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ABSTRACT

This note is intended as an introduction to various aspects of variational data assim-
ilation using the adjoint model technique, in particular the principles and formulation of
an adjoint model. A complete assimilation system for the Lorenz equations is formulated.
The Lorenz model is chosen for its simplicity in structure and the dynamic similarities
with the nonlinear atmospheric system. Detailed derivations are performed to introduce
basic concepts of the adjoint model method, and the general procedure to construct an
adjoint variational assimilation is discussed. The coding process to construct the Lorenz
assimilation is demonstrated in detail, in which the line-by-line approach for adjoint model
coding is introduced. With the Lorenz assimilation model, various numerical experiments
including coding checks are performed and results discussed. The FORTRAN source code
for the constructed assimilation is given in an appendix. It is believed that by designing,
coding and running the variational data assimilation for the Lorenz model, newcomers
may gain useful insights and experiences which will be beneficial for the research and
development work of a more complicated variational assimilation system, such as the four

dimensional data assimilation of an operational weather prediction model.
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1. INTRODUCTION

In recent years variational data assimilation (VDA) techniques have been increas-
ingly applied to the numerical weather prediction (NWP) problem [see, e.g., the review by
Ghil & Malanotte-Rizzoli (1991), and a VDA reference list by Courtier et al (1993)]. For
an operational numerical weather prediction model using the primitive equations, a suc-
cessful data assimilation should produce initial model states that not only makes optimal
use of observational data, but also satisfies physical laws and is free of undesirable noise.
Traditional data assimilation approaches such as function fitting, successive corrections,
optimal interpolation ete. (Daley, 1991), use different kinds of interpolation techniques,
subjected to various physical balance constraints, and directly project spatially irregular
observational data onto a regular coordinate space. In the VDA approach, the assimila-
tion problem is redefined as an iterative process in which the gap between observed fields
and the initial model state is minimized. The so-called adjoint model, which is derived

from the forecast model (forward model), is often used in the minimization of a VDA.

For newcomers working with an adjoint VDA problem, it is often difficult to get a
precise understanding of the basics, such as the concept of tangent linear operator, adjoint
model, cost function gradient, etc. It is not a trivial task, either, to formulate a VDA
problem and program it correctly. Unfortunately, there exists few suitable textbooks on
the adjoint model formulation and coding. Despite the fact that the adjoint method has
been introduced into meteorological and oceanographic applications for decades, we still
see researchers attaching appendices with coding examples or alike in their journal articles
or reports (e.g., Li et al, 1991, Navon et al, 1992). With that in mind, we write this note
on the formulation and coding of a VDA system using the adjoint model method. Detailed
description is given to illustrate practical procedures as well as principles to implement
the adjoint technique to a forecast system. We hope that in this way, the note will make
it easier for beginners to grasp the basics of the VDA approach, especially the practical

aspects of the adjoint model coding.

In designing a complete VDA system we use, as an assimilation model, the equation
set proposed by Lorenz (1963). The Lorenz model is chosen because it is simple in
structure, yet rich in solution patterns, and it has many similarities with the nonlinear

dynamics of the atmospheric system. Over the past decades, a wide variety of nonlinear
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dynamic studies has been done for this model. In the data assimilation field, it has also
been a favored research subject (see, e.g., Gauthier, 1992, Stensrud and Bao, 1992, Pires
et al, 1996). Our purpose here is to use the Lorenz model to illustrate the procedure to
apply the variational method to a data assimilation problem. The Lorenz model contains
only three ordinary differential equations, and it is therefore easy to construct a complete
VDA system and explain the details in a note. Furthermore, the precise model solution

is also readily obtained for verifying the VDA coding.

In Section 2, we formulate the assimilation problem for the Lorenz model and in-
troduce the principles of variational assimilation. The application of the adjoint model
approach in a general VDA application is discussed, followed by a description of the gen-
eral procedure to construct a variational assimilation. In Section 3, we describe in detail
the coding procedure for the Lorenz VDA. Various experimental results including coding
checks are discussed in Section 4. In Section 5, a brief summary is given. The Fortran

source code of the constructed Lorenz VDA system is given in Appendix B.
2. FORMULATION OF A VARIATIONAL ASSIMILATION
2.1. The Lorenz model

In the classical paper by Lorenz (1963), a finite system of deterministic equations
(hereafter referred to as the Lorenz model or Lorenz equations) is designed, to represent
a forced, dissipative hydrodynamic flow. The system consists of a set of three nonlinear
ordinary differential equations, which are derived from a highly truncated spectral model

of thermal convection:

W) — (1) + puf2). 1)
dw(2)

= [ = w(3)w(1) - w(2), (2)

dw(3)

— 7 = w(1)w(2) — buw(3), (3)

where ¢ 1s the non-dimensional time, p the Prandtl number, r the modified Rayleigh num-
ber, b the aspect ratio, w(1) the intensity of convection, w(2) the maximum temperature
difference and w(3) the stratification change due to convection. Despite its simplicity,
this nonlinear equation system is chaotic, dissipative and rich in solution patterns, and

shares many dynamic features with the atmospheric system. For such an equation system
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with bounded solutions, Lorenz found that non-periodic solutions are ordinarily unstable
with respect to small modifications, so that slightly differing initial states can evolve into
considerably different states. In light of the results, the question about the feasibility of
an extended range weather prediction was raised for the first time, which has attracted

the attention of the meteorological community over several decades.
2.2. Formulation of the assimilation problem for the Lorenz model

Assume that our task is to find the evolution trajectory of the model state wy

described by the equations (1) - (3), where

and subscript £ represents the time step. Obviously, if the initial model state wg is known,
with a time stepping method, the numerical solutions for the future model state wj can

be readily obtained by integration.

It is easy to see that the Lorenz model is a deterministic problem in which the future
evolution trajectory of the model state is uniquely determined by the initial condition.
In fact, the following general equation form may be used to represent such initial value

problems,

wi = N(w/_,), (4)

where IN(w) represents all modeled processes for one time interval between k and its
neighboring time step & — 1, and superscript f represents the model solution. Eq. (4) is
often referred to as a forward model in data assimilation studies. Obviously, it implies

that W]J; is ultimately determined by the initial state W(J;:

wi =N-..N(wj).

Consider now the situation in which the initial model state wg is unknown. Instead,
there are some “observations” for the trajectory at certain point in time, w, where the
superscript o stands for observation. This represents a typical data assimilation scenario
in which the ultimate goal is to use available observations to obtain model solutions as
close to the true evolution trajectory as possible. Among many ways to formulate such

a task in a mathematical language, with a variational approach, a cost function .J is
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introduced to measure the misfit between the model state and observations,

1 kmaz

=5 Y (wl = wi) (w] - wi), (5)

k=0

where ()T is the matrix transpose operator, and w has the same dimension as w,{. The
components of wj are set to be equal to those of w,{ in case of missing observations.
Since the exact initial state wy is unknown in a data assimilation problem, we may only
start with a guess state for Wé, which is either from observations, or from model solutions

formed through iterations.

Eqgs. (4) and (5) show that, for a deterministic initial value problem such as the
Lorenz model, the essence of the data assimilation is to adjust the initial state, wg, SO
that .J is minimized. The following minimization algorithm may be designed to relate the

cost function J to the model states obtained from the iterative process,
wi T = wit — aVJ(wi"), (6)

where n is the number of iterations, « is a parameter to be chosen to achieve effective
convergence of the iteration, and V.J is the gradient of the cost function with respect to
the initial state wy™. If the iteration (6) converges, wg’” will approach the desired initial

state wy'™™ which satisfies

J = mm(])

2.3 Adjoint method to estimate the cost function gradient

With the VDA minimization designed as in Eq. (6), the important issue is to
estimate the gradient of the cost function with respect to a model state, V.J. A straight-
forward way would be to perturb each control variable in turn and estimate the resulting
change of the cost function. However, such an estimate yields only an approximate gradi-
ent, which is often insufficient to achieve convergence of the minimization. Furthermore,
this approach is not feasible if such a VDA algorithm is to be used in a more general
application such as an atmospheric model, which is characterized by an enormous model
dimension [O(10%)]. As an alternative, the so-called adjoint model method may be used
to achieve an exact cost function gradient, through an integration of the adjoint model

backwards in time.
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Consider a small perturbation to the model state Wg, denoted as Wg’”. The pertur-

bation results in a change in the cost function J(wg), denoted as J”(wg):

THwg) = J(wg +wi'") = J(wp). (7)

fitl

Taking the limit of ||w{™|| — 0, the above becomes,

T (w) = [VJ(wg)]wy ™. (8)

At the same time, using the definition of J(ng) in (5), (7) can also be written as
THwi) = Do (wi — wp)Twi™. (9)

k
Combining (8) and (9), we get
VI (wd)]Twig™ = 0wl = wi) Twi™ (10)
k

In principle, Equation (10) may now be used to compute the gradient of cost function
J(ng), provided that a relationship between w,{’ﬂ and wl'™ is found. To find that rela-

tionship, we do the derivation in the next step. For simplicity, the generalized forward

model (4) is used.

We linearize (4) around the basic state w,{:

IN(wi)
= 5wl = Lwlywl (1)
Wi

where L(w{) is the tangent linear operator (TL) which depends on the basic state wi

and time step k. Eq. (11) is known as the tangent linear equations of the forward model
(4). Using the tangent linear model (11) iteratively, the relation between wi* and w{"

is established:

or

where,



Substituting (12) into (10), we get:

[VI(wW)] Wi =S (w — wi) Lew ",

k
that is,
[V (wh)]" = ;(Wi —wi) Ly,
or
VJ(wg) = Y Li(wf —wy), (14)
k

where LI is the transpose of Ly
L{ = LT(wi)LT(wi) - LT (w[_,)LT(w[_,). (15)

The transpose of the tangent linear operator is called the adjoint operator. Notice that
in (15) the order of the time index of the adjoint operator is reversed, compare to (13).

By defining the adjoint model (AD) as
wil = LT (wi_)w[", (16)

the solution at time 0 is

wi? = LIw], (17)

where Wk’a‘d denotes the adjoint variable at time step k. The adjoint equation (17) has
the same form as the tangent linear equation (12) but with two differences: the linear
operator in (17) is the transpose of the linear operator in (12); and the time sequence is
reversed in (17). If we now initialize the adjoint model with the difference between the

basic state w,{ and the observation w{ at time step k, that is, assuming
wi = w - wy, (18)
and integrate the adjoint model (16) to time step 0, the result will be
Li(wi —wy),

which is exactly the expression in the summation on the right hand side of (14). In other
words, one adjoint integration with (w,{ —w?Y) as input gives the contribution of (W]{ —wy)
to the gradient of the cost function at time step k. Due to the linearity of the adjoint

model, it is not necessary to compute (W,{ — w{) one by one for the summation in (14).
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The gradient of the cost function is the final output at time 0 after only one integration of
the adjoint model (16), starting from zero and adding (w] — w{) during the integration.
It is easy to see that a backwards adjoint model integration is of a complexity similar to

a single integration of the forward model.

In fact, the above is only one of the many methods to derive the cost function

gradient using the adjoint model. In Appendix A, an alternative derivation is presented.
2./ Minimization procedure using adjoint method

With the method to calculate the cost function gradient established, the minimiza-
tion step (6) may be performed to achieve the optimal initial state wo through iteration.
Figure 1 demonstrates schematically the process to apply the adjoint model technique

to the VDA minimization. Assume we have an observation w, £k = 0,1,..., kmaz.

Start with an initial guess state, w}®. Integrate the forecast model (1) - (3) from

ng’o at time step 0, to time step kmax. This integration results in a basic state w,{’o,

k=0,1,...,kmax. Then, integrate the adjoint model , which is in form of (16), from
time step kmax to time 0. During the integration, add the difference between the basic
state wi” and the observation wg, (Wg’o — w}), to the adjoint variables. According to
(14) and (16), this integration will result in the gradient of the cost function with respect
to the initial state, V.J(w{®). Put w}® and V.J(w{®°) into the minimization procedure

, as defined in (6). The minimization will yield a new initial state wj''. The above

procedure may then be repeated until the desired minimum of .J is achieved.

In the Lorenz VDA study here, we take the parameter o in the minimization equation
(6) as a constant. The simple minimization method with a constant o value is known as
the steepest descent approach. In practical applications such as an operational weather
forecast system, more efficient minimization methods, in which « is a non-constant and

determined by other considerations, are necessary.
2.5 Application of adjoint model approach in assimilation problem

Obviously, the above adjoint model technique also has a potential in application to
more sophisticated assimilation problems. In fact, the method has been used in many
data assimilation applications in the NWP field [see, e.g., the extensive adjoint VDA
reference list compiled by Courtier et al, (1993)]. The procedure shown in (14) and



¥ s Ll Lidiw LAt S

(18) provides an easy way to incorporate any observational data collected within the
assimilation period. The method is particularly useful for the four dimensional variational
data assimilation (4DVAR) of an operational weather forecast model, in which temporally

as well as spatially irregular observations may be conveniently used.

wi? = | NL |
G Ul
+ Wg707 ) W£707 et Wl{"rgaz
R S S
VI(wi®) < | AD | <0
Tttt 1
U’ WS 2 ) WZ 2 meaz
MIN
wil = | NI |
L
+ ng’l, “ w,{’l, ,Wg;}mr
R S T
VJ(wi') < | AD | <0
Tttt 1
U WS bl bl WZ 9ttt wlocmaz

Figure 1: Flow chart of the minimization process.

In many practical applications, the cost function .J, as a measure of the misfit between
model solutions and observations, may be defined in various ways, reflecting certain con-
straints and conditions [see, e.g., the discussions in Daley (1991)]. As an example, in a
more general application, the cost function may be redefined as below, in order to take
into account errors in observations, and also the situation in which the observation sites

do not coincide with the model grid mesh,

1 kmax
J = 5 E (ka,f — WZ)TOk(HkW]J: - wy), (19)
k=0

where the model vector W]{ is of a dimension N, the observation wj has a dimension M,

and O is a diagonal matrix with dimension M x M, containing weighting coefficients
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measuring observation errors. Here the definition of the cost function has been modified
to reflect the fact that the observation is normally done over an irregular network which
is often different from the model grid mesh. Hence, an additional matrix H in (19), with
a dimension of M x N, is needed to interpolate the model grid values to the observation
grid so as to make a comparison. Notice that in a realistic assimilation problem, most
often M < N, that is, the degrees of freedom of the model state is normally larger than
those of the observations, so that the problem is under-determined. In case of missing
observations at some points, the corresponding component in O should be set to zero.
The individual component of O for each observation must be determined to reflect the

data quality, which is often a complicated process in applications such as NWP.

With the definition of the cost function J modified, the gradient V.J may be de-
rived in a similar way as described in Subsection 2.3. For the cost function (19), the
corresponding gradient equation for (14) becomes,

Vi (wy) = 3 Ly Hy Ox(Hywi — wy), (20)
k

and for (18),

wi = HI O (Hywi — w?).

To calculate the cost function gradient according to (20), similar to the procedure dis-
cussed in Subsection 2.3, the weighted difference between the model state and the observa-
tion is used as the input for the adjoint model integration. Notice that Ok(HkW£ —wy),
which is calculated on the observation sites, should be multiplied by HT, so as to be

transformed back to the model grid mesh.
2.6 Construction of a variational assimilation system

In light of the above discussions, generally, in constructing a VDA system, the

following steps may be considered:
Step I : restructure the nonlinear forecast model (NL)

In most applications, the forecast model, which is often nonlinear, already exists.
However, the model may have been under development for a long time, so that the
computer code contains various standards, and it thus needs to be restructured, especially

if some kind of automatic code generator is to be used.
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Step II : construct the tangent linear model (TL)

In Subsection 2.3, we introduced the concept of a tangent linear model in deriving the
adjoint model. The TL model is not directly used in the VDA minimization as formulated
in this paper. However, since an AD operator is the transpose of an TL operator, when
coding an AD model, it is often useful to first construct an TL model. The TL could also

be used to check the correctness of the adjoint code, as will be discussed in Step III.

To develop the TL model from the forward model, one could start from the forward
equations to derive the linearized TL model. Alternatively, one can start directly from the
existing NI code and write TL code line by line. The latter is a more practical approach

for full scale models, but users have to be very careful to avoid coding errors.

To verify a TL code is important and straightforward. Running the forward model
NL from two slightly different initial states, w and w+Aw, we get two nonlinear solutions,
N(w) and N(w + Aw). Then, run the TL model from Aw, using N(w) as the basic
state, to produce a TL solution L(Aw). If the TL model is correctly coded, the following

relation should hold approximately,

N(w + Aw) — N(w) ~ L(Aw). (21)

Step III : construct the adjoint model (AD)

To get an adjoint model, the easiest way is to start from the TL model in matrix
form and transpose the TL matrix, and the AD model is readily obtained. Alternatively,

one may use the line-by-line approach to derive the model, which will be illustrated later.

Unlike the TL code, the correctness of an adjoint code can be checked exactly. If
the adjoint code has been formulated correctly, the following should hold !:

(LX)"(LX) = XT[L7(LX)], (22)

where X is an arbitrary model state vector. Both L and LT are linear operators and may
be comprised of many linear operators on their own, representing different processes, such

as subroutines, functions, DO loops or the whole program. During the development of an

Lin fact, the above condition is merely necessary, but not sufficient(Hans Hvas, DMI, personal com-
munication). Instead, as a sufficient condition, for two arbitrary model states, X and Y, there is the
relationship, < X, LY > = < LTX,Y >, where < , > is the inner product.
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adjoint code, one generally needs to test each individual segment of the code first, and

the whole code afterwards, using (22).
Step IV : gradient check

As shown in Subsection 2.3, the backward integration of the adjoint model, with
the difference between observation and model solution added in, yields the gradient of the
cost function, V.J. In a sophisticated model system, one may have to write the adjoint
code for each individual part of the model. Experience has shown that serious coding
mistakes may occur with the data exchange among different portions of the adjoint codes.
Even when the AD code for individual operator has been verified, the final gradient of the
cost function with respect to the control variables might still be incorrect due to improper
linking of AD segments. Therefore, the accuracy of the cost function gradient V.J needs
to be checked. For that purpose, a function W(«) may be used (Navon et al, 1992):

_Jw—aVJ(w)| - J(w)
Vo) = W) v Iw) >

=1+ 0(a), (23)

where < , > denotes the inner product. For values of a which are small but not too close

to machine zero, the above value is expected to be close to unity.
3. CODING OF AN ADJOINT VARIATIONAL ASSIMILATION SYSTEM

Having formulated the variational data assimilation system for the Lorenz equations,

we now need to code the numerical models.
3.1. Nonlinear model

A simple FORTRAN subroutine can be constructed for (1) - (3), using a similar

notation:

subroutine Lorenz(w,dwdt,n,p,r,b)
dimension w(n),dwdt(n)

dwdt (1) = -p*w(1) + p*w(2)

dwdt (2) = w(1)*(r-w(3)) -w(2)
dwdt(3) = w(1)*w(2) - b*w(3)
return

end

Note that in the above subroutine, following the usual practice in NWP model, we choose

to use the time derivative dd—vt" explicitly in the code (Alternatively, one may avoid using this
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term by discretizing it). Given an initial model state of w(1), w(2), and w(3), with a time

stepping method, the numerical solutions for the equations are achieved by integration.

3.2. Tangent linear model

To formulate the tangent linear model of (1) - (3), we start from the equation set,

using w(n) as basic state and w'(n) as tangent linear variables, and derive the following

equations,
Py~ (1) 4 pu(2), (24)
POy @ (1) - () - w(1)u(3) (25)
(PO (2t (1) + (1) (2) — b (3) (26)

In addition, remembering that a variational perturbation is always done to the whole

model state vector, the following relationships are implied in the tangent linear operation,

w(1)" = w(1)", (27)
w(2)" = w(2)", (28)
w(3)" = w(3)". (29)

The equations above may also be written in matrix form,

w(l)tl w(l)tl
w(2)tl w(2)tl
w(g)tl w(g)tl
dw) | =L| awn? |, (30)
dj(tQW djgtz;”
duc;l(?))” duc;l(:%)”
dt dt
where i i
1 0 0 0 0 0
0 1 0 0 0 0
I — 0 0 1 0 0O
—p p 0 0 00
r—w3) -1 —w(l) 0 0 0
w(2) w(l) —=b 0 0 0]

The corresponding FORTRAN subroutine can be written as follows,

subroutine lorenz_tl(w,n,p,r,b,w_tl,dwdt_t1)
dimension w(n)
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dimension w_t1l(n),dwdt_t1(n)

w_t1(1) = w_t1(1)

w_t1(2) = w_t1(2)

w_t1(3) = w_t1(3)
dwdt_t1(1) = -p*w_t1(1) + p*w_t1(2)

dwdt_t1(2) = (r-w(3))*w_t1(1) - w_t1(2) - w(1)*w_t1(3)
dwdt_t1(3) = w(2)*w_t1(1) + w(1)*w_t1(2) - b*w_t1(3)
return

end .

Obviously, the first three statements in the above code is unnecessary for the tangent
linear model and is omitted in the real code. However, they become meaningful in the

adjoint model coding, as will be discussed below.

Having understood the concept of a tangent linear operation, it is rather straight-
forward to derive a TL from the forward model NL. An experienced user may be able to

do it directly from the forward code.
3.3. Adjoint model
3.3.1. Adjoint code derived with matrix operation

According to the relationship (16), the adjoint model (AD) can be most conveniently
derived from the matrix form of the TL model (30), by simply transposing the matrix L,

w(1)2? w(1)
w(2)* w(2)
w(3)? w(3)
dw)?? | = LT | aw@ed |,
ai ai
dw(2) 24 dw(2) 24
ai ai
dw(3) 24 dw(3) 24
at at

1 0 0 —p r—w(3) w(2)]
01 0 p -1 w(1)
1.7 001 0 —w( —b
{0 00 O0 0 0
000 O 0 0
(000 0 0 0 |
This gives,
(1) = (1) — pf P00 () LA ) 2
(@) = () 4 pf T et OB s 1) L s
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w3 = w3y — w1 Lo sy e
[d“;—gl)]”d 0,
[d“;—?]” 0,
d“;—f’)]ad = 0.

The corresponding FORTRAN subroutine of the adjoint model is,

subroutine lorenz_ad(w,n,p,r,b,w_ad,dwdt_ad)
dimension w(n)
dimension w_ad(n),dwdt_ad(n)

w_ad(1) = w_ad(1) -p*dwdt_ad(1) + (r-w(3))*dwdt_ad(2) + w(2)*dwdt_ad(3)
w_ad(2) = w_ad(2) +p*dwdt_ad(1) - dwdt_ad(2) + w(1)+*dwdt_ad(3)
w_ad(3) = w_ad(3) - w(1)*dwdt_ad(2) - b*dwdt_ad(3)
dwdt_ad(1) = 0

dwdt_ad(2) = 0

dwdt_ad(3) = 0

return

end

Notice that, corresponding to (27) - (29), we get the last three assignment statements in
the above routine to set zero value to the dd—‘;’ad vector. This may look tricky, but omitting

them will be a serious mistake. We will come back to that in the following.
3.3.2. Line-by-line approach in adjoint coding

The above procedure of deriving adjoint code is rather straightforward in principle.
However, with a complex system such as an operational weather forecasting model, it is
very hard to work with a TL or AD matrix with a large number of rows and columns. In
recent years automatic adjoint code generators have been developed for atmospheric data
assimilation purposes (e.g., Rostaing et al, 1993). However, there still seems to be some
time until the automatic technique can be used to routine applications. The majority of
researchers working with adjoint coding today still have to do it manually. An often used
approach is the so-called line-by-line approach, in which one starts from a constructed TL
routine which is derived from the forward (NL) model, and code the corresponding AD
model in the reverse order, line by line. We illustrate the principle with simple examples

below.

First look at a copy statement in the NL model,
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where A and B are scalars. Here the model state vector comprises two variables A and

B. For this assignment statement, the corresponding TL is,
Btl [ 10 ] Btl

( Atl ) = 1 0 * ( Atl ) )
Bad [ ] Bad

( Aad ) = * ( Aad ) ’

thus the FORTRAN code is,

hence the AD is,

O =
O =

B_ad
A_ad

A_ad + B_ad

Next, for a statement

C = coefl * A + coef2 * B + coef3 * D s

where C', D are also scalar variables, and coef1, coe f2 and coe f3 are coefficients that do

not change themselves with the operation, it can be shown that the adjoint code should

be

3

A_ad = A_ad + coefl * C_ad

B_ad = B_ad + coef2 * C_ad

D_ad = + coef3 * C_ad + D_ad
C_ad =0

If we combine the above two forward statements together in the following order,

coefl * A + coef2 ¥ B + coef3 * D
B

The matrix form of the TL for the combined operation will be,

B 1 0 0 0 B
At 1 0 0 0 Al
pt [T o 0 1o || bt |
ct coef2 coefl coef3 0 o
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the corresponding AD operation is,

B 1 1 0 coef2 Bad
At 100 0 coefl | | A
DY | 7|10 0 1 coef3 D ]
Cod 0 00 0 Cod
hence the adjoint code is,
B_ad = B_ad + A_ad + coef2 * C_ad
A_ad = + coefl * C_ad
D_ad = + D_ad + coef3 * C_ad
C_,ad = 0

It is easy to see that these statements are identical to the combination of the two individual
adjoint codes given above, provided that the order of those two statements is reversed.
Note that attention needs to be given to the order of each adjoint statement appearing

in the code above.

Indeed, with a piece of TL code at hand, it is feasible to construct the adjoint code
in the way demonstrated above, that is, to start from the last line of the tangent linear
code, and construct the corresponding adjoint code line by line in the reverse order. This
means that, for a DO loop, the operation should normally be run in the reversed index

order. Roughly speaking, for each TL statement in the form of,

Xj_tl = c1 * X1_t1 + c2 * X2_t1 + ... + ci * Xi_tl + ... cm * Xm_t1l ,

where cl,¢2,...,ct,...,em are coefficients, and : = 1,2,...,m, 1 < 5 < m, there should

be a corresponding segment of adjoint code in the following form,

Xm_ad = Xm_ad + cm * Xj_ad
Xi_ad = Xi_ad + ci * Xj_ad
X2_ad = X2_ad + ¢c2 * Xj_ad
X1_ad = X1_ad + cl1 * Xj_ad
Xj_ad = cj * Xj_ad

that is, for each TL variable X3! that has appeared on the right hand side (r.h.s) of the
TL statement, there should be an AD statement in which the corresponding adjoint X 7%
appears on the left hand side (1.h.s), and X7*? equals to the adjoint itself (Xi*?) plus the
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product of the coefficient (¢i) and the adjoint of the L.h.s variable in TL statement (X ;°¢).
In order to memorize this, one just has to remember, in writing AD code, to switch the
positions of the l.h.s variable Xj with that of the r.h.s variable X of the TL equation.
Notice that the AD statement for the l.h.s variable of the TL model X j%¢ should always
appear at the end of the AD segment, and if X ;% does not appear on the r.h.s of the TL
at the same time, (that is, if ¢j = 0 in the above example), a statement should still be
written to assign zero value to its adjoint, otherwise it may cause errors in other parts of

the program.

It should be pointed out that, unlike a derivative operation, the variational operation
used in connection with the adjoint model derivation always implies a perturbation around
the whole model state vector at a certain time step. Therefore, when constructing a TL
model from a NL. model, whether it is for a simple statement, a DO loop, a subroutine, or
an entire program segment, one needs to make sure that the whole model state is included
in the model state vector, when the TL operator matrix is constructed. For instance, in
the first example given above, the simple copy statement assigns the value of B to variable
A. If we omit B from model state vector just because B did not change its value in that

operation, the AD code will be wrong.
3.3.3. Adjoint code derived with line-by-line approach

Back to the adjoint coding for the Lorenz equations, following the line-by-line ap-
proach discussed above, we may write the corresponding adjoint statement in the reversed

order, as compared to the TL code.

First, the adjoint code for the third equation is,

w_ad(1) w_ad(1) + w(2)*dwdt_ad(3)
w_ad(2) w_ad(2) + w(1)*dwdt_ad(3)
w_ad(3) = w_ad(3) - b*dwdt_ad(3)
dwdt_ad(3) = 0.

then, for the second equation,

w_ad(1) = w_ad(1) + (r-w(3))*dwdt_ad(2)
w_ad(2) = w_ad(2) - dwdt_ad(2)
w_ad(3) = w_ad(3) - w(1)*dwdt_ad(2)

dwdt_ad(2) = 0.
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and for the first equation,

w_ad(1) = w_ad(1) -p*dwdt_ad(1)
w_ad(2) = w_ad(2) +p*dwdt_ad(1)
dwdt_ad(1) = 0.

It is easy to see that after some restructuring, the above adjoint code derived with line-
by-line approach becomes identical with the one derived from operations with transposed

TL operator.
4. RESULTS AND DISCUSSIONS
4.1 True solutions

Using a simple forward time scheme, the solution of the Lorenz equations can be
readily obtained by specifying an initial model state and a suitable time step. In case 1,

we choose the parameters in the Lorenz equation set (1) — (3) as follows,

p =10., r =32., b = 2.66666667,

and assume the initial model state to be

w(1) = 1.00 , w(2) = 3.00, w(3)= 5.00.

For a forward time integration, we adopt a non-dimensional time increment of 0.01. The
integration length is taken as 500 time steps, which corresponds to five non-dimensional

time units. The model solution is plotted in Figure 2(a) as thick solid lines for all three

variables w(1), w(2) and w(3).

It should be noted that, according to Lorenz (1963), at the given value of p and b as
above, the corresponding critical Rayleigh number is 24.74, which means that any Rayleigh
number r that is larger than 24.74 will make the system a chaotic one, i.e., the resulting
model state trajectories may differ significantly from other ones with slightly different
initial values. With a r value of 32 as chosen here, the system solution is expected to be
in that way, which is also similar to the behavior of an atmospheric system. To illustrate
this point more clearly, we make another run, case 2, where the initial condition differs

from case 1 with an offset of 10 % for all model variables,
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Figure 2: (a) Solutions of the Lorenz equations with p = 10, b = 8/3, and r = 32. r is
larger than the critical Rayleigh number. Note that the lower curves are for w(1), the
middle curves for w(2) with an offset 440, the upper curves w(3) with an offset +50. (b)
Same as in (a) but » = 10, which is smaller than the critical Rayleigh number. The w(2)
curves have been offset by +10, and w(3) by +20.
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w(1) = 1.10 , w(2) = 3.30, w(3) = 5.50.

The model result for this case is also plotted in Figure 2(a), represented by dotted lines.
As expected, the trajectories for case 1 and 2 are very close to each other at the start,

but the difference increases substantially at the later stage of the integration.

As a contrast, when r is smaller than the critical Rayleigh number, the bifurcation
in model solution no longer occurs. In case 3 and case 4, we run a parallel test, with
all parameters and numerical specifications the same as in case 1 and case 2, but with a
Rayleigh number r of 10, which is smaller than the critical Rayleigh number. The initial
model state of case 3 is the same as case 1, and case 4 the same as case 2. The results
are shown in Figure 2(b), with solid lines for case 3, and dotted lines for case 4. The
trajectories of these two cases are seen to remain very close to each other throughout the

integration period.

In the following experiments of this section, we will consider case 1 as a control case,
and refer the VDA run for that case as control run, and discuss various numerical results

from the constructed VDA model.
4.2 Coding check

We first perform code verification to make sure the VDA system has been coded
correctly. Since the AD code here is derived from the tangent linear model, we begin with
the validation of the TL, following the method discussed in Subsection 2.6. Table 1 shows
the result obtained with the TL check for control run (case 1), at the DMI Convex 3880
computer, with the double precision compiling option (64 bits). The perturbation vector
Aw is chosen as 0.1% and 1% relative to the “true” initial model states, respectively. In
Table 1, all calculated values given are for the 200th time step, which is chosen in the
later variational assimilation experiments as the length of the assimilation window. We
see that for a TL perturbation of 0.1% over the initial model state, the difference between
N(w 4+ Aw) — N(w) and L(Aw) is fairly small, but not zero. At the perturbation of
1%, the differences are more substantial. The differences in these two quantities may be
explained by the fact that a TL operation is a limit process by definition and there is no

strict equality between the r.h.s and Lh.s of (21).
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On the other hand, the correctness of the adjoint model can be verified rather
precisely, according to (22). Table 2 shows the output of the adjoint check for the same
case. For both perturbation vectors, the two terms are practically identical until the last

digit, where the difference is attributed to the computer truncation error.

Aw N(w + Aw) — N(w) L(Aw)
w(1) | 0.001 | 1.384879008488671E-002 | 1.366098997302821E-002
w(2) | 0.003 | -2.533392899875597E-002 | -2.535304379766051FE-002
w(3) | 0.005 | 3.898631904370831E-002 | 3.877479805054089E-002
W(l) 0.01 0.156208419286204 0.136609899730282
W(2) 0.03 -0.251276994362486 -0.253530437976605
w(3) | 0.05 0.409706718624186 0.387747980505408

Table 1. Validation of the tangent linear model.

Aw (0.001, 0.003, 0.005) | (0.01, 0.03, 0.05)
(LX)T(LX) | 2.332884440709493F-003 | 0.233283444070948
X7[LT(LX)] | 2.332884440709488F-003 | 0.233288444070949

Table 2. Validation of the adjoint model.

The above AD check is performed for the whole code segment involving the AD
operation, that is, a 200 time step forward tangent linear integration and a 200 time step
backward adjoint integration. In a more complex system such as an operational weather
prediction model, instead of checking the whole adjoint code together, it is often more
practical to perform individual verification of the AD code, piece by piece, corresponding

to an arbitrary number of steps in the NL model.

Next, we also perform cost function gradient check according to (23). The solid lines
in Figure 3 shows the result obtained by performing such a calculation on the Convex
3880. In this plot of gradient ¥ vs « value, it shows that when « is in the range between

1077 and 1073, ¥ remains close to unity, which is a rather good result.

It should also be emphasized that, in order to draw a fair conclusion from various
error checks of a program, one may need to use double precision in compiling the code.
In our experiments, we have seen examples from parallel runs performed on a SGI R4600

workstation (with no double precision option, 32 bits), where the results from the adjoint
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Figure 3: The cost function gradient check for control run, with « value vs .

check seem to be alarmingly poor under some circumstances. However, rerunning those
tests with double precision on the Convex proves that the differences are due to the
computer truncation error. Calculation with double precision is equally essential in the
gradient check as performed above. The dotted line in Figure 3 shows the parallel gradient
check result from the SGI R4600, which is rather different from the one obtained on the
Convex. In this case, ¥ approaches unity only for a much narrower range of a values,
between 1077 and 1073, Tests with an o which is smaller than 10~® on the SGI are

impossible because of the computer truncation.
4.3 Variational assimilation experiments

We now look at the numerical results from the variational data assimilation exper-
iments. As a contrast to the NL integration such as shown in Subsection 4.1, where the
initial model state is known, in an assimilation problem, the exact initial model state is
unknown, and it is the goal of the assimilation process to retrieve the initial model state
as accurate as possible. Typically, there is only a guess for the initial state, plus some

observations at certain points in time. Our task now is, through iterations of assimilation
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cycles, to find a more suitable initial model state, so that the model can simulate the

evolution process as close as possible to the true trajectories.
Assume that we have an initial guess of the model state as

w(1) = 1.10 , w(3) = 3.30, w(3) = 65.50,

which is equivalent to the 10% increased model state amplitudes as specified for case 1.
Now assume that we have three model state observations available during the assimilation
period; Assume further that those observations have a randomly distributed error of
maximum 10%. Running the Lorenz VDA system for 100 iterative cycles, with a 200 time
step assimilation window (which is two non-dimensional time units at d¢t = 0.01), and the
parameter « in (6) taken as 0.0005, we obtain a series of solutions, each representing an
evolution trajectory of the model state. The solutions from the cycle 1, 2, 3, 5, 10 and 30
are plotted in Figure 4 (a) - (f). As can be seen, the model is rather efficient in bringing
the trajectories to match the observations and the “true” evolution trajectories. After 5
iteration cycles, the model trajectories are already fairly close to the truth. In (e), for
cycle 10, and (f), for cycle 30, the model results are seen to be almost indistinguishable

from the true ones.

One may easily observe, from plots in Figure 4, that with the given initial guess of
the model state, throughout the iteration cycles, the differences between the simulated
trajectories and observations as well as “true trajectories” in the initial integration period
are rather small. However, for the first few iteration cycles, [Figure 4 (a), (b) and (c)],
the differences are increasingly significant at the later part of the integration period,
reflecting the chaotic behavior of the system. To our satisfaction, with seemingly rather
small improvements on the initial model state at each cycle, the assimilation iteration is

able to bring the model trajectories close to the truth.

Figure 5 plots the cost function wvs iteration cycle for control run. The dashed line
with constant value in the figure is for the observation cost function, which represents
the distance of the observation from true trajectories. It is obvious that the first 30 or so
iteration cycles are most effective in reducing the cost function. From cycle 50, the curve
of the cost function becomes rather flat, which means that additional cycles are no longer

meaningful. In fact, from Figure 4 (f), it is obvious that, at cycle 30, the model solution
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Figure 5: Cost function ws iteration cycle for the variational data assimilation run of
case 1.

is already indistinguishable from the true trajectories.

Figure 6 and 7 present two sets of VDA runs to assimilate the same evolution
trajectories as in case 1. In the case shown on the left column of Figure 6, the available

observation is the same as in control run, but the initial guess is rather poor,
w(1) = 1.35 , w(2) = 4.05 , w(3) = 6.75,
which is a 35% increase in model state amplitudes compared to the true values specified
for case 1. In the run for the right column of Figure 6, the initial guess field is even worse,
w(l) = 1.40 , w(2) = 4.20 , w(3) = 7.00,
which is a 40% error in initial model state amplitudes. Interestingly, for the case with 35%
initial error, although the assimilated trajectories at the first few cycles differ significantly

from the true trajectories, the following iteration cycles have been rather efficient. By

cycle 10, the model results already converge nicely to the true trajectories. However, for
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Figure 7: Same as in Figure 4, but in (a), (c) and (e), there is one observation at time
step 180 for w, and in (b), (d) and (f), there is only one observation at time step 180 for
w(2), and no observation for w(1) or w(3). (a) and (b) Cycle 1; (¢) and (d) Cycle 10; (e)
and (f) Cycle 100.
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the case with 40% error, although the initial guess field is only ’slightly” worse than the

previous case, the iteration does not converge.

The results shown in Figure 6 are not surprising. In fact, due to the chaotic nature
of the Lorenz model solutions at the high Rayleigh number, the convergence of the min-
imization process with the poor initial guess as bad as 35% error would be impossible,
had it not been for a relatively large number of observations. In each of the above runs,
we specified 3 sets of observations for all components of w. Considering the fact that the
assimilation model has only three degrees of freedom, i.e., there are only 3 components in
the model state vector, w(1), w(2) and w(3), the amount of available observations in the
above experiments is rather “luxurious”. Indeed, in a realistic assimilation application,
it is seldom that an assimilation problem is over-determined by available observations.
As a demonstration of this problem, Figure 7 shows two more runs in which, throughout
the integration period, each has only one observation available at 180th time step, with
the remaining setup the same as in control run. For the run shown by the left column of
Figure 7, the observation covers all the components of the model vector w. For the right
column run of Figure 7, there is only one observation for w(2). Obviously, in the lat-
ter case, the observation has less degrees of freedom compared to the assimilation model
itself. For the former case, the assimilation converges successfully after a few iteration
cycles. However, for the latter case, at 100 cycles, the VDA assimilation is still unable to

obtain the desired trajectories.

4.4 Minimization methods

In the results obtained so far, we have used the steepest descent method for the
minimization of the cost function. With this method, one only needs only to specify a
constant parameter a, and the remaining algorithm of the minimization process is simple,
as (6) shows. However, the efficiency of this method in bringing the iterative process to
convergence is often questionable. Figure 8 shows schematically the algorithm used by
the steepest descent approach. To obtain the desirable solution of model state wy™™, at
each step, the steepest descent method advects the model state vector Wo’k_l toward the
next state Wo’k along the direction of the cost function gradient, which is perpendicular to

the tangent line of the cost function isolines, as shown in Figure 8 by dashed and dotted
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Figure 8: The steepest descent principle as a minimization algorithm in the variational
data assimilation. The isolines are for the cost function, the solid line with arrow shows the
optimal descent direction, the dashed lines shows typical track with the steepest descent
method at a relatively small o value, dotted line at a larger a value.

lines. The efficiency of the algorithm depends on the magnitude of the constant « as well
as the form of the cost function. A larger a value results in bigger individual descent
steps. However, it does not necessarily bring about a more efficient minimization, nor
does it guarantee ultimate convergence. As a demonstration of this, Figure 9 shows the
cost functions vs iteration cycle for the VDA control run. For an a value of 0.001, the cost
function reduction is fastest. A rather good convergence is achieved at iteration cycle 30.
However, if the a value is taken as 107° or 1076, the iteration process become extremely

slow. On the other hand, when « is as large as 0.01, convergence does not occur.

Obviously, with the steepest decent algorithm, it is important to choose suitable «
values. Normally an optimal a value may only be obtained after many repeated test runs.
Furthermore, this approach, even with a relatively “optimal” « value, is not necessarily
the most efficient to achieve convergence. This can clearly be seen from Figure 8, where
the solid line points to the most efficient minimization, and such a descent direction is not

necessarily represented by the cost function gradient, as the 'steepest descent’ algorithm
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Figure 9: Same as in Figure 5, but with different o values. The experiment runs are
performed on a SGI R4600 workstation

implies. Fortunately, more advanced minimization techniques are available (see, e.g.,
Navon and Legler, 1987). As a demonstration of the importance of choosing a suitable
minimization algorithm, we make another VDA run for case 3 as discussed in Subsection
4.1, which is basically the same as in control VDA run, but with a Rayleigh number
of 10. In this case, both the initial guess and the three observations are of extremely
bad quality. The integration length is set to be 100 time steps. Figure 10 (a) shows
the VDA result for this case, by applying a sophisticated minimization software M1QN3,
which uses a variable-storage quasi-Newton method (Gilbert et al, 1989). Despite the
unusually poor initial guess and bad quality observations, a rather good assimilation
result is obtained after 20 assimilation cycles. On the other hand, when a corresponding
VDA run is performed with the steepest descent method, using an “optimal” « value of
0.01, which is chosen based on many test runs, the solution at 100 cycles is still a very
poor fit to the true trajectories [Figure 10 (b)]. Furthermore, the iteration process has
been very inefficient. After the 50’th cycle, there was scarcely any noticeable improvement

in the cost function reduction (Not shown here). The minimization technique is another



it tt'e Bt o ]

140

+ + + + Observations
True trajectory

O (R — Cycle 01
-+ -=- .= Cycle 20
100-
?
c
o
£
[}
]
2
=
£
< .
20-

'20 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
b
140 .
+ + + + Observations
True trajectory

T R qes—— Cycle 01

---=-.=. Cycle 100
100§ e,

Amplitude (non-d)

0.0 0.2 0.4 0.6 0.8 1.0
Time (non-d)
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result with steepest descent method at Cycle 100.
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complicated issue in VDA applications, but we will not discuss the matter further here.
5. SUMMARY

In this note, we introduce basic aspects of variational data assimilation using the
adjoint technique. A VDA system for the Lorenz equations is constructed. The Lorenz
model is chosen because of its simplicity in structure, yet richness in solution patterns and
many dynamical similarities with atmospheric systems. Detailed derivations and discus-
sions are presented to introduce the basic concepts of the variational method, such as the
cost function gradient, tangent linear and adjoint operators, etc. We then demonstrate,
step by step, the procedure to code the Lorenz VDA system, and introduce the line-by-line
approach for adjoint coding. With the constructed VDA system for the Lorenz model,
many numerical experiments are performed. Following the procedures discussed in this
note, we also perform various coding error checks to assure that the VDA system has

been coded correctly.

We feel that by designing, coding, and running the Lorenz VDA system, many useful
insights and experiences can be obtained which will be valuable for the future development
work of a more complicated variational data assimilation system, such as the 4DVAR for
HIRLAM. Of course, an actual weather forecast model like HIRLAM is a complex model
in which processes much more sophisticated than the Lorenz model are involved, hence
there is a much wider variety of problems in adjoint coding, many of which are untouched

in this note.
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Appendix A: An alternative derivation of the cost function gradient

Consider a scalar product (z,y). The first order variation in the cost function with
respect to a perturbation w/, §.J, may be expressed by the gradient of the cost function
with respect to initial conditions Wg, or with respect to the forecast W]j; at the observation

time t = 3, respectively:

5J = (V.J(w),ow{)
or
50 = (VJ(wl),owl) = (VJ(w]), Ledw]) = (LIV.J(w]), sw{)
In the second expression, we have used the tangent linear model (11), 5w£ = chswg, and

a property of inner product , (z, Lyy) = <L£$, y>.

Identification between the two expressions leads to the equation for calculation of

the gradient of the cost function with respect to the initial conditions:
VJ(w)) = LIV (w])

Using the definition of J in (5) and including more observation times, we obtain the same
equation as (14):
VJ(wg) = D Li(wi — w).
k
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Appendix B: FORTRAN code for the Lorenz VDA system

It is our belief that, by working with a relatively simple variational data assimilation
system such as the one for the Lorenz model, researchers may gain many useful insights
and experiences in practical VDA work. For that consideration, we provide here the
FORTRAN source code of the Lorenz VDA system that we have developed, to help
interested readers to familiarize with the program details. In order to limit the length
of this note, the code given below has been reduced to a “bare-bone” version. Should
a reader needs to use the code to make practice runs on his own, the authors would be

happy to provide a more extensive and “user-friendly” code version.

C A e e e e e e e e e e e e e e e e e e e e e e e e e e e +
C + VARIATIONAL DATA ASSIMILATION WITH THE LORENZ MODEL +
C + +
C + DEVELOPED BY: XIANG-YU HUANG, DMI, XYH@DMI.MIN.DK, SPRING 1995 +
C + REVISED BY: XIAOHUA YANG, DMI, XHY@DMI.MIN.DK, SPRING 1996 +
C + +
C A e e e e e e e e e e e e e e e e e e e e e e e e e e e +
C + TASK LIST : 1. GENERATE A TRUE EVOLUTION TRAJECTORY +
C + 2. TEST THE TANGENT LINEAR MODEL AND ITS ADJOINT +
C + 3. SIMULATE OBSERVATIONS +
C + 4. TEST THE GRADIENT OF THE COST FUNCTION +
C + 5. VDA WITH STEEPEST DESCENT MINIMIZATION +
C + 6. ARCHIVE DATA +
C + 7. QUIT +
C A e e e e e e e e e e e e e e e e e e e e e e +

program lorenzvda

real fw(3),t1(3),ad(3),tmp(3)

logical 1ltest

data p,r,b,dt,nstop/10.,28.,2.66666667,0.01,300/
1 read (5,*) itask

if (itask.eq.1l) then Generate a true solution
ncyc=0
call in_out(’in’,’i’,01,ncyc,0,fw)
call fom(ncyc,fw)

endif

if (itask.eq.2) then
ncyc=1
call in_out(’in’,’i’,01,ncyc-1,0,tmp)
call in_out(’in’,’p’,01,ncyc-1,0,tl)
call hplus (tmp,tl,fw)
call fom(ncyc-1,tmp)
call fom(ncyc,fw)
call hminus(fw,tmp,fw)
write(6,*) °N (w+ dw) - W (w), from NL ’,(fw(i),i=1,3)
call tlm(ncyc,tl)
write(6,*) ° L(dw), from TL ’,(t1(i),i=1,3)
ltest=.true.
call hinnerp(tl,tl,tt)
call hcopy(tl,ad)
call adm(ncyc,ad,ltest)
call in_out(’in’,’p’,01,ncyc-1,0,tl)
call hinnerp(tl,ad,pa)

Test the tangent linear
model TLM

Test the adjoint model ADM

write(6,%*) LX_t LX = tt
write(6,*) ’X_t (L_t (LX)) = ’,pa
endif

if (itask.eq.3) call obsloz(01,nstop) Construct ’observations’

if (itask.eq.4) then Test the gradient of the

ltest = .false. ! cost fuction
call obsloz(01,nstop)
ncyc = 1

call in_out(’in’,’i’,01,ncyc,0,fw)
call fom(ncyc,fw)

cost0 = ocost(01,ncyc,nstop)

ncyc = 2

call hsetcon(ad,0.)

call adm(ncyc,ad,ltest)
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call hinnerp(ad,ad,aa)
read (5,*) nal,na2
do nalpha = nal,na2
alpha = 10.*#*(-nalpha)
call in_out(’in’,’i’,01,ncyc-1,0,fw)
call hmini(fw,ad,alpha)
call fom(ncyc,fw)
costl = ocost(01,ncyc,nstop)
chkgra = -(costl-cost0)/(alpha*aa)
write(6,*) ’chkgra = ’,chkgra
call in_out(’out’,’g’,01,0,nalpha,chkgra,1)
enddo
endif

if (itask.eq.5) then
ltest = .false.
call obsloz(01,nstop)
write(6,*) 'for iterations from istart to and istop:’
read (5,*) istart,istop,alpha
if (istart.eq.0) goto 1
do ncyc = istart,istop
if (ncyc.eq.1) then
call in_out(’in’,
else
call hsetcon(ad,0.)
call adm(ncyc,ad,ltest)
call in_out(’in’,’m’,01,ncyc-1,0,fw)
call hmini(fw,ad,alpha)
endif
call fom(ncyc,fw)
cost = ocost(01,ncyc,nstop)
enddo
goto 2
endif

’i? 01,ncyc,0,fw)

if (itask.eq.6) call arcdat(01,ncyc,nstop)

if (itask.ge.7) stop
goto 1
end

! read in alpha range in form
! of 10**alpha

Run the VDA with the
steepest descent minimization

read the start and end of
the iteration cycle and
alpha value

Archive experiment output

Stop the program
Restart

subroutine florenz(x,y,p,r,b)
dimension x(3),y(3)

y(1) = -p*x(1) + p*x(2)
y(2) = x(1)*(r-x(3)) -x(2)
y(3) = x(1)*x(2) - b*x(3)
return

end

subroutine
the descretized Lorenz
equations

sk skok ok ok ok ok ok KoK

* FLORENZ *

ook skok ok ok ok ok ok KoK

subroutine fom(ncyc,x)
dimension x(3),y(3)
data p,r,b,dt,nstop/10.,10.,2.66666667,0.01,300/
call in_out(’out’,’m’,nexp,ncyc,0,x)
do ntim = 1,nstop
call florenz(x,y,p,r,b)
call fstep(x,y,dt)
call in_out(’out’,’m’,nexp,ncyc,ntim,x)
enddo
return
end

subroutine
the forward model

compute tendencies
time stepping
store data

subroutine fstep(x,y,dt)

dimension x(3),y(3)

do i=1,3
x(i) =

enddo

return

end

x(i) + de*y(i)

subroutine
forward time stepping scheme

subroutine tlm(ncyc,tl)
dimension t1(3),xx(6),yy(6),tb(3),y(3)
data p,r,b,dt,nstop/10.,10.,2.66666667,0.01,300/
do ntim = 1,nstop
call in_out(’in’,’m’,nexp,ncyc-1,ntim-1,tb)
call tlorenz(tl,y,tb,p,r,b)
call fstep(tl,y,dt)
enddo
return
end

subroutine
the tangent linear model

get basic state
compute tendencies
time stepping

subroutine tlorenz(x,y,xb,p,r,b)
dimension x(3),y(3),xb(3)

y(1) = -p*x(1) + p*x(2)
y(2) = (r-xb(3))*x(1) - x(2) - xb(1)*x(3)
y(3) = xb(2)#x(1) + xb(1)*x(2) - b*x(3)

return

subroutine
the tangent linear Lorenz
equations
ok skok ok koK Kok
* TLORENZ =*
ok ok ok koK Kok
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subroutine adm(ncyc,a,ltest)
dimension a(3),t1(3),ab(3),d(3),y(3),tb(3)
logical ltest
data p,r,b,dt,nstop/10.,10.,2.66666667,0.01,300/
call hsetcon(y,0.)
do ntim = nstop,1,-1
call in_out(’in’,’m’ ,nexp,ncyc-1,ntim-1,ab)
if (.not.ltest) then
call obminuso(d,ntim,nexp,ncyc-1)
call hplus(a,d,a)
endif
call astep(a,y,dt)
call alorenz(a,y,ab,p,r,b)
enddo
return
end

subroutine
the adjoint model

get basic state

compute the xb-xo
and add to the ad variables

time steeping adjoint
tendency adjoints

subroutine alorenz(a,y,xb,p,r,b)
dimension a(3),xb(3),y(3)

a(1) = a(1) -pxy(1) + (r-xb(3))*y(2) + xb(2)*y(3)
a(2) = a(2) +p*xy(1) - y(2) + xb(1)*y(3)
a(3) = a(3) - xb(1)*y(2) - b*y(3)
y(1) = 0.

y(2) = 0.

y(3) = 0.

return

end

subroutine

the adjoint Lorenz equations
ok kok ok koK Kok
* ALORENZ =*
ok ok ok koK Kok

subroutine astep(x,y,dt)
dimension x(3),y(3)
do i=1,3

y(i) = y(i)+dt*x(i)
enddo
return
end

subroutine
forward time stepping adjoint

subroutine obminuso(xj,ntim,nexp,ncyc)
dimension xj(3),x(3),0(3)

call in_out(’in’,’m’,nexp,ncyc,ntim,x)
call in_out(’in’,’0’ ,nexp,0,ntim,o0)

do i=1,3
if (x(i).eq.999.999.0r.0(i).eq.999.999) then
xj(i) = 0.
else
xj(i) = x(i) - o(d)
endif
enddo
return
end

subroutine
compute difference between
model state and observations

subroutine obsloz(nexp,nstop)

dimension 0(3),e(3),zwrk(3)

call in_out(’in’,’e’ ,nexp,0,0,e)

call in_out(’in’,’i’ ,nexp,0,0,zwrk)

call fom(0,zwrk)

do ntim = O,nstop
call in_out(’in’,’m’ ,nexp,0,ntim,0,3)
if (mod(ntim,10).eq.0) then

do i=1,3
o(i) = o(i) + e(i)*2.%(ran(0)-0.5)
enddo
else
call hsetcon(o0,3,999.999)
endif
call in_out(’out’,’0’,nexp,0,ntim,o0)
enddo
cost = ocost(nexp,0,nstop)
return
end

subroutine
simulate observations

function ocost(nexp,ncyc,nstop)
dimension xj(3)
ocost = 0.
do n = O,nstop
call obminuso(xj,n,nexp,ncyc)

doi=1,3
ocost = ocost + xj(i)**2
enddo
enddo

ocost = ocost/2.

call in_out(’out’,’j’,nexp,ncyc,n0,ocost)
return

end

function :
compute cost function
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subroutine hcopy(x,y) ! subroutine
dimension x(3),y(3) ! copy a matrix
do i=1,3
y(i) = x(i)
enddo
return
end
subroutine hinnerp(a,b,c) ! subroutine
dimension a(3),b(3),c ! inner product
c=0.
do k=1,3
c = c + a(k)*b(k)
enddo
return
end
subroutine hmini(x,a,alpha) ! subroutine
dimension x(3),a(3) ! minimization with the
do i=1,3 ! steepest descent method
x(i) = x(i) - alpha*a(i)
enddo
return
end
subroutine hminus(x,y,z) ! subroutine
dimension x(3),y(3),z(3) ! matrix subtraction operation
do i=1,3
z(i) = x(i) - y(i)
enddo
return
end
subroutine hplus(x,y,z) ! subroutine
dimension x(3),y(3),z(3) ! matrix addition operation
do i=1,3
z(i) = x(i) + y(i)
enddo
return
end
subroutine hsetcon(a,c) ! subroutine
dimension a(3) ! assign a value to a matrix
do i=1,3
a(i) = ¢
enddo
return
end

subroutine arcdat(nexp,ncyc,ntim)

archive the calculation result. (ommited)

subroutine in_out(cgp,ctyp,nexp,ncyc,ntim,x)
fetch/store data in the active memory space. (ommited)

END
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