PROGRAM MAIN IMPLICIT NONE C ---------------------------------------------------------------------- C NOAH LAND-SURFACE MODEL, UNCOUPLED 1-D COLUMN: VERSION 3.0 FEB 2002 C C THIS MAIN PROGRAM AND ITS FAMILY OF SUBROUTINES COMPRISE VERSION 3.0 C OF THE PUBLIC RELEASE OF THE UNCOUPLED 1-D COLUMN VERSION OF THE C "NOAH" LAND-SURFACE MODEL (LSM). THE NOAH LSM IS A DESCENDANT OF AN C EARLIER GENERATION OF THE OREGON STATE UNIVERSITY (OSU) LSM, BUT IT C INCLUDES SUBSTANTIAL PHYSICS EXTENSIONS AND RECODING ACCOMPLISHED C ALONG THE WAY BY NCEP, HL (NWS), AFGWC, AND AFGL/AFPL/AFRL. HENCE C THE ACRONYM "NOAH" DENOTES N-NCEP, O-OSU, A-AIR FORCE, H-HYDRO LAB. C ---------------------------------------------------------------------- C FOR DOCUMENTATION OF THIS CODE AND INSTRUCTIONS ON ITS EXECUTION AND C INPUT/OUTPUT FILES, SEE "NOAH LSM USER'S GUIDE" IN FILE README_3.0 C IN THE SAME PUBLIC SERVER DIRECTORY AS THIS SOURCE CODE. C ---------------------------------------------------------------------- C PROGRAM HISTORY LOG C VERSION 1.0 -- 01 MAR 1999 C VERSION 1.1 -- 08 MAR 1999 C VERSION 2.0 -- 27 JUL 1999 C VERSION 2.1 -- 23 OCT 2000 C VERSION 2.2 -- 07 FEB 2001 C VERSION 2.3 -- 07 MAY 2001 = operational Eta implementation C VERSION 2.4 -- 27 JUN 2001 = ops Eta with NO physics changes C VERSION 2.5 -- 18 OCT 2001 C physics changes: C in SUBROUTINE REDPRM change CSOIL_DATA from /1.26E+6/ to /2.00E+6/ C in SUBROUTINE REDPRM change ZBOT_DATA from /-3.0/ to /-8.0/ C replace de-bugged SUBROUTINE TDFCND C VERSION 2.6 -- 21 NOV 2001 C VERSION 3.0 -- 06 FEB 2002 C ---------------------------------------------------------------------- CHARACTER*72 CNTRFL, FILENAME, FILENAME2 INTEGER NSOLD PARAMETER(NSOLD = 20) INTEGER ICE INTEGER IDAY INTEGER IIDAY INTEGER IMONTH INTEGER IREC1 INTEGER IREC3 INTEGER IREC5 INTEGER IRECD INTEGER NOUTDAY INTEGER NOUT1 INTEGER NOUT3 INTEGER NOUT5 CCCC......INTEGER NOUTRES INTEGER NREAD1 INTEGER NREAD2 INTEGER NRECL CCCC......INTEGER NROOT INTEGER NROOT INTEGER NRUN INTEGER NRUN2 INTEGER NSOIL INTEGER SLOPETYP INTEGER SOILTYP INTEGER IVEGTYP INTEGER ITIME INTEGER jday INTEGER ITIME_ctl INTEGER jday_ctl INTEGER jday0 INTEGER IJ INTEGER IJ1 INTEGER INDI INTEGER IBINOUT INTEGER NSPINUP INTEGER NCYCLES LOGICAL L2nd_data CCC......REAL R CCC......REAL CP CCC......PARAMETER (R = 287.04, CP = 1004.5) REAL BETA REAL DRIP REAL EC REAL EDIR REAL ET(NSOLD) REAL ETT REAL ESNOW REAL F CCC......REAL FXEXP REAL FLX1 REAL FLX2 REAL FLX3 c REAL RUNOF REAL DEW c REAL RIB REAL RUNOFF3 REAL SMSCDIF_O REAL SMSCDIF C LW REAL SIGMA REAL LATITUDE REAL LONGITUDE REAL RUNOFF2 REAL Q1 REAL AET REAL ALB REAL ALBEDO REAL CH REAL CM REAL CMC REAL CMC_bef REAL DQSDT CCCC REAL CZIL CCCC REAL REFKDT REAL DQSDT2 REAL DT C LW REAL EMISS REAL ESAT REAL ETA REAL ETA_OBS REAL ETP REAL FUP REAL GHF REAL H REAL H_OBS REAL LE REAL LWDN REAL LW_in REAL PRCP REAL PTU REAL SMCWLT REAL SMCDRY REAL SMCREF REAL SMCMAX REAL Par_in REAL Par_out REAL Q2 REAL Q2SAT REAL RES REAL RESTOT REAL RH REAL RNET REAL RUNOFF1 REAL Rg REAL SFCSPD REAL SFCPRS REAL SFCTMP REAL SHDFAC REAL SHDMIN REAL ALBEDOM (13) REAL SHDFACM (13) CCCC...REAL MLAI (13) CCCC...REAL XLAI REAL SKN_IRT REAL SMC(NSOLD) REAL STC0(NSOLD,15) REAL SMC0(NSOLD,15) REAL SH2O0(NSOLD,15) REAL CMC0(15) REAL SNOWH0(15) REAL SNEQV0(15) REAL T1_ini(15) REAL SNOMLT REAL SNOALB REAL SOILW REAL SOILM REAL SOILM_bef REAL SOLDN REAL STC(NSOLD) REAL S REAL S_OBS REAL T1 REAL T1_OBS REAL T14 REAL T1V REAL T2V C LW REAL TAK REAL TBOT REAL TH2 REAL TH2V REAL T_16 REAL T_02 REAL T_32 REAL T_04 REAL T_64 REAL T_08 REAL Z CCCC REAL Z0 REAL eddyuw REAL sm_20 REAL sm_05 REAL sm_60 REAL u_bar REAL uprim2 REAL vprim2 REAL w_dir REAL wet REAL wprim2 C REAL PCPDAY REAL PCPSUM REAL ETADAY REAL ETSUM REAL RUNOFFSUM REAL RUNOFFDAY REAL SMCMM REAL SMCDIF REAL SMCNW REAL SMC_OBS(NSOLD) REAL ETADAY_O REAL ETSUM_O REAL SMCDIF_O REAL SMCMM_O REAL SMCNW_O C REAL SH2O(NSOLD) REAL SLDPTH(NSOLD) REAL SNOWH REAL SNEQV REAL SNEQV_bef REAL LVH2O REAL SNCOVR REAL RSMIN REAL XLAI REAL RC REAL PC REAL RCS REAL RCT REAL RCQ REAL RCSOIL REAL ECX REAL EDIRX REAL ETX1 REAL ETX2 REAL ETX3 REAL ETX4 REAL ETTX REAL ESNOWX REAL SNDENS C ---------------------------------------------------------------------- c declare decimal julian day (0-365), reflected solar REAL XJDAY REAL SOLUP C ---------------------------------------------------------------------- PARAMETER (LVH2O = 2.501000E+6) c DATA SHDMIN /0.0/ DATA SHDMIN /1.0/ C ############################################################# C MIC$ TASKCOMMON RITE C ---------------------------------------------------------------------- c open special output files OPEN (UNIT=14,FILE='3.0_SEB.tx',STATUS='UNKNOWN', & FORM='FORMATTED') OPEN (UNIT=15,FILE='3.0_ET.tx',STATUS='UNKNOWN', & FORM='FORMATTED') OPEN (UNIT=16,FILE='3.0_snow.tx',STATUS='UNKNOWN', & FORM='FORMATTED') OPEN (UNIT=17,FILE='3.0_tempsC.tx',STATUS='UNKNOWN', & FORM='FORMATTED') OPEN (UNIT=18,FILE='3.0_soilmoist.tx',STATUS='UNKNOWN', & FORM='FORMATTED') C ---------------------------------------------------------------------- C initialize decimal julian day (0-365), 0=1Jan00:00 c XJDAY = 0.0 XJDAY = -1800./(24.*3600.) C ------------------------------------------------------------- C THERE ARE 10 STEPS IN THIS MAIN PROGRAM DRIVER C C DRIVER STEP 1 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< C 1. READ CONTROL FILE <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< C >>>>>>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<<<<<<< CNTRFL = 'controlfile_ver_3.0' C ---------------------------------------------------------------------- CALL READCNTL(CNTRFL,NCYCLES,L2nd_data,NRUN,NRUN2, & DT,NSOIL,NSOLD,Z,SLDPTH, & SOILTYP,IVEGTYP,SLOPETYP,ALBEDOM,SHDFACM,SHDMIN,SNOALB,ICE, & TBOT,T1, & STC,SMC,SH2O,CMC,SNOWH,SNEQV,FILENAME,FILENAME2, & LATITUDE, & LONGITUDE, & jday_ctl,IBINOUT, & ITIME_ctl) C Parameters check IF (NSOLD .LT. 2) THEN PRINT*,' ' PRINT*,'NSOLD MUST BE AT LEAST 2, NSOLD = ', NSOLD PRINT*,' ! ! ! ! ! ! ! ! ! ! ! ! ! ! !' stop 999 END IF IF (NSOIL .LT. 2) THEN PRINT*,' ' PRINT*,'NSOIL MUST BE AT LEAST 2, NSOIL = ', NSOIL PRINT*,' ! ! ! ! ! ! ! ! ! ! ! ! ! ! !' stop 999 END IF IF (NSOLD .LT. NSOIL) THEN PRINT*,' ' PRINT*,'NSOLD MUST BE GREATER OR EQUAL THAN NSOIL,' PRINT*,' NSOLD = ',NSOLD,' NSOIL = ',NSOIL PRINT*,' ! ! ! ! ! ! ! ! ! ! ! ! ! ! !' stop 999 END IF C END of Parameters check c debug print READCNTL output PRINT*,' ' PRINT*,'-----------------------------' PRINT*,'READCNTL output' PRINT*,'-----------------------------' PRINT*,' ALBEDOM=',ALBEDOM PRINT*,' CMC=',CMC PRINT*,' CNTRFL=',CNTRFL CCC PRINT*,'CZIL=',CZIL PRINT*,' DT=',DT PRINT*,' FILENAME=',FILENAME PRINT*,' FILENAME2=',FILENAME2 PRINT*,' L2nd_data=',L2nd_data PRINT*,' ICE=',ICE PRINT*,' IBINOUT=',IBINOUT PRINT*,' SLOPETYP=',SLOPETYP PRINT*,' SOILTYP=',SOILTYP PRINT*,'ITIME_ctl=',ITIME_ctl PRINT*,' IVEGTYP=',IVEGTYP PRINT*,' LATITUDE=',LATITUDE PRINT*,'LONGITUDE=',LONGITUDE CCC PRINT*,' MLAI=',MLAI CCC PRINT*,' NROOT=',NROOT PRINT*,' NCYCLES=',NCYCLES PRINT*,' NRUN=',NRUN PRINT*,' NRUN2=',NRUN2 PRINT*,' NSOIL=',NSOIL CCC PRINT*,' REFKDT=',REFKDT WRITE(*,*)' SH2O=',(SH2O(IJ) ,IJ=1,NSOIL) PRINT*,' SHDFACM=',SHDFACM WRITE(*,*)'SLDPTH=',(SLDPTH(IJ) ,IJ=1,NSOIL) WRITE(*,*)' SMC=',(SMC(IJ) ,IJ=1,NSOIL) PRINT*,' SNEQV=',SNEQV PRINT*,' SNOALB=',SNOALB PRINT*,' SNOWH=',SNOWH WRITE(*,*)' STC=',(STC(IJ) ,IJ=1,NSOIL) PRINT*,' T1=',T1 PRINT*,' TBOT=',TBOT PRINT*,' Z=',Z CCC PRINT*,' Z0=',Z0 PRINT*,' jday_ctl=',jday_ctl PRINT*,'-----------------------------' PRINT*,' end of READCNTL output ' PRINT*,'-----------------------------' PRINT*,' ' C DRIVER STEP 2 OPEN INPUT/OUTPUT FILES <<<<<<<<<<<<<<<<<<< C 2. OPEN INPUT/OUTPUT FILES <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< C >> OPEN FILES CONTAINING ATM. STATION DATA <<<<< NREAD1=25 OPEN(NREAD1,FILE=FILENAME,STATUS='OLD') C IF YOU RUN A 2nd data file with atmospheric forcing at the end C (usually after SPIN-UP CYCLE) IF (L2nd_data) THEN NREAD2=27 OPEN(NREAD2,FILE=FILENAME2,STATUS='OLD') PRINT*,' ' PRINT*,' WILL USE ',FILENAME2 PRINT*,' AS FORCING FILE IN THE LAST RUN' DO IJ=1,10 PRINT*,' ' END DO ENDIF C C ------------------------------------------------------------ C c (IBINOUT's must be positive 1 for binary output for GrADS) c (IBINOUT's must be negative 1 for ascii output intead) C IBINOUT is set to -1 or +1 in controlfile. NOUT1 = 43*IBINOUT NOUT3 = 45*IBINOUT NOUT5 = 47*IBINOUT NOUTDAY= 49*IBINOUT C DATA WORD LENGTH (RECORD LENGTH, DEPENDS ON THE BINARY SIZE (MEANING C DEPENDENT) OF THE REAL VARIABLES TO BE WRITEN FOR GrADS) C For Single Precision, C SGI100 Linux (RedHat5.2) C f77... NRECL=1 NRECL=4 C f90... NRECL=4 NRECL=4 C HYDROLOGY IF (NOUT1 .GT. 0) THEN IREC1 = 1 OPEN(UNIT=NOUT1,FILE= & 'HYDRO.GRS', & STATUS='NEW' & ,ACCESS='DIRECT' & ,FORM='UNFORMATTED' & ,RECL=NRECL &) ELSEIF (NOUT1 .LT. 0) THEN OPEN(UNIT=-NOUT1,FILE= & 'HYDRO.TXT', & STATUS='NEW') END IF C THERMODYNAMICS IF (NOUT3 .GT. 0) THEN IREC3 = 1 OPEN(UNIT=NOUT3,FILE= & 'THERMO.GRS', & STATUS='NEW' &,ACCESS='DIRECT' &,FORM='UNFORMATTED' &,RECL=NRECL &) ELSEIF (NOUT3 .LT. 0) THEN OPEN(UNIT=-NOUT3,FILE= & 'THERMO.TXT', & STATUS='NEW') END IF C DEBUG !!!!!!!!!!!!!! DEBUG !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! C OPEN(UNIT=113,FILE='FRH2O_Newton.TXT') C DEBUG !!!!!!!!!!!!!! DEBUG !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! C OBSERVATIONAL DATA IF (NOUT5 .GT. 0) THEN IREC5 = 1 OPEN(UNIT=NOUT5, & FILE='OBS_DATA.GRS', & STATUS='NEW' &, ACCESS='DIRECT' &, FORM='UNFORMATTED' &,RECL=NRECL &) ELSEIF (NOUT5 .LT. 0) THEN OPEN(UNIT=-NOUT5, & FILE='OBS_DATA.TXT', & STATUS='NEW') END IF C DAILY ACCUMULATION VALUES IF (NOUTDAY .GT. 0) THEN IRECD = 1 OPEN(UNIT=NOUTDAY, & FILE='DAILY.GRS', & STATUS='NEW' &, ACCESS='DIRECT' &, FORM='UNFORMATTED' &,RECL=NRECL &) ELSEIF (NOUTDAY .LT. 0) THEN OPEN(UNIT=-NOUTDAY, & FILE='DAILY.TXT', & STATUS='NEW') END IF C C >>>>>>>> OPENING OUTPUT FILES FINISHED <<<<<<<<<<<<<<<<<<<<<<<<<<< C ------------------------------------------------------------ C Initialize Day number, summed sfc energy bal residual, C Phota Thermal Unit (PTU) C jday0 = -1 IIDAY = 0 RESTOT = 0.0 PTU = 0.0 C C READ FIRST RECORD OF FORCING TO CHECK THE START DATE <<<<<<<<<<<< C C >>>>>>>>> READPILPS-->READBND - Read Tilden Meyers BND data <<<<< C First initialize a few variables (only those saved in XOLD array): SFCTMP = 0. RH = 0. SFCPRS = 0. Rg = 0. LW_in = 0. PRCP = 0. SKN_IRT = 0. u_bar = 0. CALL READBND(jday, ITIME, SFCTMP, RH, SFCPRS, Rg, * Par_in, Par_out, RNET, LW_in, GHF, PRCP, wet, SKN_IRT, * T_02, T_04, T_08, T_16, T_32, T_64, sm_05, * sm_20, sm_60, w_dir, u_bar, eddyuw, * uprim2, vprim2, wprim2, H, LE, * DT,IMONTH,IDAY,NREAD1) C THIS IS FOR THE DAILY WATER BALANCE ------------------ C Initialize daily accum vars after reading control file PCPDAY = 0.0 PCPSUM = 0.0 ETADAY = 0.0 ETSUM = 0.0 ETADAY_O = 0.0 ETSUM_O = 0.0 RUNOFFSUM = 0.0 RUNOFFDAY = 0.0 SMCMM = 0.0 C ----- DO NOT INITIALIZE THIS INSIDE TIME LOOP ! ------------- C initialize variables for water balance (daily sm differences) C initial SMCMM from control file !!!!!!!!!!!!! C but only 3 layers !!!!!!!!!!!!! do ij = 1,3 SMCMM = SLDPTH(ij)*1000.*SMC(ij) + SMCMM end do C initial SOILM for 1st timestep water balance SOILM = 0.0 do ij = 1,NSOIL SOILM = SOILM + SLDPTH(ij)*SMC(ij) end do C initial OBS SMCMM same as from control file C but only 3 layers !!!!!!!!!!!!! SMCMM_O = SMCMM SMSCDIF_O = 0.0 SMCNW_O = 0.0 SMSCDIF = 0.0 SMCNW = 0.0 C THIS PART ABOVE IS FOR THE DAILY WATER BALANCE ------- C ----- DO NOT INITIALIZE THE ABOVE INSIDE TIME LOOP ! -------- C debug print READBND output PRINT*,' ' PRINT*,'------------------------------------' PRINT*,'print READBND output' PRINT*,'------------------------------------' PRINT*,' jday=',jday PRINT*,' ITIME=',ITIME PRINT*,' SFCTMP=',SFCTMP PRINT*,' RH=',RH PRINT*,' SFCPRS=',SFCPRS PRINT*,' Rg=',Rg PRINT*,' Par_in=',Par_in PRINT*,' Par_out=',Par_out PRINT*,' RNET=',RNET PRINT*,' LW_in=',LW_in PRINT*,' GHF=',GHF PRINT*,' PRCP=',PRCP PRINT*,' wet=',wet PRINT*,' SKN_IRT=',SKN_IRT PRINT*,' T_02=',T_02 PRINT*,' T_04=',T_04 PRINT*,' T_08=',T_08 PRINT*,' T_16=',T_16 PRINT*,' T_32=',T_32 PRINT*,' T_64=',T_64 PRINT*,' sm_05=',sm_05 PRINT*,' sm_20=',sm_20 PRINT*,' sm_60=',sm_60 PRINT*,' w_dir=',w_dir PRINT*,' u_bar=',u_bar PRINT*,' eddyuw=',eddyuw PRINT*,' uprim2=',uprim2 PRINT*,' vprim2=',vprim2 PRINT*,' wprim2=',wprim2 PRINT*,' H=',H PRINT*,' LE=',LE PRINT*,' IMONTH=',IMONTH PRINT*,' IDAY=',IDAY PRINT*,' NREAD1=',NREAD1 PRINT*,'------------------------------------' PRINT*,' end of printed READBND output' PRINT*,'------------------------------------' PRINT*,' ' rewind NREAD1 C CHECK DATE and time for simulation on first step IF ((ITIME_ctl .NE. ITIME) .or. (jday_ctl .NE. jday)) THEN PRINT*,'date/time specified in control file does not match & initial read from forcing data file, the program stops' PRINT*,' ' PRINT*,'Julian day in control file= ',jday_ctl PRINT*,'Julian day in forcing data file= ',jday PRINT*,' ' PRINT*,'Initial time in control file= ',ITIME_ctl PRINT*,'Initial time in forcing data file= ',ITIME stop 999 ENDIF C ---------------------------------------------------------------------| C INITIALIZE CH, CM (before time loop) CH=1.E-4 CM=1.E-4 C 1998 May 22 0030 (Julian= 142) typical values initialization C CH= 0.0150022404 C CM= 0.0205970779 C ---------------------------------------------------------------------| C START SPIN-UP LOOP | C DO NSPINUP = 1,NCYCLES C Save the initial Soil moisture C (here is the place to save initial conditions, STC,SMC,SH2O) DO IJ=1,NSOIL STC0(IJ,NSPINUP) = STC(IJ) SMC0(IJ,NSPINUP) = SMC(IJ) SH2O0(IJ,NSPINUP) = SH2O(IJ) END DO CMC0(NSPINUP) = CMC SNOWH0(NSPINUP) = SNOWH SNEQV0(NSPINUP) = SNEQV T1_ini(NSPINUP) = T1 C DRIVER STEP 3 (time step loop) <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< C ---------------------------------------------------------------------| C ---------------------------------------------------------------------| C | C START TIME LOOP | C | DO INDI = 1,NRUN C ---------------------------------------------------------------------- c increment decimal julian day (0-365) XJDAY = XJDAY + DT/(24.*3600.) C ---------------------------------------------------------------------- C DRIVER STEP 4 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< C 4. READ FORCING DATA <<<<<<<<<<<<<<<<<<<<<<<<< C C READ THE REQUIRED ATMOSPHERIC FORCING DATA, AS WELL AS NONREQUIRED C (BUT EXTREMELY USEFUL) COMPANION SIMULTANEOUS VALIDATING FLUX-SITE C DATA FROM THE EAST-CENTRAL ILLINOIS OBSERVING FLUX SITE (JUST SOUTH C OF CHAMPAIGN IL, NEAR BONDVILLE IL) OPERATED AND MAINTAINED (WITH C SOME GEWEX/GCIP SUPPORT) BY TILDEN MEYERS OF NOAA/ARL C C THE SEVEN REQUIRED SURFACE ATMOSPHERIC FORCING VARIABLES REQUIRED BY C THIS LSM AND MOST MODERN-ERA LSMs ARE: C 1) AIR TEMPERATURE, 2) AIR HUMIDITY, 3) WIND SPEED, 4) SFC PRESSURE, C 5) DOWNWARD SOLAR RAD, 6) DOWNWARD LONGWAVE RAD, AND MOST IMPORTANTLY, C 7) PRECIPITATION C C (NOTE: FOR THE UNITS REQUIRED OF THE FORCING DATA BY THIS LSM, C SEE COMMENT BLOCK AT BEGINNING OF ROUTINE "SFLX". ROUTINE C "READBND" HERE DOES THE REQUIRED UNITS CONVERSION FOR CALL TO SFLX) C C >>>>>>>>> READPILPS-->READBND - Read Tilden Meyers BND data <<<<< CALL READBND(jday, ITIME, SFCTMP, RH, SFCPRS, Rg, * Par_in, Par_out, RNET, LW_in, GHF, PRCP, wet, SKN_IRT, * T_02, T_04, T_08, T_16, T_32, T_64, sm_05, * sm_20, sm_60, w_dir, u_bar, eddyuw, * uprim2, vprim2, wprim2, H, LE, * DT,IMONTH,IDAY,NREAD1) CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C C SAVE OBSERVATIONS FOR LATER VALIDATION OUTPUT C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C Skin Temperature in Kelvin, (T1 IN SFLX) IF (SKN_IRT .GT. -273.) THEN T1_OBS = SKN_IRT + 273.15 ELSE T1_OBS = -6999. END IF C C >>>>>>>> SIGN CONVENTIONS FOR READ FLUXES <<<<<<<<<<<<<<<<<< C C S_OBS: SOIL HEAT FLUX READ FROM DATA (S IN SFLX) C (W M-2: NEGATIVE, IF DOWNWARD FROM SURFACE) S_OBS = GHF C C H_OBS: SENSIBLE HEAT FLUX READ FROM DATA (H IN SFLX) C (W M-2: NEGATIVE, IF UPWARD FROM SURFACE) H_OBS = H C C ETA_OBS: LATENT HEAT FLUX READ FROM DATA (ETA IN SFLX) C (W M-2: NEGATIVE, IF UPWARD FROM SURFACE) ETA_OBS = LE C C SMC_OBS: Soil moisture content (volumetric) FROM DATA C (just for water balance purposes) - don't have 4th layer SMC_OBS(1) = sm_05 SMC_OBS(2) = sm_20 SMC_OBS(3) = sm_60 C SMC_OBS(4) = 0.0 C C Keep the day number of the simulation IF (jday0 .NE. jday) THEN IIDAY = IIDAY + 1 jday0 = jday C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C C IN A FUTURE VERSION, CONSIDER IMPLEMENTING A PHYSICAL C TIME-DEPENDENT PHENOLOGY MODEL, THAT MIGHT CALCULATE A GROWING SEASON C GROWTH-STAGE INDEX, SUCH AS PTU = PHOTO THERMAL UNIT, DEPENDENT ON C ACCUMULATIVE GROWING SEASON AIR TEMPERATURE AND RADIATION. C FOR NOW, INCREMENT PTU IN A DUMMY WAY AS A STUB PLACE HOLDER C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C PTU = PTU + 0.10 C C DRIVER STEP 5 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< C 5. INTERPOLATE DAILY LAND SURFACE CHARACTERISTICS FROM MONTHLY C VALUES: C C........................... monthly, daily ............ CALL MONTH_D(JDAY,ALBEDOM,ALB) CALL MONTH_D(JDAY,SHDFACM,SHDFAC) C...........CALL MONTH_D(JDAY,MLAI ,XLAI) END IF C C >>>>>>>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< C ########################################################### C C RADIATION C The following step (OBTENTION OF LWDN) has been C commented out, given that C the current forcing data file available provides the C downward long wave radiative forcing as measured by NOAA's C SURFRAD site located within 5 Km of the flux/meteorological C measurements system site. C C OBTENTION OF LWDN <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< C C COMPUTATION OF LWDN (INCOMING LW RADIATION) FROM TAIR AND Q: C C...............LWDN = EMISS*SIGMA*(TAK)^4. C C WHERE: TAK = AIR TEMP IN KELVIN C EMISS = 0.7 OR (IDSO AND JACKSON, 1969): C C EMISS = (1 - 0.261 EXP(-7.77*10^(-4)X(273-TAK)^2) C C NEED STEFAN-BOLTZMANN CONSTANT, SIGMA C SIGMA = 5.672 * 10^-8 W M^-2 T^-4 C C SIGMA = 5.672E-8 C TAK = SFCTMP C EMISS = 1 - 0.261*EXP((-7.77E-4)*(273-TAK)^2.) C C LWDN = EMISS*SIGMA*TAK^4. C ########################################################### C DRIVER STEP 6 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< C 6. ASSIGN DOWNWARD SOLAR AND LONGWAVE RADIATION <<<<<<<<<<<<< C Using LW_in READ FROM DATA instead of LWDN calculated LWDN = LW_in SOLDN = Rg C DRIVER STEP 7 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< C 7. CALCULATE A SATURATION MIX RATIO (Q2SAT) <<<<<<<<<<<<<<<< C C NEED Q2 (FROM REL.HUMID.) USE SUBROUTINE QDATAP CALL QDATAP(SFCTMP,SFCPRS,RH,Q2,Q2SAT, ESAT) IF (Q2 .LT. 0.1E-5) Q2 = 0.1E-5 IF (Q2 .GE. Q2SAT) Q2 = Q2SAT*0.99 C CALCULATE SLOPE OF SAT SPECIFIC HUMIDITY CURVE FOR PENMAN: DQSDT2 DQSDT2 = DQSDT (SFCTMP, SFCPRS) CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C CALC VIRTUAL TEMPS AND POTENTIAL TEMPS AT GRND (SUB 1) AND AT C THE 1ST MDL LVL ABV THE GRND (SUB 2). EXPON IS CP DIVD BY R. CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC TH2 = SFCTMP + ( 0.0098 * Z ) T2V = SFCTMP * (1.0 + 0.61 * Q2 ) T1V = T1 * (1.0 + 0.61 * Q2 ) TH2V = TH2 * (1.0 + 0.61 * Q2 ) C C DRIVER STEP 8 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< C 8. CALCULATE CH (EXCHANGE COEFFICIENT) <<<<<<<<<<<<<<<<<<<<< C SFCSPD = sqrt(u*u+v*v), if individual (u,v) components provided, C but Tilden Meyers data provides wind speed as u_bar. SFCSPD = u_bar CC!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! C C IMPORTANT NOTE: TO CALCULATE THE SFC EXCHANGE COEF (CH) FOR HEAT AND C MOISTURE, SUBROUTINE SFCDIF BELOW CAN C C A) BE CALLED HERE FROM THE DRIVER, THUS CH IS INPUT TO SFLX C (AS IS TYPICAL IN A COUPLED ATMOSPHERE/LAND MODEL) OR C C B) BE CALLED INTERNALLY IN ROUTINE SFLX (THUS CH IS OUTPUT FROM SFLX), C THEREIN BETWEEN THE CALLS TO ROUTINES "REDPRM" AND "PENMAN" C C OPTION B IS THE DEFAULT HERE. THAT IS, IN THE UNCOUPLED, OFF-LINE LSM C REPRESENTED HEREIN BY THIS DRIVER, WE CALL SFCDIF LATER IN ROUTINE SFLX. C C THE ROUTINE SFCDIF REPRESENTS THE SO-CALLED "SURFACE LAYER" OR THE C "CONSTANT FLUX LAYER" (THE LOWEST 20-100 M OF THE ATMOSPHERE). C HENCE ROUTINE SFCDIF EMBODIES THE "ATMOSPHERIC AERODYNAMIC RESISTANCE". C C ONE CLASS OF USER THAT OPTION B IS INTENDED FOR IS THAT USER WHO MIGHT C WANT TO CONSTRUCT HIS/HER OWN DRIVER CODE FROM SCRATCH AND ONLY WANTS TO C WORRY ABOUT THE INPUT OF FORCING AND INITIAL STATE VARIABLES AND NOT C HAVE TO CONSIDER THE CHOICE OF THE SURFACE LAYER PHYSICS. C C TO ENABLE THE FLEXIBILITY OF EITHER OPTION A OR B, WE PASS C THE ARGUMENTS "CH", "CM", AND "SFCSPD" (WIND SPEED:JUST CALCULATED ABOVE) C TO ROUTINE SFLX TO SUPPORT OPTION B -- THAT IS, FOR INPUT TO THE CALL TO C ROUTINE SFCDIF THEREIN. IN OPTION A, THE ARGUMENTS "SFCSPD" AND "CM" C ARE NEITHER NEEDED IN ROUTINE SFLX, NOR ALTERED BY ROUTINE SFLX. C C CH IS THE SFC EXCHANGE COEFFICIENT FOR HEAT/MOISTURE C CM IS THE SFC EXCHANGE COEFFICIENT FOR MOMENTUM C C IF ONE CHOOSES OPTION A, THEN ONE MUST C 1 - ACTIVATE (UNCOMMENT) THE CALL TO SFCDIF BELOW, C 2 - ACTIVATE (UNCOMMENT) THE ASSIGNMENT OF "Z0" AND "CZIL" NEXT BELOW C 3 - DE-ACTIVATE (COMMENT OUT) THE CALL TO SFCDIF IN ROUTINE SFLX. C C Z0 = (use value set in routine REDPRM for veg class given in control file C CZIL = (use value set in routine REDPRM) C C THE ROUGHNESS LENGTH PARAMETERS "Z0" AND "CZIL" MUST BE SET HERE IN THE C DRIVER TO SUPPORT THE "OPTION-A", I.E. THE CALL TO SFCDIF BELOW. IN SO C DOING, THE "Z0" AND "CZIL" ASSIGNED HERE MUST CORRESPOND TO THEIR VALUES C NORMALLY ASSIGNED IN ROUTINE REDPRM, CALLED FROM SFLX JUST BEFORE CALL C SFCDIF. THUS THE VALUE OF "Z0" ASSIGNED HERE MUST CORRESPOND TO THAT C ASSIGNED IN ROUTINE REDPRM FOR THE CHOSEN VEG CLASS THAT WAS ALREADY C INPUT FROM THE READ OF THE CONTROL FILE EARLIER IN THIS DRIVER. C C BECAUSE OF THE IMPLICIT ITERATIVE NATURE OF THE "PAULSON" SURFACE-LAYER C SCHEME USED IN ROUTINE SFCDIF, CH AND CM ARE CO-DEPENDENT. SIMILARLY, C THE IMPLICIT NATURE OF THE SFCDIF SCHEME ALSO REQUIRES THAT FOR EITHER C OPTION A OR B, CH AND CM MUST BE INITIALIZED EARLIER IN THE DRIVER BEFORE C THE START OF THE TIME-STEP LOOP, AS WELL AS BE CARRIED FORWARD FROM C TIME STEP TO TIME STEP AS "STATE VARIABLES", BECAUSE THE VALUES OF C CH AND CM FROM A PREVIOUS TIME STEP REPRESENT THE FIRST-GUESS VALUES FOR C THE CALL TO SFCDIF IN THE PRESENT TIME STEP. C C SOME USERS MAY CHOOSE TO EXECUTE AN ENTIRELY DIFFERENT SCHEME IN PLACE OF C ROUTINE SFCDIF HERE, E.G. AN EXPLICIT SCHEME SUCH AS LOUIS (1979) THAT C EMPLOYS NO ITERATION AND HAS NO REQUIREMENT TO CARRY CH AND CM FORWARD C AS STATE VARIABLES FROM TIME STEP TO TIME STEP. IN THAT CASE, IN C OPTION A, THE ROUTINE SHOULD BE CALLED HERE IN THE DRIVER AFTER ALL C NECESSARY INPUT ARGUMENTS FOR IT ARE DEFINED AT THIS POINT, OR CALLED IN C ROUTINE SFLX, AT THE POINT SFCDIF IS CALLED. C C!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! CCC...CALL SFCDIF ( Z, Z0, T1V, TH2V, SFCSPD,CZIL, CM, CH ) C C Water balance: save total column soil moisture and water equiv snow SOILM_bef = SOILM SNEQV_bef = SNEQV CMC_bef = CMC C DRIVER STEP 9 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< C 9. CALL LAND-SURFACE PHYSICS <<<<<<<<<<<<<<<<<<<<<<<<<<<<<< C CALL SFLX ( C ICE,DT,Z,NSOIL,SLDPTH, C L LOGICAL VARIABLES HERE F LWDN,SOLDN,SFCPRS,PRCP,SFCTMP,Q2,SFCSPD, I TH2,Q2SAT,DQSDT2, S IVEGTYP,SOILTYP,SLOPETYP,SHDFAC,SHDMIN,PTU,ALB,SNOALB,TBOT, H CMC,T1,STC,SMC,SH2O,SNOWH,SNEQV,ALBEDO,CH,CM, O ETA,H, O EC,EDIR,ET,ETT,ESNOW,DRIP,DEW, O BETA,ETP,S, O FLX1,FLX2,FLX3, O SNOMLT,SNCOVR, O RUNOFF1,RUNOFF2,RUNOFF3, O RC,PC,RSMIN,XLAI,RCS,RCT,RCQ,RCSOIL, D SOILW,SOILM,SMCWLT,SMCDRY,SMCREF,SMCMAX,NROOT) C AET = ETA C CALCULATE UPWARD LONGWAVE RAD USING UPDATED SKIN TEMPERATURE T14 = T1 * T1 * T1 * T1 FUP = 5.67E-8 * T14 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C CALCULATE RESIDUAL OF ALL SURFACE ENERGY BALANCE EQN TERMS. CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC S = -S F = SOLDN*(1.0-ALBEDO) + LWDN C C ---------------------------------------------------------------------- C put evap components into energy terms c ECX=EC*1000.*LVH2O c EDIRX=EDIR*1000.*LVH2O c ETX1=ET(1)*1000.*LVH2O c ETX2=ET(2)*1000.*LVH2O c ETX3=ET(3)*1000.*LVH2O c ETX4=ET(4)*1000.*LVH2O c ETTX=ETT*1000.*LVH2O c ESNOWX=ESNOW*LVH2O RES = F - H - S - AET - FUP - FLX1 - FLX2 - FLX3 RESTOT = RESTOT + RES C ---------------------------------------------------------------------- IF (SNEQV .GT. 0) THEN SNDENS=SNEQV/SNOWH ELSE SNDENS=0.0 ENDIF SOLUP=SOLDN*ALBEDO write(14,1001) xjday,SOLDN,SOLUP,LWDN,FUP,H,AET,S,FLX1,FLX2,FLX3, & RES write(15,1002) xjday,ETP,AET,EC,EDIR,ET(1),ET(2),ET(3),ET(4),ETT, & ESNOW write(16,1003) xjday,SNEQV,SNOWH,SNDENS,SNCOVR,ALBEDO write(17,1004) xjday,SFCTMP-273.15,T1-273.15,STC(1)-273.15, & STC(2)-273.15,STC(3)-273.15, & STC(4)-273.15,TBOT-273.15 write(18,1005) xjday,SMC(1),SMC(1)-SH2O(1),SMC(2),SMC(2)-SH2O(2), & SMC(3),SMC(3)-SH2O(3),SMC(4),SMC(4)-SH2O(4) 1001 format(F10.6,10F10.3,F12.6) 1002 format(F10.6,10F10.3) 1003 format(F10.6,5F8.4) 1004 format(F10.6,7F10.4) 1005 format(F10.6,8F10.6) C ---------------------------------------------------------------------- IF ((INDI .LT. 50) .OR. (MOD(INDI,50) .EQ. 0)) THEN C Debug PRINT*,' CALCULATE RESIDUAL OF ALL SURFACE ENERGY' PRINT*,' --------------------------------------' C...PRINT*,'S=',S,' RES=',RES,' RESTOT=',RESTOT,' TIMESTEP=',INDI PRINT*,' RES=',RES,' TIMESTEP=',INDI PRINT*,' RES/(S+ETA) (in %)=',100*RES/(S+ETA),'%' ENDIF C WILL OUTPUT RESULTS ONLY IF LAST CYCLE (WITH DIFFERENT DATA FILE C OPTION ON) OR IF ONLY ONE DATAFILE IS USED. IF ((NREAD1 .EQ. NREAD2) .OR. (.NOT. L2nd_data)) THEN C ACCUMULATE DAILY VALUES IN mm FOR WATER BALANCE PCPSUM = PCPSUM + PRCP*DT ETSUM = ETSUM + ETA*DT/LVH2O ETSUM_O = ETSUM_O + ETA_OBS*DT/LVH2O RUNOFFSUM = RUNOFFSUM + RUNOFF1*DT*1000. + RUNOFF2*DT*1000. IF (ITIME .EQ. 0) THEN C Remember to initialize SMCMM, SMCDIF... after reading controlfile. C Suffix "_O" stands for OBSERVED quantities. SMCNW = 0.0 SMCNW_O =0.0 do ij = 1,3 SMCNW = SLDPTH(ij)*1000.*SMC(ij) + SMCNW SMCNW_O = SLDPTH(ij)*1000.*SMC_OBS(ij) + SMCNW_O end do SMCDIF = SMCNW - SMCMM SMCMM = SMCNW SMCDIF_O = SMCNW_O - SMCMM_O SMCMM_O = SMCNW_O RUNOFFDAY = RUNOFFSUM PCPDAY = PCPSUM ETADAY = -ETSUM ETADAY_O = -ETSUM_O PCPSUM = 0.0 ETSUM = 0.0 ETSUM_O = 0.0 RUNOFFSUM = 0.0 C C DRIVER STEP 10 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< C 10. Write to model output files C EXTENSION .GRS FILES - GrADS-readable format output (unformatted) C EXTENSION .TXT FILES - ASCII formatted. C C WRITE DAILY ACCUMULATION VARIABLES, DAILY.GRS, GrADS FORMAT C or DAILY.TXT, ASCII formatted C CALL PRTDAILY(NOUTDAY,jday, & IIDAY,ITIME,ETADAY,ETADAY_O, & PCPDAY,SMCDIF,SMCDIF_O,RUNOFFDAY, & IRECD) ENDIF C C WRITE VARIABLES IN WATER AMOUNT UNITS (HYDRO.GRS or .TXT) C CALL PRTHYDF(INDI,NOUT1,NSOIL,jday, & IIDAY,ITIME,ETA, & ETP,PRCP,SH2O,SMC,ALBEDO,ALB,SNOALB, & SNEQV, SNEQV_bef, SNOMLT, SNOWH, SOILM, SOILM_bef, SOILW, & RUNOFF1, RUNOFF2, RUNOFF3, & DT,EDIR,EC,ETT,CMC,CMC_bef,IREC1,DEW) C C WRITE VARIABLES IN THERMODYNAMIC ENERGY UNITS (THERMO.GRS or .TXT) C CALL PRTHMF(INDI,NOUT3,NSOIL,jday, & IIDAY,ITIME,CH,CM,Z,F,S,CMC, & SMCMAX,SFCTMP,T1,Q1,SFCPRS, & SFCSPD,ETA,ETP,STC, & DT,H,AET,RES,IREC3, & FLX1,FLX2,FLX3) C C WRITE ATMOSPHERIC INPUT FORCING DATA AND INDEPENDENT VALIDATION DATA C IN FILE (BND_DATA.GRS or .TXT) C CALL PRTBND(INDI, NOUT5, jday, & IIDAY, ITIME, SFCTMP, Q2, SFCPRS, Rg, * LW_in, Par_in, Par_out, RNET, S_OBS, PRCP, wet, T1_OBS, * T_02, T_04, T_08, T_16, T_32, T_64, * sm_05, sm_20, sm_60, w_dir, u_bar, eddyuw, * uprim2, vprim2, wprim2, H_OBS, ETA_OBS, * IMONTH, IDAY, IREC5) ENDIF C C ============================================================= END DO C | C END OF TIME LOOP | C | C ---------------------------------------------------------------------| C ---------------------------------------------------------------------| C Debug PRINT*,' CALCULATE RESIDUAL OF ALL SURFACE ENERGY' PRINT*,' --------------------------------------' C...PRINT*,'S=',S,' RES=',RES,' RESTOT=',RESTOT,' TIMESTEP=',INDI PRINT*,'SUM OF ALL TIMESTEPS ENERGY RESIDUAL=',RESTOT, &' TIMESTEPS=',INDI*NSPINUP PRINT*,' SPIN-UP CYCLE ',NSPINUP,' of ',NCYCLES PRINT*,' AVG RES PER TIMESTEP =',RESTOT/(INDI*NSPINUP) PRINT*,' --------------------------------------' PRINT*,' ' C Reset forcing data for next cycle, if any. rewind NREAD1 C IF "FINAL RUN WITH DIFFERENT FORCING DATA" SELECTED, SWITCH NREAD1 C TO POINT TOWARDS THIS FILE AND RUN A NUMBER OF SIMULATION TIMESTEPS IF (L2nd_data .AND. (NSPINUP .EQ. NCYCLES-1)) then NREAD1=NREAD2 NRUN=NRUN2 ENDIF END DO C END OF SPIN-UP CYCLE LOOP C ---------------------------------------------------------------------| C ---------------------------------------------------------------------| IF (NCYCLES .GT. 1) THEN PRINT*,' ' PRINT*,' Initial Soil Moisture Change Due to each Spin-Up cycle:' PRINT*,' ' ENDIF C----------------------------------------------------------------------- DO NSPINUP=1,NCYCLES C----------------------------------------------------------------------- IF (NSPINUP .LT. NCYCLES) THEN PRINT*,' ' PRINT*,' LAYER Run Next Diff SMC-SMC0' DO IJ=1,NSOIL PRINT*,IJ,SMC0(IJ,NSPINUP),SMC0(IJ,NSPINUP+1),( & SMC0(IJ,NSPINUP+1)-SMC0(IJ,NSPINUP)) END DO ENDIF C----------------------------------------------------------------------- PRINT*,' ' PRINT*,' --------------------------------------' PRINT*,' This cycle initial conditions:' PRINT*,' ' WRITE(*,*) T1_ini(NSPINUP), &' T1........Initial skin temperature (K)' WRITE(*,*)(STC0(IJ,NSPINUP), IJ=1,NSOIL),'STC' WRITE(*,*)(SMC0(IJ,NSPINUP), IJ=1,NSOIL),'SMC' WRITE(*,*)(SH2O0(IJ,NSPINUP), IJ=1,NSOIL),'SH2O' WRITE(*,*) CMC0(NSPINUP), &' CMC.......Initial canopy water content (m)' WRITE(*,*) SNOWH0(NSPINUP), &' SNOWH.....Initial actual snow depth (m)' WRITE(*,*) SNEQV0(NSPINUP), &' SNEQV.....Initial water equiv snow depth (m)' PRINT*,' --------------------------------------' END DO CCC PRINT*,' ^ ^ ^ ^ ^ ^ ' PRINT*,' --- Above are the last initial conditions used ---' PRINT*,' --------------------------------------------------------' PRINT*,' ' PRINT*,' ' PRINT*,' --------------------------------------------------------' PRINT*,' Difference in initial SMC to be obtained if running ' PRINT*,' another cycle:' PRINT*,' LAYER This run Next Diff SMC-SMC0' DO IJ=1,NSOIL PRINT*,IJ,SMC0(IJ,NCYCLES),SMC(IJ),( & SMC(IJ)-SMC0(IJ,NCYCLES)) END DO PRINT*,' ' PRINT*,' --------------------------------------' PRINT*,' State Variables at the end' PRINT*,' --------------------------------------' C PRINT*,'Final date: ' PRINT*,'Julian=',JDAY,' MONTH=',IMONTH,' DAY=',IDAY, &' TIME(hhmm)=',ITIME PRINT*,' --------------------------------------' WRITE(*,*) T1,' T1........Skin temperature (K)' WRITE(*,*)(STC(IJ1), IJ1=1,NSOIL),' STC' WRITE(*,*)(SMC(IJ1), IJ1=1,NSOIL),' SMC' WRITE(*,*)(SH2O(IJ1), IJ1=1,NSOIL),' SH2O' WRITE(*,*) CMC,' CMC.......Canopy water content (m)' WRITE(*,*) SNOWH,' SNOWH.....Actual snow depth (m)' WRITE(*,*) SNEQV,' SNEQV.....Water equiv snow depth (m)' WRITE(*,*) 'CH=',CH,' CM=',CM PRINT*,' --------------------------------------' C PRINT*,' ' PRINT*,' Do not confuse this with the initial conditions' PRINT*,' used for the last run (further above).' PRINT*,' This data is useful for initializing continuation runs' PRINT*,' (if you stop, say, 1998May220030, you can use this' PRINT*,' to initialize from this date/time)' PRINT*,' ' C Close open files IF (NOUT1 .GT. 0) THEN CLOSE(NOUT1) ELSEIF (NOUT1 .LT. 0) THEN CLOSE(-NOUT1) END IF IF (NOUT3 .GT. 0) THEN CLOSE(NOUT3) ELSEIF (NOUT3 .LT. 0) THEN CLOSE(-NOUT3) END IF IF (NOUT5 .GT. 0) THEN CLOSE(NOUT5) ELSEIF (NOUT5 .LT. 0) THEN CLOSE(-NOUT5) END IF IF (NOUTDAY .GT. 0) THEN CLOSE(NOUTDAY) ELSEIF (NOUTDAY .LT. 0) THEN CLOSE(-NOUTDAY) END IF IF (L2nd_data) THEN CLOSE(NREAD2 ) ENDIF CLOSE(NREAD1 ) STOP 0 C END OF DRIVER PROGRAM ---------------------------------------------- END FUNCTION DQS (T) IMPLICIT NONE CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CC PURPOSE: TO CALCULATE VALUES OF VAPOR PRESSURE (E) CC AND P * DQS/DT (P TIMES CHG IN SAT MXG RATIO WITH RESPECT CC TO THE CHG IN TEMP) IN SUBSTITUTION TO THE LOOK-UP TABLES. CC CC SUBSTITUTES LOOK-UP TABLES ASSOCIATED WITH THE DATA CC BLOCK /CHMXR/ . CC CC FORMULAS AND CONSTANTS FROM ROGERS AND YAU, 1989. CC CC ADDED BY PABLO J. GRUNMANN, 6/30/97. CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C REAL DESDT REAL DQS CK REAL ESD REAL LW REAL T REAL ES C CK REAL CP CK REAL CV CK REAL CVV REAL CPV REAL RV REAL CW REAL EPS REAL ESO REAL TO REAL LVH2O PARAMETER (LVH2O = 2.501000E+6) C CK PARAMETER (CP = 1005.) CK PARAMETER (CV = 718.) CK PARAMETER (CVV = 1410.) PARAMETER (CPV = 1870.) PARAMETER (RV = 461.5) PARAMETER ( CW = 4187.) PARAMETER (EPS = 0.622) PARAMETER (ESO = 611.2) PARAMETER ( TO = 273.15) C C ABOUT THE PARAMETERS: C C EPS ---------- WATER - DRY AIR MOLECULAR MASS RATIO, EPSILON C C VALUES FOR SPECIFIC HEAT CAPACITY AND INDIVIDUAL GAS CONSTANTS C IN [JOULES/(KG*KELVIN)] UNITS. C C DRY AIR: C CP, CV C WATER VAPOR: C CVV = 1410. C CPV = 1870. C RV = 461.5 C LIQUID WATER: C CW = 4187. C C ESO = ES(T=273.15 K) = SAT. VAPOR PRESSURE (IN PASCAL) AT T=TO C TO = 273.15 C C SAT. MIXING RATIO: QS ~= EPS*ES/P C CLAUSIUS-CLAPEYRON: DES/DT = L*ES/(RV*T^2) C @QS/@T = (EPS/P)*DES/DT C LW = LVH2O - ( CW - CPV ) * ( T - TO ) ES = ESO*EXP (LW*(1/TO - 1/T)/RV) DESDT = LW*ES/(RV*T*T) C C FOR INSERTION IN DQSDT FUNCTION: C DQSDT = DQS/P , WHERE DQS = EPS*DESDT C DQS = EPS*DESDT C RETURN END FUNCTION DQSDT ( SFCTMP, SFCPRS ) IMPLICIT NONE CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CC PURPOSE: TO RETRIEVE THE APPROPRIATE VALUE OF DQSDT (THE CHANGE CC ======= OF THE SATURATION MIXING RATIO WITH RESPECT TO THE CC CHANGE IN TEMPERATURE) FROM: CC CC FORMULAS INTRODUCED IN NEW FUNCTION DQS CC (MODIFIED BY PABLO GRUNMANN, 7/9/97). CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC REAL SFCTMP REAL SFCPRS REAL DQS REAL DQSDT IF ((SFCTMP .GE. 173.0) .AND. (SFCTMP .LE. 373.0)) THEN CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C IF THE INPUT SFC AIR TEMP IS BTWN 173 K AND 373 K, USE C FUNCTION DQS TO DETERMINE THE SLOPE OF SAT.MIX RATIO FUNCTION C -ADAPTED TO USE NEW DQS, 7/9/97. CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC DQSDT = DQS (SFCTMP) / SFCPRS ELSE CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C OTHERWISE, SET DQSDT EQUAL TO ZERO CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC DQSDT = 0.0 END IF RETURN END FUNCTION E (T) IMPLICIT NONE CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CC PURPOSE: TO CALCULATE VALUES OF SAT. VAPOR PRESSURE (E) CC SUBSTITUTES LOOK-UP TABLES ASSOCIATED WITH THE DATA CC BLOCK /VAPPRS/ . CC FORMULAS AND CONSTANTS FROM ROGERS AND YAU, 1989. CC CC ADDED BY PABLO J. GRUNMANN, 7/9/97. CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C REAL LW REAL T REAL E C CK REAL EPS CK REAL CP CK REAL CV CK REAL CVV REAL CPV REAL RV REAL CW REAL ESO REAL TO REAL LVH2O PARAMETER (LVH2O = 2.501000E+6) C CK PARAMETER (EPS = 0.622) CK PARAMETER (CP = 1005.) CK PARAMETER (CV = 718.) CK PARAMETER (CVV = 1410.) PARAMETER (CPV = 1870.) PARAMETER (RV = 461.5) PARAMETER (CW = 4187.) PARAMETER (ESO = 611.2) PARAMETER (TO = 273.15) C C ABOUT THE PARAMETERS: C C EPS ---------- WATER - DRY AIR MOLECULAR MASS RATIO, EPSILON C C VALUES FOR SPECIFIC HEAT CAPACITY AND INDIVIDUAL GAS CONSTANTS C IN [JOULES/(KG*KELVIN)] UNITS. C C DRY AIR: C CP, CV C WATER VAPOR: C CVV = 1410. C CPV = 1870. C RV = 461.5 C LIQUID WATER: C CW = 4187. C C ESO = ES(TO) = SAT. VAPOR PRESSURE (IN PASCAL) AT T=TO C TO = 273.15 C_______________________________________________________________________ C C CLAUSIUS-CLAPEYRON: DES/DT = L*ES/(RV*T^2) C C LW = LVH2O - ( CW - CPV ) * ( T - TO ) E = ESO*EXP (LW*(1/TO - 1/T)/RV) C RETURN END SUBROUTINE JULDATE(JULD,IMONTH,IDAY,JULM) IMPLICIT NONE CC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CC CC NAME: JULIAN DAYS TO MM/DD DATE CC CC CC PURPOSE: TO CONVERT FROM JULIAN DAY NUMBER OF THE YEAR TO CC CALENDAR DATE (MONTH, DAY). CC PABLO J. GRUNMANN, 05/98 CC CC VARIABLES: CC ========= CC CC LABEL ............DESCRIPTION............... CC CC IDMONTH(IM) NUMBER OF DAYS IN MONTH NUMBER "IM", FOR IM=1,12 CC JULD JULIAN DAY CC ILDM,ILDMP JULIAN DAY OF THE LAST DAY OF A PARTICULAR CC MONTH AND ITS CONSECUTIVE (ILDMP). CC IMONTH,IDAY MONTH, DAY - CALENDAR DATE CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C INTEGER IM INTEGER IDMONTH(12) INTEGER JULM(13) INTEGER JULD INTEGER IDAY INTEGER ILDM INTEGER ILDMP INTEGER IMONTH C................................................................. C DEFINE LAST DAY OF FEBRUARY AND MODIFY DATA IDMONTH C IF NECESSARY: C FEB 28 C FEB 29 (LEAP YEAR) C..................JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG.SEP,OCT,NOV,DEC DATA IDMONTH/31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31/ C DATA JULM/0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, C & 334, 365/ C................................................................. ILDMP = 0 IMONTH = 0 C Print*,JULM JULM(1)= 0 DO IM = 1,12 JULM(IM+1) = JULM(IM) + IDMONTH(IM) ILDM = JULM(IM) ILDMP = JULM(IM+1) IF ((JULD .LE. ILDMP) .AND. (JULD .GT. ILDM)) THEN IMONTH = IM IDAY = JULD - JULM(IM) ENDIF END DO RETURN END SUBROUTINE MONTH_D(JDAY,XMON,XDAY) IMPLICIT NONE C INTERPOLATE TO DAY OF YEAR. C THE MONTHLY FIELDS ASSUMED VALID AT 15TH OF MONTH. C C READ FROM A FILE THAT HAS 13 RECORDS, ONE PER MONTH WITH C JANUARY OCCURRING BOTH AS RECORD 1 AND AGAIN AS RECORD 13, C THE LATTER TO SIMPLIFY TIME INTERPOLATION FOR DAYS C BETWEEN DEC 16 AND JAN 15. WE TREAT JAN 1 TO JAN 15 C AS JULIAN DAYS 366 TO 380 BELOW, I.E WRAP AROUND YEAR. C C BASED ON SUBROUTINE CNSTS.f WHICH C INCLUDED REVISION BY F. CHEN 7/96 TO REFLECT A NEW NESDIS C VEGETATION FRACTION PRODUCT (FIVE-YEAR CLIMATOLOGY WITH C 0.144 DEGREE RESOLUTION FROM 89.928S, 180W TO 89.928N, 180E) C C This is PABLO J. GRUNMANN's version for use with the uncoupled, C column mode Land-Surface Model C C DATA JULM/0,31,59,90,120,151,181,212,243,273,304,334,365/ C.......getting JULM from subroutine JULDATE to enable easy C.......one number adjustment in case of leap year. C C #### DO TIME INTERPOLATION #### C INTEGER IDAY INTEGER IMON1 INTEGER IMON2 INTEGER IMONTH INTEGER JDAY INTEGER JULD INTEGER JULM(13) REAL DAY1 REAL DAY2 REAL RDAY REAL WGHT1 REAL WGHT2 REAL XDAY REAL XMON(13) JULD = JDAY CALL JULDATE(JULD,IMONTH,IDAY,JULM) IF(JULD.LE.15) JULD=JULD+365 IMON2=IMONTH IF (IDAY .GT. 15) IMON2 = IMON2 + 1 IF (IMON2 .EQ. 1) IMON2 = 13 IMON1 = IMON2 - 1 C #### ASSUME DATA VALID AT 15TH OF MONTH DAY2 = REAL(JULM(IMON2)+15) DAY1 = REAL(JULM(IMON1)+15) RDAY = REAL(JULD) WGHT1 = (DAY2-RDAY)/(DAY2-DAY1) WGHT2 = (RDAY-DAY1)/(DAY2-DAY1) C XDAY=WGHT1*XMON(IMON1)+WGHT2*XMON(IMON2) RETURN END SUBROUTINE PRTBND(INDI, NOUT, jday, & IIDAY, IITIME, SFCTMP, Q2, SFCPRS, Rg, * LW_in, Par_in, Par_out, rnet, & S_OBS, PRCP, wet, T1_OBS, * T_02, T_04, T_08, T_16, T_32, T_64, * sm_05, sm_20, sm_60, w_dir, u_bar, eddyuw, * uprim2, vprim2, wprim2, H_OBS, ETA_OBS, * IMONTH, IDAY, IREC) CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C From MAIN: C CALL PRTBND(INDI,NOUT5,jday, C & IIDAY, ITIME, SFCTMP, Q2, SFCPRS, Rg, C * LW_in, Par_in, Par_out, RNET, C & S_OBS, PRCP, wet, T1_OBS, C * T_02, T_04, T_08, T_16, T_32, T_64, C * sm_05, sm_20, sm_60, w_dir, u_bar, eddyuw, C * uprim2, vprim2, wprim2, H_OBS, ETA_OBS, C * IMONTH, IDAY, IREC5) CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CC CC NAME: PRINT BONDVILLE, IL (BND_) DATA: CC CC PURPOSE: TO WRITE OUT OBSERVATIONAL DATA THAT CAN BE CC ======= USED FOR VALIDATION. CC CC VARIABLES: CC ========= C OBSERVED SFLX STATE VARIABLES C C (T1_OBS) T1: SKIN (GRND SFC) TEMPERATURE (K) C (sm_XXcm) SMC(3 layers): SOIL MOISTURE CONTENT (VOLUMETRIC FRACTION) C FOR LAYER CENTERED AT XX cm DEPTH. C (STC_OBS) STC(3 layers): SOIL TEMP (K) C C OBSERVED SFLX OUTPUT C C (ETA_OBS) ETA: ACTUAL LATENT HEAT FLUX (W M-2: NEGATIVE, IF UPWARD FROM SURFACE) C (H_OBS) H: SENSIBLE HEAT FLUX (W M-2: NEGATIVE, IF UPWARD FROM SURFACE) C (S_OBS) S: SOIL HEAT FLUX (W M-2: NEGATIVE, IF DOWNWARD FROM SURFACE) C Q1: EFFECTIVE MIXING RATIO AT GRND SFC ( KG KG-1) C CC ORIGINAL BND_ DATA VARIABLE NAMES C C jday Julian Day C time LST, half hour ending (using IITIME) C Ta air temperature (C), at 3 m C RH relative humidity (%) at 3 m C (converted to specific humidity Q2) C Pres surface pressure in mb C Rg incoming short wave radiation (W/m2) C Par_in incoming visible radiation (0.4-0.7 um) in uE/m2/s C Par_out outgoing or reflected visible light C Rnet net radiation (W/m2) C GHF (as S_OBS) soil or ground heat flux (W/m2) C C RAIN total rain for half hour (inches) C PRCP precipitation rate conversion (Kg m-2 s-1) C wet wetness sensor (volts), high values indicate wetness. C IRT (as T1_OBS) surface or skin temp (CONVERTED TO K) C T_02 soil temp at 2 cm (C) C T_04 soil tmep at 4 cm C T_08 soil temp at 8 cm C T_16 soil temp at 16 cm C T_32 soil temp at 32 cm C T_64 soil temp at 64 cm c C STC5 linear interpolations, using the soil C STC20 temperatures above, to match the model C STC60 depths (5,20 and 60 cm). C C sm_05 soil volumetric water content at 5 cm zone C sm_20 soil volumetric water content at 20 cm zone C sm_60 soil volumetric water content at 60 cm zone C (as SMC_OBS(3 layers)) C C w_dir wind direction C u_bar average wind vector speed (m/s), at 6m C eddyuw (u'w') kinematic shear stress (m2/s2) C uprim2 (u'2) streamwise velocity variance (m2/s2) C vprim2 (v'2) crosswind velocity variance (m2/s2) C wprim2 (w'2) vertical velocity variance (m2/s2) C H (as H_OBS) sensible heat flux (W/m2) C C LE (as ETA_OBS) latent heat flux (W/m2) CC The eddy covariance sensors are located at 6 m AGL CC The bulk density of the soil is 1.4 gm/cm3 CC The site is currently in corn stubble (like it would look CC after combining) CC CC The units uE/m2/s refer to micro Einsteins per square meter per CC second. A uE is 6.02 x 10 (17) photons. CC______________________________________________________________________ IMPLICIT NONE REAL T0 PARAMETER (T0=273.15) INTEGER INDI, NOUT, NASCII, IREC INTEGER IIDAY, IITIME INTEGER IMONTH, IDAY, jday REAL Q2 REAL SFCPRS REAL SDATE REAL DDTIME REAL Rg REAL LW_in REAL Par_in REAL Par_out REAL Rnet REAL S_OBS REAL PRCP REAL wet REAL T1_OBS REAL T_02 REAL T_04 REAL T_08 REAL T_16 REAL T_32 REAL T_64 REAL STC5 REAL STC20 REAL STC60 REAL sm_05 REAL sm_20 REAL sm_60 REAL w_dir REAL u_bar REAL eddyuw REAL uprim2 REAL vprim2 REAL wprim2 REAL H_OBS REAL ETA_OBS REAL RMONTH REAL RIDAY REAL SFCTMP C ____________________________________________________________ C C For now, print soil temperature observations as they are, C T_02, T_04, T_08, T_16, T_32 and T_64. C C In the future, may use a cubic spline or C a simple linear scheme to interpolate C to STC_OBS( 5cm ), STC_OBS( 20cm ) and STC_OBS( 60cm ). C ____________________________________________________________ C C DATA CONVERSIONS TO MATCH MODEL'S VARIABLES C Soil Temperature in K T_02 = T_02 + T0 T_04 = T_04 + T0 T_08 = T_08 + T0 T_16 = T_16 + T0 T_32 = T_32 + T0 T_64 = T_64 + T0 C SOIL TEMPERATURE AT SOIL MOISTURE MEASUREMENT C LEVELS (LINEAR INTERP) STC5 = T_04 + (T_08 - T_04)/4. STC20 = T_16 + 4*(T_32 - T_16)/16. STC60 = T_64 + 4*(T_32 - T_64)/32. C ____________________________________________________________ C C ##### WRITE UNFORMATTED FOR GRADS OUTPUT ######## C IF (NOUT .GT. 0) THEN c convert to REAL for binary output SDATE = FLOAT(IIDAY) DDTIME = FLOAT(IITIME) RMONTH = FLOAT(IMONTH) RIDAY = FLOAT(IDAY ) WRITE(NOUT,REC=IREC) SDATE IREC = IREC + 1 WRITE(NOUT,REC=IREC) DDTIME IREC = IREC + 1 WRITE(NOUT,REC=IREC) SFCTMP IREC = IREC + 1 WRITE(NOUT,REC=IREC) Q2 IREC = IREC + 1 WRITE(NOUT,REC=IREC) SFCPRS IREC = IREC + 1 WRITE(NOUT,REC=IREC) Rg IREC = IREC + 1 WRITE(NOUT,REC=IREC) LW_in IREC = IREC + 1 WRITE(NOUT,REC=IREC) Par_in IREC = IREC + 1 WRITE(NOUT,REC=IREC) Par_out IREC = IREC + 1 WRITE(NOUT,REC=IREC) rnet IREC = IREC + 1 WRITE(NOUT,REC=IREC) S_OBS IREC = IREC + 1 WRITE(NOUT,REC=IREC) PRCP IREC = IREC + 1 WRITE(NOUT,REC=IREC) wet IREC = IREC + 1 WRITE(NOUT,REC=IREC) T1_OBS IREC = IREC + 1 WRITE(NOUT,REC=IREC) T_02 IREC = IREC + 1 WRITE(NOUT,REC=IREC) T_04 IREC = IREC + 1 WRITE(NOUT,REC=IREC) T_08 IREC = IREC + 1 WRITE(NOUT,REC=IREC) T_16 IREC = IREC + 1 WRITE(NOUT,REC=IREC) T_32 IREC = IREC + 1 WRITE(NOUT,REC=IREC) T_64 IREC = IREC + 1 C WRITE(NOUT,REC=IREC) STC5 IREC = IREC + 1 WRITE(NOUT,REC=IREC) STC20 IREC = IREC + 1 WRITE(NOUT,REC=IREC) STC60 IREC = IREC + 1 C WRITE(NOUT,REC=IREC) sm_05 IREC = IREC + 1 WRITE(NOUT,REC=IREC) sm_20 IREC = IREC + 1 WRITE(NOUT,REC=IREC) sm_60 IREC = IREC + 1 WRITE(NOUT,REC=IREC) w_dir IREC = IREC + 1 WRITE(NOUT,REC=IREC) u_bar IREC = IREC + 1 WRITE(NOUT,REC=IREC) eddyuw IREC = IREC + 1 WRITE(NOUT,REC=IREC) uprim2 IREC = IREC + 1 WRITE(NOUT,REC=IREC) vprim2 IREC = IREC + 1 WRITE(NOUT,REC=IREC) wprim2 IREC = IREC + 1 WRITE(NOUT,REC=IREC) H_OBS IREC = IREC + 1 WRITE(NOUT,REC=IREC) ETA_OBS IREC = IREC + 1 WRITE(NOUT,REC=IREC) RMONTH IREC = IREC + 1 WRITE(NOUT,REC=IREC) RIDAY IREC = IREC + 1 ELSEIF (NOUT .LT. 0) THEN NASCII = -NOUT WRITE(NASCII,200) jday, IITIME, SFCTMP, Q2, & SFCPRS, Rg, LW_in, Par_in, Par_out, & rnet, S_OBS, PRCP, wet, T1_OBS, & T_02, T_04, T_08, T_16, T_32, T_64, & STC5, STC20, STC60, sm_05, sm_20, sm_60, & w_dir, u_bar, eddyuw, uprim2, vprim2, wprim2, & H_OBS, ETA_OBS, IMONTH, IDAY END IF 200 FORMAT(2(I6,1X),32(F15.4,1X),2(I6,1X)) RETURN END SUBROUTINE PRTDAILY(NOUT,jday, & IIDAY,ITIME,ETADAY,ETADAY_O, & PCPDAY,SMCDIF,SMCDIF_O,RUNOFFDAY, & IREC) IMPLICIT NONE CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CC CC NAME: PRINT DAILY ACCUMULATED HYDROLOGICAL VARIABLES CC CC VARIABLES: CC ========= CC CC LABEL I/O TYPE ............DESCRIPTION............... CC CC AET LOC RS ACTUAL EVAPOTRANSPIRATIVE ENERGY CC (J M-2 S-1) CC AET2 LOC RS ACTUAL EVAPOTRANSPIRATION (MM) CC CH IOC RS DRAG COEF FOR HEAT/MOISTURE CC CM IOC RS DRAG COEFFICIENT FOR MOMENTUM CC CMC IOC RS CANOPY MOISTURE CONTENT (M) CC DEW IB RS DEWFALL AMOUNT (M S-1) CC DRIP IB RS EXCESS CANOPY MOISTURE (M) CC EC(EC1) IB RS CANOPY EVAPORATION (M S-1) CC EDIR(EDIR1)IB RS DIRECT SOIL EVAPORATION (M S-1) CC ETA IOC RA FINAL ACTUAL EVAPOTRANSP (KG M-2 S-1) CC ETAS IOC RA FINAL ACTUAL EVAPOTRANSP (MM) CC ETP IOC RA FINAL POTNTL EVAPOTRANSP (KG M-2 S-1) CC ETPS IOC RA FINAL POTNTL EVAPOTRANSP (MM) CC ETT(ETT1) IB RS ACCUM PLANT TRANSPIRATION (M S-1) CC F IOC RS NET FLUX (TOT DOWNWARD RADIATION) CC FLX1 IB RS 1ST FLUX VALUE (W M-2) CC FLX2 IB RS 2ND FLUX VALUE (W M-2) CC FLX3 IB RS 3RD FLUX VALUE (W M-2) CC FOG IC LS INTERMEDIATE HRLY FOG FLAG CC FUP IB RS UPWARD GRND LW RADIATION (W M-2) CC H LOC RS SENSIBLE HEAT FLUX (W M-2) CC HEAT LOC RS SENSIBLE HEAT FLUX SUB-PRODUCT CC HEMI IC IS CURRENT HEMISPHERE (1=N, 2=S) CC I IC IS 1/8 MESH I COORDINATE CC ICLAMT IC IA INTERMEDIATE HRLY CLD AMOUNT CC ICLTYP IC IA INTERMEDIATE HRLY CLD TYPE CC J IC IS 1/8 MESH J COORDINATE CC K LOC IS LOOP INDEX CC NSOIL IC IS SOIL LAYER NUMBER CC PET LOC RS POTENTIAL EVAPOTRANSPIRATION (MM) CC PRCP IOC RA HALF HOURLY PRECIP AMT (KG M-2 S-1) CC Q2 IOC RS MIXING RATIO AT 1ST MDL LVL ABV SKIN CC Q2SAT IOC RS SAT MXNG RATIO AT 1ST MDL LVL ABV SKIN CC RES LOC RS ENERGY BALANCE EQN RESIDUAL (W M-2) CC RIB IB RS BULK RICHARDSON NUMBER CC RLDOWN IC RS DOWNWARD LONGWAVE RADIATION (W M-2) CC RR LOC RS SENSIBLE HEAT SUB-PRODUCT CC RSOLIN IC RS SOLAR RADIATION (W M-2) CC RUNOFF1 IB RS GRND SFC RUNOFF (M ) CC RUNOFF2 IB RS UNDERGROUND RUNOFF (M ) CC RUNOFF3 IB RS RUNOFF WITHIN SOIL LAYERS (M ) CC SMC IOC RA SOIL MOISTURE CONTENT (VOLUMETRIC) CC ZSOIL IOC RA SOIL LAYER DEPTH ( M ) C IMPLICIT DOUBLE PRECISION (A-H,O-Z) INTEGER JDAY INTEGER IIDAY INTEGER ITIME INTEGER IREC INTEGER NOUT INTEGER NASCII REAL CMCS REAL EC1S REAL EDIR1S REAL ETT1S REAL RTIME REAL SDATE REAL ETADAY, ETADAY_O, PCPDAY REAL SMCDIF, SMCDIF_O, RUNOFFDAY IF (NOUT .GT. 0) THEN SDATE=FLOAT(IIDAY) RTIME=FLOAT(ITIME) WRITE(NOUT,REC=IREC) SDATE IREC = IREC + 1 WRITE(NOUT,REC=IREC) RTIME IREC = IREC + 1 WRITE(NOUT,REC=IREC) PCPDAY IREC = IREC + 1 WRITE(NOUT,REC=IREC) ETADAY IREC = IREC + 1 WRITE(NOUT,REC=IREC) ETADAY_O IREC = IREC + 1 WRITE(NOUT,REC=IREC) RUNOFFDAY IREC = IREC + 1 WRITE(NOUT,REC=IREC) EDIR1S IREC = IREC + 1 WRITE(NOUT,REC=IREC) ETT1S IREC = IREC + 1 WRITE(NOUT,REC=IREC) EC1S IREC = IREC + 1 WRITE(NOUT,REC=IREC) CMCS IREC = IREC + 1 WRITE(NOUT,REC=IREC) SMCDIF IREC = IREC + 1 WRITE(NOUT,REC=IREC) SMCDIF_O IREC = IREC + 1 ELSEIF (NOUT .LT. 0) THEN NASCII = -NOUT C MBEK, 3 Feb 2002 C initialize/set following: c 7 EDIR1S=0.0 c 8 ETT1S=0.0 c 9 EC1S=0.0 c 10 CMCS=0.0 EDIR1S=0.0 ETT1S=0.0 EC1S=0.0 CMCS=0.0 WRITE(NASCII,200) & jday, & ITIME, & PCPDAY, & ETADAY, & ETADAY_O, & RUNOFFDAY, & EDIR1S, & ETT1S, & EC1S, & CMCS, & SMCDIF, & SMCDIF_O END IF 200 FORMAT(I6,1X,I6,10(1x,F15.4)) RETURN END SUBROUTINE PRTHMF(INDI,NOUT,NSOIL,jday, & IIDAY,IITIME,CH,CM,Z,F,S,CMC, & SMCMAX,SFCTMP,T1,Q1,SFCPRS, & SFCSPD,ETA,ETP,STC, & DT,H,AET,RES,IREC, & FLX1,FLX2,FLX3) IMPLICIT NONE CCC CCCC C From MAIN: C C CALL PRTHMF(INDI,NOUT3,NSOIL,jday, C C & IIDAY,ITIME,CH,CM,Z,F,S,CMC, C C & SMCMAX,SFCTMP,T1,Q1,SFCPRS, C C & SFCSPD,ETA,ETP,STC, C C & DT,RNET,H,AET,RES,IREC3) C CCCC CCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CC CC NAME: PRINT THERMODYNAMIC VARIABLES CC CC CPC: N/A CC === CC CC PURPOSE: TO CALC AND WRITE OUT PARAMETERS TO AID IN SCIENTIFIC CC ======= TUNING AND DEBUGGING OF THE OSU SOIL HYDROLOGY MODEL. CC THIS ROUTINE IS ONLY INVOKED FOR POINTS SELECTED BY CC SPECIFICATION IN THE CONTROL FILE. CC CC METHOD: 1. CALC NEEDED PARTIAL PRODUCTS AND SUMS. CC ====== 2. WRITE OUT RESULTS TO PRINT$ FILE. CC CC REFERENCES: FUNCTIONAL DESCRIPTION, SUBSYSTEM SPECIFICATION CC CC VARIABLES: CC ========= CC CC LABEL I/O TYPE ............DESCRIPTION............... CC CC AET LOC RS ACTUAL EVAPOTRANSPIRATIVE ENERGY CC (J M-2 S-1) CC AET2 LOC RS ACTUAL EVAPOTRANSPIRATION (MM) CC CH IOC RS DRAG COEF FOR HEAT/MOISTURE CC CM IOC RS DRAG COEFFICIENT FOR MOMENTUM CC CMC IOC RS CANOPY MOISTURE CONTENT (M) CC DEW IB RS DEWFALL AMOUNT (M S-1) CC DRIP IB RS EXCESS CANOPY MOISTURE (M) CC EC IB RS CANOPY EVAPORATION (M S-1) CC EDIR IB RS DIRECT SOIL EVAPORATION (M S-1) CC ETA IOC RA FINAL ACTUAL EVAPOTRANSP (KG M-2 S-1) CC ETP IOC RA FINAL POTNTL EVAPOTRANSP (KG M-2 S-1) CC ETPS IOC RA FINAL POTNTL EVAPOTRANSP (J M-2 S-1) CC ETT IB RS ACCUM PLANT TRANSPIRATION (M S-1) CC F IOC RS NET FLUX (TOT DOWNWARD RADIATION) CC FLX1 IB RS 1ST FLUX VALUE (W M-2) CC FLX2 IB RS 2ND FLUX VALUE (W M-2) CC FLX3 IB RS 3RD FLUX VALUE (W M-2) CC FUP IB RS UPWARD GRND LW RADIATION (W M-2) CC H LOC RS SENSIBLE HEAT FLUX (W M-2) CC HEAT LOC RS SENSIBLE HEAT FLUX SUB-PRODUCT CC I IC IS 1/8 MESH I COORDINATE CC ICLAMT IC IA INTERMEDIATE HRLY CLD AMOUNT CC ICLTYP IC IA INTERMEDIATE HRLY CLD TYPE CC J IC IS 1/8 MESH J COORDINATE CC K LOC IS LOOP INDEX CC NSOIL IC IS SOIL LAYER NUMBER CC PET LOC RS POTENTIAL EVAPOTRANSPIRATION (MM) CC Q2 IOC RS MIXING RATIO AT 1ST MDL LVL ABV SKIN CC Q2SAT IOC RS SAT MXNG RATIO AT 1ST MDL LVL ABV SKIN CC RES LOC RS ENERGY BALANCE EQN RESIDUAL (W M-2) CC RIB IB RS BULK RICHARDSON NUMBER CC RLDOWN IC RS DOWNWARD LONGWAVE RADIATION (W M-2) CC RR LOC RS SENSIBLE HEAT SUB-PRODUCT CC RSOLIN IC RS SOLAR RADIATION (W M-2) CC RUNOFF IB RS GRND SFC RUNOFF (M S-1) CC S IC RS GRND SFC FLUX (W M-2) CC SFCPRS IOC RS SFC PRESSURE (PASCALS) CC SFCSPD IC RS SFC WIND SPEED (M S-1) CC SFCTMP IOC RS SFC TEMPERATURE (K) CC SMC IOC RA SOIL MOISTURE CONTENT (VOLUMETRIC) CC SMCMAX IOC RS MAXIMUM SOIL MOISTURE CONTENT LIMIT CC SNODEP IOC RA SNOW DEPTH ( M ) CC STC IOC RA SOIL TEMPERATURE ( 5 CM AND 95 CM ) CC T1 IOC RS SKIN (GRND SFC) TEMPERATURE (K) CC T14 LOC RS GRND SFC TEMP TO THE 4TH POWER (K+4) CC TIME IOC IS 1 HRLY TIME (LOOP INDEX) CC Z IOC RS HT ABOVE GRND LVL (M) CC ZSOIL IOC RA SOIL LAYER DEPTH ( M ) INTEGER IIDAY INTEGER jday INTEGER IITIME INTEGER INDI INTEGER IREC INTEGER NOUT INTEGER NASCII INTEGER NSOIL INTEGER LAYER INTEGER NUMVARS REAL RNETcalc REAL AET REAL AET2 REAL BETA REAL CH REAL CM REAL CMC REAL DRIP REAL DT REAL EC REAL EDIR REAL ETA REAL ETP REAL ETPS REAL ETT REAL F REAL FLX1 REAL FLX2 REAL FLX3 REAL FUP REAL H REAL Q1 REAL RES REAL S REAL SDATE REAL RTIME REAL SFCPRS REAL SFCSPD REAL SFCTMP REAL SMCMAX REAL STC(NSOIL) REAL T1 REAL T14 REAL Z C C MIC$ TASKCOMMON RITE CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C CONVERT ACTUAL EVAPOTRANSPIRATION VALUE FROM [KG M-2 S-1] TO [W M-2] C (BY MULTIPLYING BY WATER LATENT HEAT (~2.501E+6) FOR USE IN ENERGY C BALANCE. ALSO CHANGE ACTUAL AND POTENTIAL EVAPORTRANSPIRATION C VALUES FROM [KG M-2 S-1] TO [MM] (BY MULTIPLYING BY DT). CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC T14 = T1 * T1 * T1 * T1 AET = ETA ETPS = ETP AET2 = DT * ETA FUP = 5.67E-8 * T14 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C RESIDUAL OF ALL SURFACE ENERGY BALANCE EQN TERMS: C RES = F - H - S - AET - FUP - FLX1 - FLX2 - FLX3 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C C NET RADIATION C RNETcalc = F - FUP C IF (NOUT .GT. 0) THEN SDATE=FLOAT(IIDAY) RTIME=FLOAT(IITIME) WRITE(NOUT,REC=IREC) SDATE IREC = IREC + 1 WRITE(NOUT,REC=IREC) RTIME IREC = IREC + 1 WRITE(NOUT,REC=IREC) F IREC = IREC + 1 WRITE(NOUT,REC=IREC) RNETcalc IREC = IREC + 1 WRITE(NOUT,REC=IREC) CH IREC = IREC + 1 WRITE(NOUT,REC=IREC) CM IREC = IREC + 1 WRITE(NOUT,REC=IREC) H IREC = IREC + 1 WRITE(NOUT,REC=IREC) S IREC = IREC + 1 WRITE(NOUT,REC=IREC) AET IREC = IREC + 1 WRITE(NOUT,REC=IREC) RES IREC = IREC + 1 WRITE(NOUT,REC=IREC) FUP IREC = IREC + 1 WRITE(NOUT,REC=IREC) FLX1 IREC = IREC + 1 WRITE(NOUT,REC=IREC) FLX2 IREC = IREC + 1 WRITE(NOUT,REC=IREC) FLX3 IREC = IREC + 1 WRITE(NOUT,REC=IREC) T1 IREC = IREC + 1 WRITE(NOUT,REC=IREC) Q1 IREC = IREC + 1 WRITE(NOUT,REC=IREC) ETPS IREC = IREC + 1 DO LAYER=1,NSOIL WRITE(NOUT,REC=IREC) STC(LAYER) IREC = IREC + 1 END DO ELSEIF (NOUT .LT. 0) THEN NASCII = -NOUT NUMVARS = 15+NSOIL c mbek 28Dec2001 Q1=0.0 WRITE(NASCII,200) & jday, & IITIME, & F, & RNETcalc, & CH,CM, & H, & S, & AET, & RES, & FUP,FLX1, FLX2, FLX3, & T1, & Q1, & ETPS, & (STC(LAYER), LAYER=1,NSOIL) END IF 200 FORMAT(I6,1X,I6,19(1x,F15.4)) RETURN END SUBROUTINE PRTHYDF(INDI,NOUT,NSOIL,jday, & IIDAY,DDTIME,ETA, & ETP,PRCP,SH2O,SMC,ALBEDO,ALB,SNOALB, & SNEQV, SNEQV_bef, SNOMLT, SNOWH, SOILM, SOILM_bef, SOILW, & RUNOFF1, & RUNOFF2, & RUNOFF3, & DT,EDIR,EC,ETT,CMC,CMC_bef,IREC,DEW) IMPLICIT NONE CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCC From MAIN: CC C CC C CALL PRTHYDF(INDI,NOUT1,NSOIL,jday, CC C & IIDAY,ITIME,ETA, CC C & ETP,PRCP,SH2O,SMC,ALBEDO,ALB,SNOALB, CC C & SNEQV, SNEQV_bef, SNOMLT, SNOWH, SOILM, SOILM_bef, SOILW,CC C & RUNOFF1, RUNOFF2, RUNOFF3, CC C & DT,EDIR,EC,ETT,CMC,IREC1) CC CCC CC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C C NAME: PRINT HYDROLOGICAL VARIABLES C C VARIABLES: C ========= C C LABEL I/O TYPE ............DESCRIPTION.............. C C ALB SNOW-FREE ALBEDO (FRACTION) C AET LOC RS ACTUAL EVAPOTRANSPIRATIVE ENERGY C (J M-2 S-1) C AET2 LOC RS ACTUAL EVAPOTRANSPIRATION (MM) C CH IOC RS DRAG COEF FOR HEAT/MOISTURE C CM IOC RS DRAG COEFFICIENT FOR MOMENTUM C CMC IOC RS CANOPY MOISTURE CONTENT (M) C DEW IB RS DEWFALL AMOUNT (M S-1) C DRIP IB RS EXCESS CANOPY MOISTURE (M) C EC(EC1) IB RS CANOPY EVAPORATION (M S-1) C EDIR(EDIR1)IB RS DIRECT SOIL EVAPORATION (M S-1) C ETA IOC RA FINAL ACTUAL EVAPOTRANSP (KG M-2 S-1) C ETAS IOC RA FINAL ACTUAL EVAPOTRANSP (MM) C ETP IOC RA FINAL POTNTL EVAPOTRANSP (KG M-2 S-1) C ETPS IOC RA FINAL POTNTL EVAPOTRANSP (MM) C ETT(ETT1) IB RS ACCUM PLANT TRANSPIRATION (M S-1) C F IOC RS NET FLUX (TOT DOWNWARD RADIATION) C FLX1 IB RS 1ST FLUX VALUE (W M-2) C FLX2 IB RS 2ND FLUX VALUE (W M-2) C FLX3 IB RS 3RD FLUX VALUE (W M-2) C FOG IC LS INTERMEDIATE HRLY FOG FLAG C FUP IB RS UPWARD GRND LW RADIATION (W M-2) C H LOC RS SENSIBLE HEAT FLUX (W M-2) C HEAT LOC RS SENSIBLE HEAT FLUX SUB-PRODUCT C HEMI IC IS CURRENT HEMISPHERE (1=N, 2=S) C I IC IS 1/8 MESH I COORDINATE C ICLAMT IC IA INTERMEDIATE HRLY CLD AMOUNT C ICLTYP IC IA INTERMEDIATE HRLY CLD TYPE C J IC IS 1/8 MESH J COORDINATE C K LOC IS LOOP INDEX C NSOIL IC IS SOIL LAYER NUMBER C PET LOC RS POTENTIAL EVAPOTRANSPIRATION (MM) C PRCPDT IOC RA TIME-STEP ACCUM PRECIP (KG M-2) C PRCP IOC RA MEAN PRECIP RATE DURING TIME-STEP(KG M-2 s-1) C Q2 IOC RS MIXING RATIO AT 1ST MDL LVL ABV SKIN C Q2SAT IOC RS SAT MXNG RATIO AT 1ST MDL LVL ABV SKIN C RES LOC RS ENERGY BALANCE EQN RESIDUAL (W M-2) C RIB IB RS BULK RICHARDSON NUMBER C RLDOWN IC RS DOWNWARD LONGWAVE RADIATION (W M-2) C RR LOC RS SENSIBLE HEAT SUB-PRODUCT C RSOLIN IC RS SOLAR RADIATION (W M-2) C RUNOFF1 IB RS GRND SFC RUNOFF (M ) C RUNOFF2 IB RS UNDERGROUND RUNOFF (M ) C RUNOFF3 IB RS RUNOFF WITHIN SOIL LAYERS (M ) C SMC IOC RA SOIL MOISTURE CONTENT (VOLUMETRIC) C SH2O(NSOIL): UNFROZEN SOIL MOISTURE CONTENT (VOLUMETRIC FRACTION) C SNEQV: WATER EQUIVALENT SNOW DEPTH (M) (formerly called SNODEP) C SNOMLT: SNOW MELT (M) (WATER EQUIVALENT) C SNOWH: SNOW DEPTH (M) C SNOALB: MAX ALBEDO OVER DEEP SNOW (FRACTION) C SOILM: TOTAL SOIL COLUMN WATER CONTENT (M) C SOILW: AVAILABLE SOIL MOISTURE (UNITLESS FRACTION) C ZSOIL IOC RA SOIL LAYER DEPTH ( M ) C WRES: WATER BALANCE RESIDUAL (mm) INTEGER jday INTEGER IIDAY INTEGER DDTIME INTEGER INDI INTEGER IREC INTEGER NASCII INTEGER NOUT INTEGER NSOIL INTEGER LAYER INTEGER NUMVARS C REAL ALB REAL ALBEDO REAL CMC REAL CMC_bef REAL CMCS REAL DEWDT REAL DT REAL EC1S REAL EDIR1S REAL ETA REAL ETP REAL ETAMM REAL ETPMM REAL ETT1S REAL LVH2O REAL PRCP REAL PRCPDT REAL RTIME REAL RUNOFF1 REAL RUNOFF11 REAL RUNOFF2 REAL RUNOFF22 REAL RUNOFF3 REAL RUNOFF33 REAL SDATE REAL SMC(NSOIL) REAL SH2O(NSOIL) REAL SNEQV REAL SNEQV_bef REAL SNEQVMM REAL SNOMLT REAL SNOALB REAL SNOWH REAL SOILM REAL SOILM_bef REAL SOILW REAL SNMELT REAL SOILMM REAL TRUNOFF REAL WRES c COMMON /RITE vars REAL BETA REAL DRIP REAL EC REAL EDIR REAL ETT REAL DEW Parameter (LVH2O = 2.501000E+6) C C MIC$ TASKCOMMON RITE C PRINT*,' ' C PRINT*,'COMMON/RITE in prtHydf' C PRINT*,' ' C PRINT*,'BETA=',BETA C PRINT*,'DRIP=',DRIP C PRINT*,'EC=',EC C PRINT*,'EDIR=',EDIR C PRINT*,'ETT=',ETT C PRINT*,'FLX1=',FLX1 C PRINT*,'FLX2=',FLX2 C PRINT*,'FLX3=',FLX3 C PRINT*,'RUNOFF=',RUNOFF C PRINT*,'DEW=',DEW C PRINT*,'RIB=',RIB C PRINT*,'RUNOXX3=',RUNOXX3 C PRINT*,' ' CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C Units conversion from ENERGY (w m-2) to mm of WATER changing state C LVH2O: Latent heat for evaporation for water. ETAMM = ETA*DT/LVH2O ETPMM = ETP*DT/LVH2O C Converting to mm of water accumulated during time-step DT c EC1S=EC*1000.*DT c EDIR1S=EDIR*1000.*DT c ETT1S = ETT*1000.*DT EC1S=EC/LVH2O*DT EDIR1S=EDIR/LVH2O*DT ETT1S = ETT/LVH2O*DT CMCS=CMC*1000. RUNOFF11 = RUNOFF1*DT*1000. RUNOFF22 = RUNOFF2*DT*1000. RUNOFF33 = RUNOFF3*1000. TRUNOFF = RUNOFF11 + RUNOFF22 + RUNOFF33 C C Water Balance Residual: C Storage change in time DT (SMC,SNOW,CMC)=(Precip+Dew-(Runoff+Evap))*DT C Suffix "_bef" stands for "Time-step before" (previous time-step value) C DEWDT = DEW*DT PRCPDT = PRCP*DT/1000. C ETA contains effects of direct and canopy evap, transpiration and dew WRES= (SOILM-SOILM_bef + SNEQV-SNEQV_bef + CMC-CMC_bef & - PRCPDT +(RUNOFF1+RUNOFF2)*DT)*1000. + ETAMM SNEQVMM = SNEQV*1000. SNMELT = SNOMLT*1000. SOILMM = SOILM*1000. IF (NOUT .GT. 0) THEN SDATE=FLOAT(IIDAY) RTIME=FLOAT(DDTIME) WRITE(NOUT,REC=IREC) SDATE IREC = IREC + 1 WRITE(NOUT,REC=IREC) RTIME IREC = IREC + 1 WRITE(NOUT,REC=IREC) PRCP IREC = IREC + 1 WRITE(NOUT,REC=IREC) ETPMM IREC = IREC + 1 WRITE(NOUT,REC=IREC) ETAMM IREC = IREC + 1 WRITE(NOUT,REC=IREC) RUNOFF11 IREC = IREC + 1 WRITE(NOUT,REC=IREC) RUNOFF22 IREC = IREC + 1 WRITE(NOUT,REC=IREC) RUNOFF33 IREC = IREC + 1 WRITE(NOUT,REC=IREC) TRUNOFF IREC = IREC + 1 WRITE(NOUT,REC=IREC) DEWDT*1000. IREC = IREC + 1 WRITE(NOUT,REC=IREC) EDIR1S IREC = IREC + 1 WRITE(NOUT,REC=IREC) ETT1S IREC = IREC + 1 WRITE(NOUT,REC=IREC) EC1S IREC = IREC + 1 WRITE(NOUT,REC=IREC) CMCS IREC = IREC + 1 DO LAYER=1, NSOIL WRITE(NOUT,REC=IREC) SH2O(LAYER) IREC = IREC + 1 END DO DO LAYER=1, NSOIL WRITE(NOUT,REC=IREC) SMC(LAYER) IREC = IREC + 1 END DO WRITE(NOUT,REC=IREC) ALBEDO IREC = IREC + 1 WRITE(NOUT,REC=IREC) ALB IREC = IREC + 1 WRITE(NOUT,REC=IREC) SNOALB IREC = IREC + 1 WRITE(NOUT,REC=IREC) SNOWH IREC = IREC + 1 WRITE(NOUT,REC=IREC) SOILW IREC = IREC + 1 WRITE(NOUT,REC=IREC) SNEQVMM IREC = IREC + 1 WRITE(NOUT,REC=IREC) SNMELT IREC = IREC + 1 WRITE(NOUT,REC=IREC) SOILMM IREC = IREC + 1 WRITE(NOUT,REC=IREC) WRES IREC = IREC + 1 ELSEIF (NOUT .LT. 0) THEN NASCII = -NOUT NUMVARS = 23+NSOIL+NSOIL WRITE(NASCII,200) jday, DDTIME, PRCP, ETP, & ETA, & RUNOFF11, RUNOFF22, RUNOFF33, TRUNOFF, & DEWDT*1000., EDIR1S, ETT1S, EC1S, CMCS, & (SH2O(LAYER), LAYER=1,NSOIL), & (SMC(LAYER), LAYER=1,NSOIL), & ALBEDO,ALB,SNOALB, & SNOWH, & SOILW, & SNEQVMM, & SNMELT, & SOILMM,WRES END IF 200 FORMAT(I6,1X,I6,29(1x,F15.4)) C 200 FORMAT(I6,1X,I6,60(1x,F15.4)) RETURN END SUBROUTINE QDATAP (T,P,RH,QD,QS,ES) IMPLICIT NONE CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CC PURPOSE: OBTAIN SPECIFIC HUMIDITY (q) FROM RELATIVE HUMIDITY CC AND GIVEN PRESSURE AND TEMPERATURE. CC CC CC FORMULAS AND CONSTANTS FROM ROGERS AND YAU, 1989: 'A CC SHORT COURSE IN CLOUD PHYSICS', PERGAMON PRESS, 3rd ED. CC CC Pablo J. Grunmann, 3/6/98. CC Updated to eliminate subroutine SVP, 6/24/98. CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C---------------------------------------- C In: C T Temperature (K) C P Pressure (Pa) C RH Relative humidity (%) C----------------------------------------- C Out: C QD Specific humidity (Kg/Kg) C QS Saturation Specific humidity (Kg/Kg) C ES Saturation vapor pressure for water (Pa) C---------------------------------------- REAL T REAL P REAL RH REAL RHF REAL QD REAL QS REAL ES REAL EP REAL EPS REAL E PARAMETER (eps=0.622 ) C C ABOUT THE PARAMETER: C C eps ---------- (Water)/(dry air) molecular mass ratio, epsilon C _____________________________________________________________________ C C function E(T) = Sat. vapor pressure (in Pascal) at C temperature T (uses Clausius-Clapeyron). Es = E(T) C CONVERT REL. HUMIDITY (%) TO THE FRACTIONAL VALUE RHF = RH/100. CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CC CALCULATE SATURATION MIXING RATIO CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C C QS = 0.622 * ES /P was substituted by a more precise C formula: -PABLO J. GRUNMANN, 05/28/98. QS = 0.622 * ES /(P - (1.-0.622)*ES) C C CONVERSION FROM REL. HUMIDITY: C (Rogers, pg. 17) C EP = (P*Es*RHF)/(P - Es*(1. - RHF)) QD = eps*EP/(P - (1. - eps)*EP) C RETURN END SUBROUTINE READBND(jday, itime, SFCTMP, RH, SFCPRS, Rg, * Par_in, Par_out, rnet, LW_in, GHF, PRCP, wet, SKN_IRT, * T_02, T_04, T_08, T_16, T_32, T_64, sm_05, * sm_20, sm_60, w_dir, u_bar, eddyuw, * uprim2, vprim2, wprim2, H, LE, * DT, IMONTH,IDAY,NREAD) IMPLICIT NONE CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CC CC NAME: READBND CC CC CC PURPOSE: CC THIS IS A MODIFICATION OF V.KOREN'S CC SUBROUTINE READPILPS(ICALB,NREAD,NREAD2,IYEAR,IMONTH,IDAY, CC IHOUR,P,T,Q,U,V,LWDN,RAIN,SOLDN,SOUT, CC TSKNEST) CC TO READ FORCING DATA FROM BONDVILLE, IL ATDD SITE. CC CC PABLO J. GRUNMANN, 05/98 CC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C ARGUMENT LIST IN THE CALL READBND C PREPARED BY PABLO GRUNMANN IN 05/98 C C SFCPRS: PRESSURE AT 1ST MDL LVL ABV SKIN (PASCALS) C PRCP: PRECIP RATE (KG M-2 s-1) C SFCTMP: AIR TEMPERATURE AT 1ST MDL LVL ABV SKIN (K) C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C C INTEGER jday,itime,IMONTH,IDAY,NREAD,I INTEGER JULM(13) REAL DT REAL SFCTMP REAL T REAL RH REAL SFCPRS REAL P REAL Rg REAL Par_in REAL Par_out REAL rnet REAL LW_in REAL GHF REAL PRCP REAL RAIN REAL wet REAL SKN_IRT REAL T_02 REAL T_04 REAL T_08 REAL T_16 REAL T_32 REAL T_64 REAL sm_05 REAL sm_20 REAL sm_60 REAL w_dir REAL u_bar REAL eddyuw REAL uprim2 REAL vprim2 REAL wprim2 REAL w_speed REAL CO2 REAL H REAL LE CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC c Save previous step required forcing data c to make up in case of missing. REAL XOLD(32) do i=1,32 XOLD(i)=0.0 end do XOLD(2)= SFCTMP - 273.15 XOLD(3)= RH XOLD(5)= SFCPRS/1.E2 XOLD(6)= Rg XOLD(7)= LW_in XOLD(12)= PRCP*DT/25.4 XOLD(14)= SKN_IRT XOLD(25)= u_bar CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C C READ BND_ DATA C ATTENTION! C REMEMBER TO REMOVE TITLE FROM BND_ FILE (1ST LINE), THEN READ DATA READ(NREAD,*) jday, itime, w_speed, w_dir, * T, RH, P, Rg, Par_in, Par_out, * rnet, GHF, RAIN, wet, SKN_IRT, * T_02, T_04, T_08, T_16, T_32, T_64, * u_bar, eddyuw, uprim2, vprim2, wprim2, * H, LE, CO2, LW_in, * sm_05, sm_20, sm_60 C----------------------------------------------------------------------- C TILDEN MEYERS' BND_ DATA: C C jday Julian Day C itime LST, half hour ending C Ta air temperature (C), at 3 m C RH relative humidity (%) at 3 m C Pres surface pressure in mb C Rg incoming short wave radiation (W/m2) C Par_in incoming visible radiation (0.4-0.7 um) in uE/m2/s C Par_out outgoing or reflected visible light C Rnet net radiation (W/m2) C GHF soil or ground heat flux (W/m2) C RAIN total rain for half hour (inches) C wet wetness sensor (voltage - higher values indicatE wetness) C SKN_IRT surface or skin temp (C) C T_2 soil temp at 2 cm (C) C T_4 soil tmep at 4 cm C T_8 soil temp at 8 cm C T_16 soil temp at 16 cm C T_32 soil temp at 32 cm C T_64 soil temp at 64 cm C sm_5 soil volumetric water content at 5 centimeter_depht C sm_20 soil volumetric water content at 20 centimeter_depht C sm_60 soil volumetric water content at 60 centimeter_depht C w_dir wind direction C u_bar average wind vector speed (m/s), at 6m C u'w' kinematic shear stress (m2/s2) C u'2 streamwise velocity variance (m2/s2) C v'2 crosswind velocity variance (m2/s2) C w'2 vertical velocity variance (m2/s2) C H sensible heat flux (W/m2) C LE latent energy flux (W/m2) C C The eddy covariance sensors are located at 6 m AGL C The bulk density of the soil is 1.4 gm/cm3 C The site is currently in corn stubble (like it would look C after combining) C C The units uE/m2/s refer to micro Einsteins per square meter per C second. A uE is 6.02 x 10 (17) photons. C C C----------------------------------------------------------------------- CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C THIS PART STILL REQUIRES ATTENTION: C C C C IN LACK OF FORCING DATA, CURRENT PROCEDURE HAS BEEN C C (AND IT IS) TO USE PREVIOUS TIME-STEP RECORDED VALUES. C C C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC IF (T .LT. -173.) THEN T = XOLD(2) ENDIF IF (RH .LT. 0. ) THEN RH = XOLD(3) ENDIF IF (P .LT. 850. ) THEN P = XOLD(5) ENDIF IF (Rg .LT. -100. ) THEN Rg = XOLD(6) ENDIF IF (LW_in .LT. 0.) THEN LW_in = XOLD(7) ENDIF IF (RAIN .LT. 0. ) THEN RAIN = XOLD(12) ENDIF IF (u_bar .LT. 0. ) THEN C MISSING u_bar, USE W_SPEED WITH LINEAR REGRESSION CONVERSION u_bar = 0.85*w_speed C BUT, IF EVEN W_SPEED IS NOT AVAILABLE, USE PREVIOUS STEP VALUE IF (u_bar .LT. 0. ) THEN u_bar = XOLD(25) ENDIF ENDIF CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C CONVERT VARIABLES C C OBTAIN DAY AND MONTH: JULIAN DATE SUBROUTINE CALL JULDATE(JDAY,IMONTH,IDAY,JULM) C C CONVERT RAIN FROM INCHES IN 30MIN TO KG M^-2 S^-1 C (SAME AS PRECIP.RATE IN MM/SEC) C PRCP = RAIN*25.4/DT C C AIR TEMPERATURE IN KELVIN C SFCTMP = T + 273.15 C C SFC PRESSURE IN PASCAL C SFCPRS = P*1.E2 C C ---- DONE CONVERTING VARIABLES ---------------------------- CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC RETURN END C ---------------------------------------------------------------------- SUBROUTINE READCNTL(CNTRFL,NCYCLES,L2nd_data,NRUN,NRUN2, & DT,NSOIL,NSOLD,Z, & SLDPTH,SOILTP,VEGTYP,SLOPETYP,ALBEDOM,SHDFACM,SHDMIN,SNOALB,ICE, & TBOT,T1, & STC,SMC,SH2O,CMC,SNODEP,SNEQV,FILENAME,FILENAME2, & LATITUDE, & LONGITUDE, & JDAY,IBINOUT, & TIME) IMPLICIT NONE C READS A CONTROL FILE WHICH INCLUDES INPUT PARAMETERS FOR OSU MODEL - INTEGER NCYCLES INTEGER NRUN INTEGER NRUN2 INTEGER NSOIL INTEGER NSOLD CCCC INTEGER NROOT INTEGER SOILTP INTEGER VEGTYP INTEGER SLOPETYP INTEGER ICE INTEGER IBINOUT INTEGER SYDAYS INTEGER SYSECS INTEGER INTEGERDT LOGICAL L2nd_data REAL SLDPTH(NSOLD) REAL STC(NSOLD) REAL SMC(NSOLD) REAL SH2O(NSOLD) REAL DT REAL Z REAL ALBEDOM(13) REAL SHDFACM(13) REAL SNOALB REAL TBOT CCCC REAL Z0 REAL T1 REAL CMC REAL SNODEP REAL SNEQV CCCC REAL CZIL CCCC REAL REFKDT REAL LATITUDE REAL LONGITUDE INTEGER JDAY INTEGER TIME INTEGER NREAD, I, K REAL SHDMIN INTEGER IMON CHARACTER*72 CNTRFL, LINEFEED CHARACTER*72 FILENAME, FILENAME2 NREAD = 21 OPEN (UNIT=NREAD, FILE=CNTRFL, STATUS='OLD', & FORM='FORMATTED') C JUMP-READ 2 LINES (CHARACTER) TO SKIP COMMENTS (LINE FEED) DO I=1,2 READ(NREAD,'(A)') LINEFEED C writ WRITE(*,'(A)') LINEFEED END DO C Model Configuration: READ (NREAD, * ) LATITUDE READ (NREAD, * ) LONGITUDE READ (NREAD, 100) IBINOUT READ (NREAD, 100) JDAY READ (NREAD, 100) TIME C READ (NREAD, 100) NCYCLES READ (NREAD, 100) SYDAYS READ (NREAD, * ) L2nd_data READ (NREAD, 150) NRUN2 READ (NREAD, * ) DT READ (NREAD, 100) NSOIL READ (NREAD, * ) Z READ (NREAD, * ) (SLDPTH(K), K=1,NSOIL) CCCC IF (MOD(YSEC,DT) .NE. 0) THEN CCCC PRINT*,' ' CCCC PRINT*,'#### #### -ERROR- #### ####' CCCC PRINT*,' ' CCCC PRINT*,'SECONDS IN SPIN-UP YEAR IS NOT AN ' CCCC PRINT*,'INTEGRAL NUMBER OF TIME STEPS. ' CCCC PRINT*,'Check YSEC and DT so that YSEC/DT is an integer:' CCCC PRINT*,' ' CCCC Write(*,200),YSEC/DT CCCC PRINT*,'INT(YSEC/DT)-YSEC/DT= ',INT(YSEC/DT)-YSEC/DT CCCC PRINT*,' MOD(YSEC,DT)= ',MOD(YSEC,DT) CCCC PRINT*,' ' CCCC PRINT*,'#### #### #### ####' CCCC PRINT*,' ' CCCC stop 999 CCCC ENDIF IF (NCYCLES .GT. 1) then c f90 -g -DEBUG:fullwarn=on: A real division was encountered in an c expression being converted to integer. C NRUN=SYDAYS*24*3600/DT SYSECS=SYDAYS*24*3600 INTEGERDT=DT NRUN=SYSECS/INTEGERDT ELSE NRUN=NRUN2 ENDIF C NEW: NROOT, SLDPTH(K), K=1,NSOIL C REMOVED: ZSOIL(K), K=1,NSOIL C READ 3 LINES (CHARACTER) TO SKIP COMMENTS (LINE FEED) DO I=1,3 READ(NREAD,'(A)') LINEFEED WRITE(*,'(A)') LINEFEED END DO C ATMOSPHERIC DATA FILES TO BE USED FOR FORCING: READ(NREAD,'(A)') FILENAME PRINT*,' FILENAME = ', FILENAME READ(NREAD,'(A)') FILENAME2 PRINT*,' FILENAME2 = ', FILENAME2 C C READ 3 LINES (CHARACTER) TO SKIP COMMENTS (LINE FEED) DO I=1,3 READ(NREAD,'(A)') LINEFEED C writ WRITE(*,'(A)') LINEFEED END DO C ------------------------ C Land surface characteristics: C ------------------------ READ (NREAD, 100) SOILTP READ (NREAD, 100) VEGTYP READ (NREAD, 100) SLOPETYP C ...........SKIP COMMENTS (LINE FEED) DO I=1,3 READ(NREAD,'(A)') LINEFEED C writ WRITE(*,'(A)') LINEFEED END DO C ........... READ (NREAD, *) (ALBEDOM(K), K=1,12) ALBEDOM(13) = ALBEDOM(1) C ...........SKIP COMMENTS (LINE FEED) DO I=1,3 READ(NREAD,'(A)') LINEFEED C writ WRITE(*,'(A)') LINEFEED END DO C ........... READ (NREAD, *) (SHDFACM(K), K=1,12) DO IMON=1,12 c WRITE(*,*) IMON,SHDFACM(IMON),SHDMIN SHDMIN = MIN(SHDMIN,SHDFACM(IMON)) ENDDO c WRITE(*,*) SHDMIN SHDFACM(13) = SHDFACM(1) C ...........SKIP COMMENTS (LINE FEED) READ(NREAD,'(A)') LINEFEED C writ WRITE(*,'(A)') LINEFEED C ........... READ (NREAD, *) SNOALB READ (NREAD, 100) ICE C NEW: ALBEDO, SHDFAC, ICE, C REMOVED: LAND, CFACTR C C READ 3 LINES (CHARACTER) TO SKIP COMMENTS (LINE FEED) DO I=1,3 READ(NREAD,'(A)') LINEFEED C writ WRITE(*,'(A)') LINEFEED END DO C ------------------ C PHYSICAL PARAMETERS: C ------------------ READ (NREAD, *) TBOT C C READ 3 LINES (CHARACTER) TO SKIP COMMENTS (LINE FEED) DO I=1,3 READ(NREAD,'(A)') LINEFEED C writ WRITE(*,'(A)') LINEFEED END DO C ------------------------ C INITIAL STATE VARIABLES: C ------------------------ READ (NREAD, *) T1 READ (NREAD, *) (STC(K), K=1,NSOIL) READ (NREAD, *) (SMC(K), K=1,NSOIL) READ (NREAD, *) (SH2O(K), K=1,NSOIL) READ (NREAD, *) CMC READ (NREAD, *) SNODEP READ (NREAD, *) SNEQV C READ LAST 2 LINES (CHARACTER) TO SHOW THAT CONTROLFILE WAS C COMPLETELY READ DO I=1,2 READ(NREAD,'(A)') LINEFEED C writ WRITE(*,'(A)') LINEFEED END DO CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C V. KOREN 5/21/97 C TWO PARAMETERS TO RUN FROZEN GROUND CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C C C READ (NREAD, *) CVFRZ C C READ (NREAD, *) FRZK C C C C READ (NREAD, *) SLOPE C C C C CVFRZ = 3.0 C C FRZCL = 0.50 C C SLOPE = 0.0005 C C C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 100 FORMAT(I7) 150 FORMAT(I9) C 250 FORMAT(I12) C 200 FORMAT(14X,'SYDAYS*24*3600/DT= ',F18.12) C 400 FORMAT(10(2X, F14.8)) CLOSE(NREAD) C RETURN END