CCPA Precipitation Analysis: Data Set, Cross Validation and Evaluation

Dingchen Hou¹, Yan Luo¹, Yuejian Zhu¹, Pingping Xie², and Ying Lin¹

¹Environmental Modeling Center/NCEP/NWS/NOAA
²Climate Prediction Center/NCEP/NWS/NOAA

Acknowledgements

Mike Charles, Zoltan Toth, Roman Krzysztofowicz, Dong-Jun Seo, Malaquias Pena, Bo Cui, Steve Lord, Letitia Soulliard, Julie Demargne, John schaake

25th Conference on Hydrology
23-27 January, 2011, Seattle, WA
A High Resolution Precipitation Dataset over CONUS: Climatology-Calibrated Precipitation Analysis (CCPA)

Dingchen Hou¹, Mike Charles¹,* Zoltan Toth¹,# Yuejian Zhu¹, Roman Krzysztofowicz², Yan Luo¹, Ying Lin¹, Pingping Xie³, Dong-Jun Seo⁴, Malaquias Pena¹ and Bo Cui¹

¹ Environmental Modeling Center/NCEP/NWS/NOAA, Camp Springs, MD
² University of Virginia, Charlottesville, VA
³ Climate Prediction Center/NCEP/NWS/NOAA, Camp Springs, MD
⁴ Office of Hydrology Development/NWS/NOAA, Silver Springs, MD

* Current affiliation: Climate Prediction Center/NCEP/NWS/NOAA, Camp Springs, MD
Current affiliation: Global System Division/ESRL/OAR/NOAA, Boulder, CO

Acknowledgements
Steve Lord, EMC/NCEP/NWS/NOAA
Letitia Soulliard, HPC/NCEP/NWS/NOAA

5th NAEFS Workshop, Juitepec, Mexico, 17-19 May 2010
What is CCPA?
(Climatology-Calibrated Precipitation Analysis)

• A new dataset of precipitation analysis, over CONUS at 6h, ~4km resolution
• Statistical adjustment of Stage IV data toward CPC analysis
• Simple linear regression at 0.125 degree and 24h accumulation
• Spatial interpolation and temporal smoothing to regression coefficients
• Keep the fine scale structures of Stage IV
• Closer to CPC Unified Precipitation Analysis, in the sense of climatology
• Provide a proxy of truth for precipitation forecast calibration and downscaling
Status and Availability of CCPA data sets

• Operational implementation at NCEP on July 13, 2010
 – Real time generation of CCPA after STAGE IV
 – Generate at noon and update in the evening

• Generate the historical data set of CCPA for 2002-2010

• Product grids:
 – HRAP (primary)
 – NDGD, 0.125, 0.5 and 1.0 degree resolutions (byproducts)

• Contact information: Yan.Luo@noaa.gov

• CCPA website:
Establish Statistical Relationship

1. Historical data sets
 June 1 2002 to July 31 2009 For CPC and STAGE IV

2. Match resolutions
 a. Accumulate RFC over 24 hours
 b. Interpolate to ⅛° (copygb w/ volume preservation)

3. Collect precip samples
 a. For each day of the year and at each grid point, collect all precip within 61 day window centered around that day, over all 7 years (max ~427 data points)
 b. Use only data points with ST4 > 0

4. Linear regression
 a. CPC = a · ST4 + b

• End Result
 – Linear relationship (a & b) on ⅛° grid for each day of the year
Scatter plots of Stage IV against CPC. All data pairs here are sampled to estimate regression coefficients at point (42N, 102W) for day July 1st (Julian day 182).

- Different sample size for the lower and higher precipitation ranges
- Small size for heavy precipitation
- A “linear” regression likely dominated by the lower precipitation points.
Adjustment with regression coefficient and intercept:

\[ST4^* = a \cdot ST4 + b \]
Recovering Original RFC Resolutions

Temporal Disaggregation

1. Determine percentage of daily total precipitation in each 6-hour period in original ST4

1. Divide 24 hour ST4* into four 6-hour precip amounts using the percentages from original ST4

Percent of daily total in each 6-hourly period
Comparison of CCPA and Stage IV

6-h accumulation
(18Z, 30th to 00Z 31st, December 2009)
4km HRAP

Spatial pattern correlation coefficient
= 0.990016
Comparison of Stage IV and CCPA Wrt. CPC

- Two Month Mean (June 1 – July 31, 2008)

For Stage IV and CCPA
- Aggregated from HRAP to 0.125 deg
- Aggregated from 6-hourly to daily
Comparison of time series of CPC, Stage IV and CCPA

- Example: A Point (42N, 102W) near Ashby, NE
- Selected from 0.125 deg datasets for June 1 – July 31 2008
Verification against RFC-gauge network

Results – RMSE and ABSE

CVA: cross validation analysis

Precipitation Verification for CONUS
RMSE and ABSE
Average For 20080701 – 20090630

- **ST4**
- **CVA**
- **CCPA**

Errors (mm)

Threshold (mm/24 hrs)
Verification against RFC-gauge network

Results – ETS and TSS

Precipitation Verification for CONUS
ETS and TSS
Average For 20080701 – 20090630

Scores (0–1)

Threshold (mm/24 hrs)
Conclusion

• CCPA methodology is robust; this is supported by the fact that cross validation analysis is fairly close to CCPA.
• Non-uniform quality control as one shortcoming of Stage IV is (at least partially) corrected.
• CCPA retains spatial and temporal patterns of Stage IV data set.
• CCPA long term average is closer to that of CPC analysis than Stage IV.
• The improvement is more significant with lower and medium daily precipitation amounts.
Limitations and Future Work

• Limitations
 – Inadequate sample of high amount precipitation
 – Validity of the simple linear regression model

• Future Work:
 – Perform annual updating of the regression coefficients with increased sample size
 – Employ more realistic non-linear regression models
 – Other calibration methods