, spanning the 

67 space of challenges to mitigation and adaptation to climate change, which can exhibit a more expansive and 

68 comprehensive blueprint to air quality projection.

69 2. Methods

70 2.1. Data acquisition

71 2.1.1. Surface PM2.5 data for training

72 High-resolution and highly accurate global surface PM2.5 data are required to examine the relationships between 

73 PM2.5 concentrations and meteorological and emissions conditions. Therefore, global surface PM2.5 data at 0.1° × 

74 0.1° combining AOD retrievals from the NASA MODIS, MISR, and SeaWIFS instrument, GEOS-Chem chemical 

75 transport model, and ground-based observations calibrated by geographically weighted regression were selected for 

76 the study.24 Compared with previous global surface PM2.5 concentration datasets,25-27 this set of PM2.5 values 

77 contained finer resolution data and compensated for missing or limited monthly measurements. This PM2.5 dataset 

78 was highly consistent with collocated ground-based observations from monitoring networks PM2.5 (R2 = 0.84), with 

79 a root mean square error (RMSE) of 8.4 µg m-3, and thus can accurately represent the surface PM2.5 concentrations. 

80 2.1.2. Meteorological and emissions data for model input

81 To train the deep learning model, the following monthly average meteorological data were taken from the MERRA-2 

82 dataset:28 surface temperature, wind speed, specific humidity, planetary boundary layer height, and sea level pressure; 

83 these parameters can strongly influence the PM2.5 concentration.29 Several studies have contrasted the MERRA-2 

84 dataset with ground-based observations and other reanalysis datasets and have shown that the MERRA-2 data better 

85 represent the surface meteorological conditions.22, 30-33 For example, when compared with the ground observation 

86 data from China, the RMSE, MB (mean bias), and R value for temperature were 3.62 K, −2.14 K, and 0.95, 

87 respectively.33 These three statistical metrics for humidity were 5%, 0.63%, and 0.89.34 

88 Since the deficiency in the emissions of primary PM2.5 components (except organic carbon (OC) and black carbon 

89 (BC)) in the CMIP6 datasets, future PM2.5 concentrations are driven by changes to precursor emissions (ammonia 

90 (NH3), nitrogen oxides (NOx), and sulfur dioxide (SO2)), BC, OC and climate in this study. Global emission amounts 

91 and percentages of the five species are presented in Table S1 and S2. Based on existing global emission inventory, 
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3

92 such as PKU-FUEL, primary PM2.5 emission has high correlation with the emissions of these five pollutants.35, 36 

93 Covering the period of 1750–2100 (historical dataset: 1750–2014, future emissions dataset: 2015–2100), CMIP6 

94 gridded emissions dataset includes aviation emissions, all other anthropogenic emissions sectors, and total open 

95 burning emissions. This gridded dataset has previously been used for global model simulation and for emission 

96 scenario comparisons.13, 37, 38 CMIP6 dataset contains historical emissions (1750 to 2014) and future emission data 

97 for SSP scenarios (2015-2100). CMIP6 emissions data were utilized in both the training and prediction processes. 

98 CMIP6 historical emissions data (1998–2014, the historical emissions data are available till 2014) were used to build 

99 the deep learning model, and the emission data of SSP scenarios for 2015 to 2019 were used in the deep learning 

100 model verification process. Future emission data for 2021–2100 were input into the trained deep learning model for 

101 prediction. The detailed narratives of emission inventory used in this study are summarized in Table S3.

102 The monthly MERRA-2 meteorological data and CMIP6 emissions data from 1998 to 2019 were input into the deep 

103 learning model for training and validation. The frequency distribution of meteorological and emission data is 

104 presented in Figure S1–S2 and discussed in Text S1. Before training the deep learning model, all meteorological and 

105 emissions data were re-interpolated from their original spatial resolutions (meteorological data with 0.625° × 0.500° 

106 and emission data with 0.5° × 0.5°) into the same grid as the surface PM2.5 data with a resolution of 0.1° × 0.1°. The 

107 bilinear interpolation technique was applied in this work, which has been widely used to interpolate climate data into 

108 different resolutions in previous studies.39,40 

109 2.2. U-Net convolutional neural networks

110 Tremendous advances in computer vision have led to convolutional neural networks (CNNs) being widely used for 

111 2D data analysis.41 We built a CNN-based U-Net framework to construct relationships between PM2.5 concentrations 

112 and predictor variables.21 First proposed for medical segmentation,21 U-Net assumes that local information and global 

113 information are both essential, which is also apposite for PM2.5 prediction. Equipped with flexible global aggregation 

114 blocks, U-Net can sufficiently consider non-local influences from other grid cells to local PM2.5 concentration. In 

115 addition, multiple layers of U-Net CNNs make it possible to elucidate nonlinear relationships among critical 

116 meteorological variables, ambient pollutant emissions, and surface PM2.5 concentrations; these relationships can be 

117 too complex to be delineated through traditional regression methods.42-44 
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4

118 All of the predictor variables (meteorological and emission data) and the PM2.5 concentrations were treated as 2D 

119 images. The detailed architecture of our U-Net model, including the number of channels for each convolution layer, 

120 the size of the convolution kernel, the activation function of the convolution layer, and the image size are provided 

121 in Figure 1. The description of the U-Net model can be found in Text S2. The data augmentation and dropout 

122 regularization have been applied to improve the model generalization ability, as discussed in Text S3. And the 

123 monotonic decreases in training and validation loss (Figure S4) have proved that no overfitting was detected.

124

125 Figure 1. Architecture of the U-Net model

126 2.3. Future climate data under different Shared Socioeconomic Pathway (SSP) scenarios 

127 The trained model was used to predict the 2021–2100 PM2.5 concentrations using the meteorological variables from 

128 the CMIP6 future climate scenarios dataset. As shown in Table S4, historical simulations (1981–2010) and future 

129 projections (2021–2100) of global climate multiple-model ensemble results from 28 global climate models (GCMs) 

130 and four SSPs (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) were utilized. The four SSPs are classified by 

131 socioeconomic, land use, and environmental development assumptions and represent conceivable future scenarios 

132 that capture distinctive climate mitigation and adaptation challenges. SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 

133 represent low, medium, medium to high, and high radiative forcing by the end of the century, respectively.45-47 

134 Changes in greenhouse gas concentrations in the atmosphere affect radiative forcing; thus, ‘radiative forcing’ 

135 mentioned in this work corresponds to different greenhouse gas (GHG) emission scenarios and the resulting climate 
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5

136 change. Both SSP1-2.6 and SSP5-8.5 represent strong climate mitigation scenarios,17, 48 with the distinction that the 

137 anthropogenic radiative forcings by 2100 are 2.6 Watt/m2 and 8.5 Watt/m2, respectively.20, 49 SSP2-4.5 represents a 

138 moderate mitigation scenario and the radiative forcing is stabilized at 4.5 Watt/m2 until 2100 by implementing 

139 moderately restrictive emission reduction measures and strategies.18 SSP3-7.0 is the weakest climate mitigation 

140 scenario with an anthropogenic radiative forcing of 7.0 Watt/m2 by 2100.19 The critical elements relevant to air 

141 pollution among four SSP scenarios are summarized in Table S5. Further information and the assumptions used in 

142 the future scenarios are provided in Eyring et al. (2016)50 and Gidden et al. (2019).51 The SSPs explored in this study 

143 cover a wide range of plausible socioeconomic trends for this century. 

144 2.4. Bias correction and downscaling

145 Before being fed into the trained U-Net model, the meteorological variables from CMIP6 were corrected and 

146 downscaled to achieve reliable climate change impact metrics. To produce high-resolution and bias-corrected future 

147 climate information, we used the delta change (DC) method, which applies a change factor (i.e., delta) derived from 

148 GCMs to historical observations.52, 53 Studies have found the DC method to be robust for downscaling climate data.54, 

149 55 Our implementation of the DC method was intended to correct the simulated climate data while providing results 

150 at high spatial resolution. The details of the DC method are described in the Text S4.

151 2.5. Mortality calculation

152 The Global Exposure Mortality Model (GEMM) proposed by Burnett et al. (2018)56 was used as a hazard ratio model 

153 to estimate the premature mortality burden associated with PM2.5 exposure (i.e., population-weighted PM2.5 

154 concentration, Text S5). GEMM has relieved some of the contentious assumptions that are stipulated by other 

155 disease-specific hazard ratio models, such as the Integrated Exposure Response Model.56 The detailed of the GEMM 

156 model are provided in the Text S6.

157 The baseline mortality rates for different countries in 2015 obtained from the Global Health Data Exchange data 

158 catalog were used for estimating premature mortality. The gridded population projections for all SSPs during 2021–

159 2100 at a resolution of 1 km  1 km are available from the Spatial Population Scenario database. This demographic ×

160 projection dataset has been previously verified57 and has been used to project heat-related excess mortality58, 59 and 

161 to model future patterns of urbanization.60 In this work, we calculated the PM2.5-associated premature mortality in 

162 accordance with the projected population, but the baseline mortality rate was assumed to be that of 2015 owing to a 
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6

163 lack of credible alternatives. Constant baseline mortality has been applied in other works that have projected the 

164 future environmental burdens of disease61, 62. 

165 3. Results

166 3.1. Performance evaluation

167 To verify that the trained U-Net model could generate accurate PM2.5 concentration predictions, we validated the 

168 model performance from the spatial, scatter point, and statistical matrix perspectives. CMIP6 historical emissions 

169 data are available through 2014, while the data from 2015 to 2019 were from the CMIP6 future scenario emissions 

170 dataset. In the CMIP6 future scenario emissions dataset, the different scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and 

171 SSP5-8.5) have their own emissions datasets, but the differences are very limited throughout the 2015–2019 period. 

172 Because of this, we separated the verification by (1) implementing 8-fold cross-validation to verify the performance 

173 for the estimations from 1998 to 2014 and (2) inputting the future emissions datasets (2015–2019) of the four 

174 scenarios together with other independent variables into the trained model to output the PM2.5 estimation for the 

175 comparison. For the 8-fold cross-validation, 15 years of data were used for training and 2 years of data were used for 

176 comparison in each fold. The calculation of 8-fold cross-validation is further described in Text S7.

177 Figure S5 shows a spatial comparison between the satellite-retrieved PM2.5 data and the values predicted by the U-

178 Net CNN using 8-fold validation. The results show that the model produced good fits in the areas with both low ( ≤  

179 35 ) and high (> 35 ) PM2.5 concentration. As demonstrated in Figures S6 and S7, the errors between μg/m3 μg/m3

180 the simulated and target monthly average PM2.5 concentrations for all grid cells were within 12 for 1998-±  μg/m3 

181 2014. The monthly average relative errors specific to each country were within 10%.±  

182 Figure 2 shows the scatter plots of the satellite-retrieved PM2.5 concentrations and the 8-fold average predicted 

183 concentrations. The strong correlation coefficient (R, 0.987) was better than that of previous studies63-65 and indicates 

184 that the model could accurately predict all of the 8-fold cross-validation data. The statistical evaluation metrics (A1–

185 A6 in the supplemental material) shown in Table 1 were further used to verify the model performance. The relatively 

186 small standard deviation of error indicates that our trained model has considerable stability. From these statistical 

187 matrix perspectives, the PM2.5 concentrations estimated by our proposed deep learning model were also better than 

188 those of previous studies.29, 66, 67 In addition to the comparison with the satellite-retrieved PM2.5 data, we compared 

189 the annual model-predicted PM2.5 concentrations with the monitor-based observations in China, the United States, 
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7

190 and Europe because these regions have well-established ground-based observation networks (Table S6). The R values 

191 for China, the United States, and Europe were 0.91, 0.80, and 0.81, respectively. These results show that the PM2.5 

192 estimates from our method were also in general agreement with the ground-based observations in these regions. 

193

194 Figure 2. 8-fold cross-validation of the global PM2.5 concentrations predicted by the U-Net CNN model 

195 during 1998-2014. The color represents the sample density.

196 Table 1. 8-fold cross-validation of U-Net CNN model performance

NMB* NME* MB*
(𝛍𝐠/𝐦𝟑)

MAGE*
(𝛍𝐠/𝐦𝟑)

RMSE*
( )𝛍𝐠/𝐦𝟑 R

Average −0.01 0.22 −0.05 1.36 4.02 0.987

Standard 
error 0.01 0.03 0.08 0.11 0.39 0.010

197 *NMB: normalized mean bias; NME: normalized mean error; MB: mean bias; MAGE: mean absolute gross error;

198 RMSE: Root Mean Squared Error

199 As mentioned above, the CMIP6 emissions from 2015–2019 under the four SSP scenarios together with other input 

200 data were fed into the trained deep learning model to estimate the PM2.5 concentrations for these 5 years, as shown in 

201 Table S7. These metrics indicate the good feasibility and generalizability of our model in predicting the PM2.5 

202 concentrations. In summary, the satisfactory performance indicated that the trained U-Net model was able to identify 

203 the relationships between PM2.5 and the influencing factors, which demonstrates that this model could be used for 

204 future PM2.5 pollution estimation in the 2021–2100 period under different climate scenarios.
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8

205 3.2. Projection of future ambient PM2.5 concentrations

206 The built U-Net deep learning model was used to project future PM2.5 concentrations under the SSP1-2.6, SSP2-4.5, 

207 SSP3-7.0, and SSP5-8.5 scenarios. Changes in the downscaled multi-model ensembles of critical meteorological 

208 variables are shown in Figures S8–S12. Emissions (SO2, NH3, OC, BC, NOx) for the four SSP scenarios up to 2100 

209 are shown in Figures S13-S17. The projected PM2.5 concentrations were compared with the baseline concentration 

210 (the average PM2.5 concentration from 2010 to 2019), as shown in Figure 3. The PM2.5 decadal average concentrations 

211 for the different SSP scenarios are shown in Figures S18–S21.

212

213 Figure 3. Spatial distribution of changes in projected global PM2.5 concentrations relative to the baseline 

214 period (2010–2019) under different climate change scenarios. Panels (a)-(d) represent the changes in PM2.5 

215 concentration for 2030s (2021-2050 average), 2050s (2041-2070 average), 2070s (2061-2090 average), and 2080s 

216 (2071-2100 average) under SSP1-2.6 scenarios compared to the baseline condition. Panels (e)-(h) represent 

217 that of the same period but under SSP2-4.5. Panels (i)-(l) represent that of the same period but under SSP3-

218 7.0. Panels (m)-(p) represent that of the same period but under SSP5-8.5.

219 Based on the deep learning model estimations, the PM2.5 concentrations are projected to decrease in almost all regions 

220 in all scenarios; however, there are some notable differences among the projections. In SSP1-2.6, the projected PM2.5 

221 concentration will decrease consistently from 2030 to 2100. Among the investigated regions, the Middle East, Eastern 
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9

222 China, and India will undergo the most significant decline in PM2.5 concentrations under this scenario. SSP2-4.5 

223 represents the middle range of plausible future pathways. In this scenario, although the furthest projection into the 

224 2090s showed a decline compared with the baseline level (that of the 2010s), this reduction was much smaller than 

225 the corresponding changes under SSP1-2.6. The projections are different for SSP3-7.0, which assumes more 

226 pessimistic development strategies, such as less investment in the environment and health care and a fast-growing 

227 population.17, 19, 68 This would lead to an apparent increase in PM2.5 concentrations in Asia and Africa before the 

228 2050s. After meeting economic development needs and implementing environmental control measures, the PM2.5 

229 concentrations would decrease to a level similar to the baseline period. In SSP5-8.5, fossil fuels are heavily relied on 

230 to achieve rapid economic growth. Thus, in the middle of the 21st century, climate and emission change would 

231 considerably increase PM2.5 concentrations and cause considerable damage to human health in central Africa. 

232 Nevertheless, with the rapid development of society and pollution mitigation policies, the overall PM2.5 

233 concentrations will undergo a sharper reduction after the 2050s. PM2.5 concentrations continued to exceed baseline 

234 values in central Africa under SSP3-7.0 and SSP5-8.5, which is quite consistent with the emission-increasing trends 

235 in the region as shown in Figure S22 and S23, implying that the emission change should be the major driver for the 

236 PM2.5 concentration increase in Central Africa.

237 3.3. Projection of future ambient PM2.5 exposure 

238 SSPs narratives gave rise to spatial and temporal differences in the demographic projections. Figures S24 and S25 

239 show the demographic projections for the four SSPs scenarios for the world and for different regions, respectively. 

240 The projected population density (persons/km2) and the corresponding variations (compared to the situation in the 

241 2010s) in four SSP scenarios are shown in Figure S26. Combined with demographic projections, the exposure 

242 concentration can be estimated and used to assess the PM2.5 exposure associated health impacts.69, 70

243 Figure 4 shows the projected PM2.5 exposure concentrations in several representative regions (North America, South 

244 America, Europe, Africa, the Middle East, Russia and Economies in Transition [EIT], Asia, and the rest of the world) 

245 under the various SSP scenarios. The region boundaries are shown in Figure S27. Overall, PM2.5 exposure is highest 

246 in the SSP3-7.0 scenario and lowest in the SSP1-2.6 scenario for the major representative regions of the world, 

247 although the main drivers for the projected outcomes differ. 
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248 In Europe and North America, where PM2.5 concentrations will be relatively low, the population distribution is the 

249 main determinant of PM2.5 exposure. Spatially-averaged PM2.5 concentrations will be lower in the SSP5-8.5 scenario 

250 owing to the stronger pollution control measures than in the “middle of the road” SSP2-4.5 scenario, but the 

251 population-weighted PM2.5 concentrations in SSP5-8.5 will slightly exceed those of SSP2-4.5 and even surpass those 

252 of SSP3-7.0 after the 2060s. These trends will be caused by the higher birthrate in Europe and North America in 

253 SSP5-8.5 driven by economic optimism and international migration, leading to accelerated population growth in 

254 these two regions (Figures S25 and S28).71 This implies that a greater share of the population will be concentrated in 

255 areas with higher levels of social development and education. Therefore, compared with SSP2-4.5, the SSP5-8.5 

256 scenario will result in a higher population-weighted PM2.5 exposure in North America and Europe after the 2060s. 

257 In both Asia and Africa, PM2.5 exposure will decline steadily over time, reaching −58.2% (−47.3%) and −52.5% 

258 (−32.0%) for Asia (Africa) by the end of the century under the SSP1-2.6 and SSP5-8.5 scenarios, respectively, 

259 compared with the baseline period. However, there will be no significant decline under the SSP3-7.0 scenario, and 

260 before the 2060s, the exposure levels will be even higher than in the baseline period. Two explanations can be offered 

261 for the persistently high exposure concentrations in Asia and Africa under the SSP3-7.0 scenario. The emissions and 

262 unfavorable meteorological factors will lead to increased PM2.5 pollution under this scenario before the 2030s. 

263 Meanwhile, population increase due to high fertility accompanied by slow urbanization in these regions will intensify 

264 the density of urban and rural settlement patterns, thereby increasing PM2.5 exposure.71 

265 The proportion of the population that would be exposed to the PM2.5 concentration below previous and current Air 

266 Quality Guideline (AQG) values is also estimated under future climate change scenarios. As shown in Figure S29, 

267 the differences between SSP1-2.6 scenario and the other three scenarios are considerable. Compared with the other 

268 three scenarios, SSP1-2.6 would result in the largest fraction of the population exposed to the PM2.5 level that is lower 

269 than 5 µg/m³. In the SSP1-2.6 scenario, 3.5% of the world’s population will live in areas that have PM2.5 

270 concentrations lower than 5 µg/m³ by 2100, which is well above the baseline (2.0%). The other scenarios are 

271 comparable in terms of the proportion of the population exposed to the PM2.5 concentration that is below the current 

272 AQG values.
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273

274
275 Figure 4. Projected ambient PM2.5 exposure concentrations for 2030–2100 under different climate change 
276 scenarios. 
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277 3.4. Projection of premature mortality burden

278 The global premature mortality burden associated with future PM2.5 concentrations under the different SSP scenarios 

279 was also analyzed. Figure 5 shows the PM2.5-associated premature deaths for the baseline (2010–2019) and future 

280 (2030–2100) periods in several representative regions. The green growth and sustainable development assumptions 

281 in the SSP1-2.6 scenario would lead to a rapid reduction in air pollution emissions globally. Therefore, the number 

282 of PM2.5-associated premature deaths worldwide would start to decline in the near future (2031–2040) before the 

283 population growth turning point (2071–2080). Given the middle-road development pattern of SSP2-4.5, premature 

284 deaths in this scenario would peak at 9,024,000 (95% Confidence Interval (CI): 6,352,000–11,236,000) in the 2060s 

285 and then steadily decline to 7,394,000 (95% CI: 5,202,000–9,291,000) in the final decade of the century, which is a 

286 less rapid decline than in the SSP1-2.6 scenario. SSP3-7.0 assumes weak pollution control in which the 

287 implementation of pollution mitigation measures is delayed and less ambitious in the long term. In this scenario, 

288 premature deaths would spike dramatically in all regions except North America, Europe, and Russia and would not 

289 decrease until the end of the century. The global number of PM2.5-associated premature deaths would reach 

290 11,149,000 (95% CI: 7,877,000–13,800,000) in 2091–2100, an increase of 63% from the baseline period. In the 

291 SSP5-8.5 scenario, which emphasizes technological progress and rapid economic growth through human capital 

292 development, environmental issues become a priority health concern, and ambitious air quality goals result in 

293 pollutant levels well below current levels in the medium to long term.16, 72 Therefore, in SSP5-8.5, global premature 

294 deaths would peak at 8,509,000 (95% CI: 5,981,000–10,617,000) in the 2040s and then decline to 6,258,000 (95% 

295 CI: 4,410,000–7,887,000) in the second half of the 21st century as high-performance pollution control technologies 

296 are developed. This decrease would result in a smaller premature death burden than in the baseline period.
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297
298 Figure 5. PM2.5-associated premature deaths (> 25 years old) in different regions. The red bars represent 
299 premature deaths, and the vertical black lines indicate the 95% empirical confidence intervals.
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300 Because the size of the population will determine the absolute number of premature deaths, country-specific mortality 

301 rates per 100,000 people were used to describe the PM2.5-associated mortality burden. Figure S30 shows the mortality 

302 rate per 100,000 people for 184 countries or districts. Overall, countries in North America, Western Europe, and 

303 Oceania will have the lowest mortality rates. The mortality rates in Eastern European countries (e.g., Ukraine and 

304 Serbia) will be the highest, followed by some countries in Asia, such as China and India. 

305 3.5. Key factors that influence the premature mortality burden

306 Two sensitivity studies were conducted to explore how future population distributions and PM2.5 concentrations 

307 would affect the burden of PM2.5-associated premature mortality (Table S8). In the first sensitivity experiment (SA1), 

308 the only contributor to the difference in the estimated premature deaths from the baseline period is the demographic 

309 transition, while the contributor to the difference in the second sensitivity experiment (SA2) is the PM2.5 variation.

310 When considering only the future demographic projections (i.e., demographic changes and changes in total 

311 population by age), the changes in the population distribution over the coming decades (2021–2040) will exacerbate 

312 the burden of premature deaths in all four scenarios, but the magnitude of the effect differs among the scenarios. 

313 These differences are reflected in the demographic assumptions about the birthrate, mortality, and migration.73 SSP1-

314 2.6 and SSP5-8.5 both envision a development path of increased investment in education and health, thereby 

315 accelerating the demographic transition.71 Therefore, in these two scenarios, the demographic turning point in 

316 population decline will be reached earlier, in the medium term (2050s) (Figure S25), after which the impact of 

317 demographics on the burden of premature mortality will gradually decrease. 

318 In the second sensitivity experiment, we explore the effect of the PM2.5 concentration on premature mortality 

319 assuming a constant future population distribution and size. Disease burden alleviation resulting from implementing 

320 air pollution control measures will become apparent in the near future under the SSP1-2.6 and SSP5-8.5 scenarios. 

321 SSP1-2.6 is the only scenario in which the effect of the PM2.5 concentration will be greater than the effect of 

322 population size by the end of the century. Rapidly declining emissions would successfully offset the burden of 

323 premature mortality resulting from population growth by the end of the century. Under the SSP3-7.0 scenario, the 

324 planetary boundary layer height (PBLH) exerts strong influence on PM2.5 dispersion, and thus its decreases in East 

325 Asia, South Asia, and eastern Africa (Figure S10) will increase the PM2.5 concentrations. Besides PBLH, other 
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326 meteorological conditions, such as higher temperature,74 are also favorable for PM2.5 accumulation in these regions 

327 and therefore exacerbate the PM2.5-associated mortality burden until the 2050s.  

328

329 3.6. Implications and limitations

330 Global climate change is a significant challenge for society, and its impact on future air pollution is a critical 

331 perspective that requires quantitative assessment. Herein, a global PM2.5 concentration dataset with a spatial 

332 resolution of 0.1° 0.1° was estimated based on SSP scenarios.  ×  

333 From the methodology and dataset perspectives, this work provides a new set of global-scale future PM2.5 dataset in 

334 10km spatial resolution. This dataset can be used by others for air quality-related studies at the national and even 

335 regional scales. The dataset can be downloaded from the link listed in Text S8. The method developed in this work 

336 can also be implemented for other air pollution-related research. Researchers can further develop other more 

337 advanced deep learning frameworks for relevant studies based on the design of the method proposed in this work. 

338 From the results perspective, this work has quantified how the future PM2.5 and its associated adverse health impacts 

339 will change based on different SSP scenarios. Based on our results, governments and relevant stakeholders from 

340 different countries can generally understand to what extent can PM2.5 influence their specific local health burdens. 

341 This can provide useful scientific references for future air pollution control policy design. In addition, when other 

342 studies come out in the future, the results from this work can also be used for the comparison. For example, compared 

343 to the adverse effects caused by other pollutants, such as O3, which pollutant should the government put onto the 

344 priority position under different SSP scenarios.

345 From the health-economic impact perspective, the results of economic burdens shed light on the relationship between 

346 mortality cost that is associated with PM2.5 pollution and economic development in various countries under different 

347 future scenarios. The economic burdens related to future PM2.5 pollution are discussed in Text S9. Figure S31 and 

348 Figure S32 show the economic loss that is associated with PM2.5-related health burdens. For most OECD countries, 

349 China, and Central Asia, air pollution mitigation and economic development can have a beneficial synergistic effect. 

350 The ratio of economic loss associated with PM2.5 pollution over the total GDP (PPP based) is minimal in the 

351 sustainable development scenario (SSP1-2.6). For Central Africa and South America, from PM2.5 associated 

352 economic loss perspective, these countries may consider choosing SSP2-4.5 pathway as their development modes.
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353 This work has some limitations. First, satellite-retrieved PM2.5 datasets were used as training targets, but according 

354 to the results in Table S6, there were discrepancies with the observational data obtained from ground measurements. 

355 Second, future climate, emission, and population projections harbor relatively large uncertainty, even if they have 

356 been calibrated against observed patterns of changes using historical data.23, 71 Third, there are no generalizable and 

357 accurate findings that indicate how baseline mortality rates will change in the future. Therefore, in accordance with 

358 previous studies75, 76 in the projection literature, we assumed that the nonlinear relationship between PM2.5 

359 concentrations and the baseline mortality rate would also be consistent. Fourth, the PM2.5 projections derived in this 

360 study were based on several underlying assumptions. Primarily, in line with previous works,75, 76 the relationships 

361 between PM2.5 concentrations and meteorological conditions and precursor emissions explored in this study were 

362 assumed to be true for future climate and emissions scenarios. Fifth, our predictions were based on the premise that 

363 the world is steadily developing, and our method cannot predict the effects of uncontrollable factors (such as war and 

364 strong earthquakes) on PM2.5 and population distributions. Finally, the biases in emissions data (e.g., bias in future 

365 wildfires and missing windblown dust), can be directly propagated to the air pollution concentration estimation. Thus, 

366 PM2.5 projections in this work contain unavoidable uncertainty. The spatial pattern of windblown dust was not 

367 included in this study, which may have an influence on our results, especially for the Sahara and Middle East. Given 

368 the proximity of these regions to large sources of dust emissions, there is a possibility that an underestimation of 

369 PM2.5 concentrations would occur in these regions. However, the impact on the mortality estimations is limited since 

370 these regions are more sparsely populated. Despite these limitations, this work helps quantify the extent to which 

371 climate change will influence PM2.5 concentrations worldwide. The results can contribute to the ongoing assessment 

372 of PM2.5-associated exposure and vulnerability under different climate change scenarios, and governments can use 

373 this information to design useful strategies to reduce pollution. 
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